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Abstract

This thesis explores algorithms for resource allocation, with an emphasis on fairness. “Fairness” is

an extremely complex concept and our goal in this thesis is not to design an algorithm that is “truly

fair” (if such a thing even exists). Rather, we consider a variety of specific objectives inspired by

fairness, and analyze their properties in different resource allocation models.

The thesis is split into private resource allocation and public resource allocation. Private resource

allocation handles items such as food and cars, where each individual receives a separate bundle of

resources, with the key assumption being that their happiness (or “utility”) depends only on what

they receive, and not on what others receive. This process typically occurs through decentralized

markets. In contrast, in public resource allocation, a centralized government makes a single decision

that affects all citizens: for example, how to allocate a city budget, or whether to build a communal

pool. Markets and governments are two of the most fundamental institutions in our society, and so

any improvement to these systems can have far-reaching benefits.

For both of these settings, we take on the role of the system designer (or “social planner”). Our

goal is to design an allocation method (or “mechanism”) to distribute these resources in a “good”

way, where “good” can have many interpretations, including but not limited to fairness concerns.

We consider two primary approaches to defining “good”: axiomatic and welfarist. An axiom

states a desirable property the outcome. For example, a common fairness axiom for private resource

allocation is envy-freeness: no individual should prefer another individual’s bundle to her own.

In contrast, the welfarist approach is predicated on a designated welfare function, which assigns a

single number to each possible outcome, with larger numbers being “better”. Our goal then becomes

to choose an outcome which maximizes the welfare function. Different welfare functions represent

different priorities: for example, maximizing the sum of utilities focuses on overall societal happiness,

and maximizing the minimum utility focuses on equality of happiness across individuals.

For all of these settings – private or public, axiomatic or welfarist – we provide allocation mech-

anisms that are provably “good” in some way. That said, each of our mechanisms has its own

drawbacks, and whether or not these mechanisms are truly “fair” depends on a myriad of logistical,

cultural, and philosophical factors. However, we hope that this thesis serves as an important step

along the never-ending path to improve resource allocation in our society.
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Chapter 1

Introduction

Resource allocation is one of the fundamental underpinnings of society. Every purchase that is made,

every allotment of government capital – these are instances of resource allocation. When these

systems are robust and fair, society functions smoothly and its citizens are taken care of. When

these systems are exploitable and unfair, society starts to crumble and inequity runs rampant. The

design of “good” resource allocation mechanisms is a monumental task, and requires collaboration

between a myriad of disciplines. In this thesis, we make substantial contributions to this effort from

a theoretical economics and computer science perspective.

1.1 What is “fairness”?

The title of this thesis includes the word “fair”, a complex and weighty term. Is equality of happiness

“fair”? Is lack of envy “fair”? Is equal opportunity to exert one’s preferences “fair”? The answers to

these questions depend on a nuanced tapestry of logistical, cultural, and philosophical factors which

we do not address in this thesis. Consequently, it would be inappropriate to claim that any of our

mechanisms are truly “fair”. Instead, we focus on the specific properties they satisfy: equality of

happiness, envy-freeness, etc.

So why is this word included in the title? Because “fairness” is the overarching inspiration for this

work. Fairness is like happiness: it is difficult to define what happiness is, and sometimes difficult to

even know if we are happy. However, that does not preclude the pursuit of happiness. In the same

vein, this thesis is about the pursuit of fairness.1

1.2 A general resource allocation framework

All of the resource allocation models used in this thesis (both public and private) fall within the

same general framework. There is a fixed set of agents N = {1, . . . , n}, and a fixed set of resources

M , where m = |M |. There is also a fixed set χ of feasible outcomes. Each model we consider will

1It is also worth noting that “fair” is a standard term in some research areas, e.g., fair division. That is not the
primary reason we include it in the title, however.

1
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have different assumptions on χ, and each chapter of the thesis will explicitly state the applicable

assumptions.

Each agent i has a utility function ui, where ui(x) is a real number indicating how much agent

i “likes” x. In general, we assume that agents are selfish and wish to maximize their utility ui(x).

Similarly to χ, different chapters of the thesis will make different assumptions on what ui can be.

For private resource allocation, each element x ∈ χ is a n ×m matrix, specifying how much of

resource j ∈ M is allocated to agent i ∈ N . Since each agent’s utility depends only on what she

receives, we can write ui(x) = ui(xi), where xi is the bundle given to agent i. An allocation is

feasible only if the total amount allocated of each good j does not exceed the total supply of good

j. Formally, ∑
i∈N

xij ≤ sj ∀j ∈M

where xij is the amount of good j in i’s bundle, and sj is the supply of good j. In general, we use i

and k to refer to agents, and j and ` to refer to resources.

We also consider divisible vs indivisible items: a loaf of bread can be split among two, or three,

or ten agents, but a car must go entirely to a single agent and thus is indivisible. When items are

indivisible, this adds a further constraint on χ: namely any x ∈ χ must have only integer entries.

When items are divisible, each xij can be any real number.

For public resource allocation, each “resource” is a public issue that the agents must decide

upon. In this case, the outcome for each issue is a real number, and the overall outcome is a vector

of length m, where the jth entry is the outcome for issue j. In one chapter, we restrict issues to be

binary (e.g., yes or no, which we present as 0 or 1), but in another chapter, we allow the entries to

be any real number.

1.3 Objectives

If we simply let each agent take whatever she wants, that may not lead to a good outcome for society

overall. Thus our general goal is to design a resource allocation mechanism that has provably “good”

outcomes, even when agents selfishly try to maximize their utility.

In this section, we define the various notions of “good” that we consider in this thesis. As

discussed in the abstract, these are divided into welfarist objectives, and axiomatic objectives.

1.3.1 Welfarist objectives

A welfare function Φ assigns a real number to each feasible outcome x, with higher numbers indi-

cating that the allocation is “better” for society. The welfare function typically only depends on the

agent utilities, and not directly on the allocation. Once we select a welfare function Φ, our goal then

becomes to design a mechanism such that the outcomes are guaranteed to maximize Φ.

But how should we choose a welfare function? There are many different possibilities, each
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representing different priorities. The most common welfare functions are

utilitarian welfare: Φ(x) =
∑
i∈N

ui(x)

egalitarian welfare: Φ(x) = min
i∈N

ui(x)

Nash welfare: Φ(x) =
∏
i∈N

ui(x)

Utilitarian welfare cares only about the overall happiness of society, regardless of equality across

agents. We think of this as the most efficient outcome. In contrast, egalitarian welfare2 cares only

about equality: maximizing the minimum utility means that an optimal solution will give all agents

the same utility. Nash welfare is somewhere in between these two.

All of these can be generalized by a constant elasticity of substitution (CES) welfare function,

parametrized by a real number ρ ∈ (−∞, 1]:

Φρ(x) =
(∑
i∈N

ui(x)ρ
)1/ρ

For ρ = 1, we recover utilitarian welfare. The limit as ρ→ −∞ yields egalitarian welfare [149, 160,

161], whereas ρ → 0 yields Nash welfare [108, 129]. The closer ρ gets to −∞, the more the social

planner cares about individual equality (egalitarian welfare being the extreme case of this), and the

closer ρ gets to 1, the more the social planner cares about efficiency, or efficiency (utilitarian welfare

being the extreme case of this). For this reason, ρ is called the inequality aversion parameter, and

this family of welfare functions is thought to exhibit an equality/efficiency tradeoff.

These welfare functions were originally proposed by Atkinson [8]; indeed, his motivation was to

measure the level of inequality in a society. Despite being extremely influential in the traditional

economics literature (see [53] for a survey), the CES welfare function has received almost no attention

in the computational economics community.3

In general, different values of ρ will lead to different optimal outcomes. Thus whenever we say

that an outcome maximizes CES welfare, we always mean with respect to a particular value of ρ.

When the value of ρ is clear from context, we omit this and just say that the omit maximizes CES

welfare.

1.3.2 Axiomatic objectives

The welfarist approach is based on maximizing a given function of the agent utilities. An alternative

approach is to posit certain properties – or axioms – that the outcome should satisfy. The axioms

should be easy to verify if the agent utilities are known. This is in contrast to welfarism, there is

generally no way to verify that x is optimal without solving the corresponding optimization problem.

2This is also known as max-min welfare or Rawlsian welfare.
3To our knowledge, only one computational economics paper outside of our work has studied CES welfare in any

context: [7].
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Axioms are most commonly considered in the context of fairness. For private resource allocation,

perhaps the most popular is envy-freeness, which states that no agent should prefer another agent’s

bundle of resource to her own. Formally, x is envy-free if for all agents i and k,

ui(xi) ≥ ui(xk)

A related property is proportionality, which states that each agent’s utility for her own bundle should

be at least 1/n times her utility for her favorite possible outcome. Formally,

ui(xi) ≥
1

n
max
y∈χ

ui(y)

It is typically assumed that the utilities are monotonic, i.e., getting more resources cannot decrease

an agent’s utility. Under that assumption, maxy∈χ ui(y) is simply agent i’s utility for getting all of

the resources.

There are also variants of each of these properties that we will discuss when they become relevant

later in the thesis. Depending on the specific problem (i.e., the assumptions on χ and the utilities),

achieving envy-freeness and/or proportionality may be trivial, an interesting challenge, or impossible.

Finally, note that neither of these axioms make much sense in the context of public resource

allocation: when all agents get the same “bundle”, how do we interpret envy-freeness? Designing

axioms for public resource allocation is a vibrant area of research, one that we consider in Chapter 8

of this thesis.

1.3.3 Intersection of welfarist and axiomatic approaches

For many welfare functions, any optimal solution is guaranteed to satisfy certain axioms. Indeed,

one of our mechanisms for satisfying (a variant of) envy-freeness will involve maximizing a (non-

traditional) welfare function. Furthermore, any CES welfare function is guaranteed to satisfy the

following axioms:

1. Monotonicity: if one agent’s valuation increases while all others are unchanged, the welfare

function should prefer the new allocation.

2. Anonymity: the welfare function should treat all agents the same,

3. Continuity: the welfare function should be continuous.4.

4. Independence of common scale: scaling all agent valuations by the same factor should not

affect which allocations have better welfare than others.

5. Independence of unconcerned agents: when comparing the welfare of two allocations, the

comparison should not depend on agents who have the same valuation in both allocations.

4A slightly weaker version of continuity is often used: if an allocation x is strictly preferred to an allocation y, there
should be neighborhoods N(x) and N(y) such that every x′ ∈ N(x) is preferred to every y′ ∈ N(y). This weaker
version only requires a welfare ordering and does not require that this ordering be expressed by a function. However,
any such ordering which also satisfies the rest of our axioms is indeed representable by a welfare function [60], and so
both sets of axioms end up specifying the same set of welfare functions/orderings.



CHAPTER 1. INTRODUCTION 5

6. The Pigou-Dalton principle: when choosing between equally efficient allocations, the welfare

function should prefer more equitable allocations [56, 142].

Furthermore, disregarding monotonic transformations of the welfare function (which of course do

not affect which allocations have better welfare than others), the set of welfare functions satisfying

these axioms is exactly the set of CES welfare functions with ρ ∈ (−∞, 0) ∪ (0, 1], including Nash

welfare [128].5 This axiomatic characterization shows that we are not just focusing on an arbitrary

class of welfare functions: CES welfare functions are arguably the most reasonable welfare functions.

1.3.4 Motivations behind CES welfare and envy-freeness

CES welfare and envy-freeness have distinctly different flavors, beyond one being an axiom and the

other a welfare objective. CES welfare aims to implement a particular equality/efficiency tradeoff for

a (potentially large) group of agents as a whole. In contrast, envy-freeness is based on interpersonal

comparison: no agent should be treated poorly in comparison to other agents.6 Notably, CES welfare

only considers the utility each agent has for her own bundle, whereas envy-freeness considers each

agent’s utility for every agent’s bundle.

It is worth noting that the empty allocation is trivially envy-free: all agents are treated the same,

and they are all treated “badly” (i.e., by withholding resources). We typically avoid this degenerate

case by requiring that all goods be allocated, but the general point still stands. CES welfare does

not suffer from this issue, but that does not make it a “better” objective: it is simply different.

We suggest that although CES welfare and envy-freeness can both be motivated by fairness, they

are attempting to capture different aspects of fairness: CES welfare is closer to “equitable”, while

envy-freeness is closer to “non-discriminatory”. The conditions, if any, under which envy implies

discrimination or CES welfare corresponds to equitability are far beyond the scope of this thesis.

However, it is still valuable to reflect on the differences in motivation between the objectives we

consider.

1.4 Contributions of the thesis

With these concepts in hand – a general resource allocation framework and a discussion of objectives

– we can describe the primary contributions of this thesis.

1.4.1 Part I: welfarist private resource allocation

Part I studies market mechanisms with welfarist objectives for private resource allocation. We will

provide a thorough introduction to markets in Section 1.5, but we need to provide some quick

definitions in order to describe our results. There are two main market models: fixed-budget, where

each agent has a fixed budget of money to spend and seeks to maximize her utility subject to that

5This actually does not include max-min welfare, which satisfies weak monotonicity but not strict monotonicity.
6Envy-freeness also makes the most sense for a small group of agents, where each agent can compare their bundle

to each other agent.
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budget, and quasilinear, where each agent can spend as much as she wants, and instead she tries to

maximize her value for her bundle minus the cost of the bundle.

For both of these models, the majority of the economics literature assumes linear pricing, i.e.,

buying twice as much always costs twice as much. It is known that linear pricing equilibria in the

fixed-budget model and quasilinear model maximize Nash welfare and utilitarian welfare, respec-

tively [72, 73].

In contrast, Part I focuses on nonlinear pricing. The overarching themes of this part of the thesis

are nonlinear pricing, CES welfare, and the connection between. The material in this part of the

thesis is based on three published papers: [94, 96, 143].

Markets beyond Nash welfare for bandwidth allocation

Chapter 2 uses the fixed-budget model to design nonlinear pricing rules which lead to CES welfare

maximization.7 We show that for bandwidth allocation utilities8, nonlinear pricing allows us to obtain

market equilibria which maximize (budget-weighted) CES welfare. Furthermore, these prices take a

simple form: p(xi) =
∑
i∈N qjx

1−ρ
ij . Here p(xi) is the price of bundle xi, ρ is the parameter of the

CES welfare function to be maximized, and q1, . . . , qm are optimal Lagrange multipliers in a convex

program for maximizing CES welfare. The structure of p(xi) yields a simple way to compute these

price curves: decide on a parameter ρ, ask the agents for their utilities, and solve the corresponding

convex program to obtain q1, . . . , qm.

Optimal Nash equilibria for bandwidth allocation

The above approach requires agents to truthfully report their utilities, which they may not be willing

and/or able to do. Chapter 3 provides a way around this. We consider the same basic problem –

CES welfare maximization for bandwidth allocation utilities in the fixed-budget model – but focus on

strategic behavior. Inspired by the classic trading post mechanism, we propose a mechanism where

agents use their fixed budget to bid on goods, and each good is allocated as a nonlinear function

of the bids. Rather than asking agents to report their utilities and then explicitly computing prices

ourselves, this bidding mechanism allows prices to arise naturally from agents’ behavior. We show

that the Nash equilibria of this mechanism are also guaranteed to maximize CES welfare, thereby

preserving the welfare guarantees from Chapter 2, while also handling strategic behavior.

Counteracting inequality in markets via convex pricing

We view Chapter 4 as the culmination of this line of work. In this chapter, we are able to obtain

similar results as before, but for a much wider range of agent utilities. To do this, we pivot to the

quasilinear market model, which is much better suited to the analysis of CES welfare maximization

(see Section 1.5.2). We show a similar result to that of Chapter 2: for any problem instance, for

7This chapter also considers the more general question of what set of market equilibria is possible for nonlinear
pricing, but those results are less crucial to the overarching contribution of the thesis.

8In bandwidth allocation, each good represents a link in a network, and each agent wants to transmit data through
a fixed path of links. An agent’s utility is the minimum bandwidth she receives among all links in her desired path.
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any ρ ∈ (0, 1], there exists a pricing rule such that all of the market equilibria maximize CES

welfare. Chapter 2 only showed this for bandwidth allocation utilities, but in this chapter, we only

assume that utilities are concave, differentiable, and homogeneous of fixed degree. The pricing rule

takes a similar form: p(xi) =
(∑

j∈M qjxij
)1/ρ

where ρ determines the CES welfare function to be

optimized, and q1, . . . , qm are optimal Lagrange multipliers from a convex program for maximizing

CES welfare.9 This pricing rule is convex for ρ ∈ (0, 1], and we discuss connections to real-world

convex pricing: in particular, for water.

Whereas the result from Chapter 2 feels quite specialized, we feel that this result is general

enough to indicate a fundamental connection between CES welfare and nonlinear pricing, mirroring

the relationship between linear pricing and utilitarian welfare (in the quasilinear model) or Nash

welfare (in the fixed-budget model).

Comparison of our results in the fixed-budget and quasilinear models

In the fixed-budget model, we show that for any ρ ∈ (−∞, 1), the pricing rule p(xi) =
∑
j∈M qjx

1−ρ
ij

leads to (budget-weighted) CES welfare maximization for bandwidth allocation utilities (Chapter 2).

In the quasilinear model, we show that for any ρ ∈ (0, 1], the pricing rule p(xi) =
(∑

j∈M qjxij
)1/ρ

leads to CES welfare maximization for a much larger set of agent utilities (Chapter 4). Although

there are some superficial differences between these results (e.g., the permissible values of ρ, the

specific form of the pricing curve), we can unify them to some extent.

Essentially, we show that if we use the quasilinear model to obtain a market equilibrium with

pricing rule p(xi) =
(∑

j∈M qjxij
)1/ρ

, and let Bi be the spending of agent i at equilibrium, then

(x, p) also forms a fixed-budget equilibrium for agent budgets B1, . . . , Bn. We can extend this

idea to show that maximizing CES welfare with respect to a fixed ρ ∈ (0, 1] is actually equivalent

to maximizing budget-weighted CES welfare with respect to ρ − 1 (where agent i’s budget is her

equilibrium spending in the quasilinear model). Formally:

Theorem 4.9.2. Assume agent valuations are concave, differentiable, and homogeneous of fixed

degree, let ρ ∈ (0, 1], let q1, . . . , qm ∈ R≥0, and let p(xi) =
(∑

j∈M qjxij
)1/ρ

. Assume x maximizes

CES welfare with respect to ρ, and let Bi = p(xi). Then x maximizes budget-weighted CES welfare

for ρ− 1.

This does not fully unify the results. However, we feel that the remaining differences are artifacts

of the strong assumptions on utilities we make in Chapter 2 in order to obtain our result in the

fixed-budget model (see Section 1.5.2). Again, we view the result in the quasilinear model to be

the capstone result of this part of the thesis, one which points to a fundamental connection between

CES welfare and nonlinear pricing.

9This result has the same strategic concern as that of Chapter 2, and unfortunately the trading post approach
does not work here. However, we are able to provide a truthful mechanism for the case of a single good.
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1.4.2 Part II: axiomatic private resource allocation

In Part II, we turn to axiomatic approaches to private resource allocation. We also focus on indivis-

ible items. Perhaps the most pervasive fairness axiom is envy-freeness, which states that no agent

prefers another agent’s bundle to her own. Unfortunately, this is not always possible with indivisible

goods: consider two agents and a single good. Part II consists of two chapters, each representing a

different approach to the fundamental asymmetry of indivisible goods. The mechanisms in Part II

are not market mechanisms, but instead use a variety of other techniques. The relevant published

papers for Part II are [144] and [145].

A new fairness axiom: envy-freeness up to any good (EFX)

The goal of Chapter 5 is to find a relaxation of envy-freeness which is achievable for indivisible

goods. We study a property called envy-freeness up to any good, also known as EFX. This axiom

permits envy in an allocation, but if agent i envies agent j, removing any good from j’s bundle

should eliminate the envy.10 Note that this immediately resolves the case of two agents a single

good.

Unfortunately, the question of whether EFX allocations are guaranteed to exist seems extremely

difficult. This axiom was proposed by [40], who were unable to resolve the question of guaranteed

existence “despite significant effort”. Although we too were unable to resolve this question in general,

we were able to resolve it in some special cases, as well as prove an exponential lower bound on the

number of queries required to compute an EFX allocation. Our work, when originally published in

2018, constituted the first formal results regarding EFX. After significant amount of follow-up work

(e.g., [3, 39, 46, 92]), it was recently shown that EFX allocations are guaranteed to exist for three

agents with additive valuations [45].

Communication complexity of envy-freeness (and friends)

Chapter 6 takes a different approach. This chapter focuses on full envy-freeness, accepting that

envy-free allocations do not always exist. Instead, our goal is to efficiently determine whether or

not an envy-free allocations exists in a particular problem instance. We view this through the

lens of communication complexity, where agents can do as much offline computation as they wish,

and seek to minimize the amount of information they must transmit amongst themselves. We

study the same questions for proportionality, approximations of envy-freeness, and approximations

of proportionality, all of which have the same property that existence is not guaranteed for indivisible

items.11 We consider many different problem parameters, including number of players, randomized

vs deterministic complexity, and restrictions of agent utility functions. For every combination of

parameters, we complete resolve whether the communication complexity is polynomial or exponential

(in the number of goods).

10This is simply a thought experiment used in the definition of EFX: the good is not actually removed from j’s
bundle.

11Typically, EFX is considered a “relaxation” and not an approximation. As discussed, guaranteed existence of
EFX is an open question.
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1.4.3 Part III: public resource allocation

Finally, we consider public resource allocation in Part III. Both chapters in Part III consider public

decision-making, where each of the m resources is an issue for which the group must make a decision

(where the “decision” is a real number).

Like Part I, this part of the thesis has a strong emphasis on markets. Markets for private resource

allocation are known to have many desirable properties (see Section 1.5), but have not been studied

as thoroughly for public resource allocation. In fact, we can draw a strong parallel between this

and Part I: markets with linear pricing are well-studied, so we study nonlinear pricing; markets for

private goods are well-studied, so we study public goods. That said, the emphasis of Part I is less

on understanding markets for public goods in general, and more on designing mechanisms for public

decision-making inspired by markets. Part III is based on material from [88] and [103].

Markets for public decision-making

In Chapter 7, our goal is to adapt traditional private goods markets to the public decision-making

setting. We first consider a straightforward adaptation of the fixed-budget model: essentially, we

set a price for each issue, give each agent one unit of artificial currency, and allow agents to “buy

probability“ for their preferred outcome (we focus on binary issues with randomized outcomes).

However, the market equilibria for this mechanism can have arbitrarily poor welfare. This motivates

a more sophisticated type of pricing. We propose pairwise pricing, where for each issue, we assign

a price to every pair of agents who disagree. This construction allows us to reduce the problem

to an equivalent private goods market, and we use this connection that the resulting equilibria in

the public decisions market has optimal Nash welfare. Our reduction also allows certain results for

private goods markets to be immediately lifted to the public decision-making setting.

A new fairness axiom for public decision-making: equality of power

In Chapter 8, we consider a market mechanism with a combination of welfarist and axiomatic prop-

erties. The fundamental premise of our mechanism is that each agent should have equal opportunity

to affect the group outcome. We term this equality of power, where we interpret “power” as the

externality an agent causes to the overall (utilitarian) welfare. Specifically, given a current proposed

outcome x, we ask each agent to propose a new outcome x′ subject to the constraint that the de-

crease in welfare from x to x′ is at most some small constant γ. By equalizing γ across agents, we

ensure equality of power. Equilibrium occurs when the vectors of the proposed new outcomes cancel

out, and we show that there always exists an equal power equilibrium which maximizes utilitarian

welfare. There are additional technical details regarding the scaling of individual utilities which we

defer to Chapter 8.

Taken together, our results shed light on a variety of notions of fairness in a variety of models,

for both public and private resource allocation. Although “true” fairness depends on a myriad of

factors which we do not consider, we hope that our work contributes to a greater understanding of

how resource allocation can be improved in our society.
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1.5 Markets

Before diving into the body of the thesis, we provide a technical overview of markets, which will

play an important role throughout the thesis (in particular, Parts I and III).

Markets are one of the oldest mechanisms for distributing (private) resources; indeed, commodity

prices were meticulously recorded in ancient Babylon for over 300 years [165, 166]. In a market,

buyers and sellers exchange goods according to some sort of pricing system, and market equilibrium12

occurs when the demand of the buyers exactly equals the supply of the sellers. This concept was

first studied by Walras in the 1870’s [173]. In 1954, Arrow and Debreu showed that under some

conditions, a market equilibrium is guaranteed to exist [6].

In modern day, markets continue to be the primary way in which private resources are distributed.

Stores set prices for their products, and individuals peruse the wares, making purchases if they wish.

Markets operate based on the interaction of two fundamental concepts: prices and utilities. Each

individual has some utility for each product, or perhaps each combination of products. When

deciding whether to make a purchase, the individual compares their utility for the product with the

price: if the price is too high, they will not make a purchase, even if the product is very valuable to

them. Importantly, this process is frequently subconscious: the individual simply decides whether

the purchase is “worth it” at the given price. If a store notices that a product is not selling well,

they may choose to lower the price. Conversely, if a product is frequently selling out, they may raise

the price. This process – known as tâtonnement, and also proposed by Walras [173] – will ideally

converge to a market equilibrium.

In this thesis, we focus on markets without production, and where each agent is either a buyer

or a seller (but not both). This is because we are imagining ourselves to be the social planner who

initially controls all the resources, so we essentially function as the unique seller.

1.5.1 Formal market models

To formalize market equilibrium, we need the concept of a demand set. Given a pricing rule p which

assigns a real number price to any bundle, agent i’s demand set Di(p) is the set of bundles which

maximize her utility given to p. Demands sets are best understood for linear pricing, i.e., when

p(xi) =
∑
j∈M qjxij , with qj being the (constant) price of good j.

There are two standard ways to define the demand set. The first assumes that each agent has a

fixed budget Bi, and the cost of her purchase must be at most Bi. Therefore

Di(p) = arg max
xi∈Rm≥0

: p(xi)≤Bi
ui(xi)

Alternatively, the price of the bundle can be directly factored in to the utility. Quasilinear utilities

assumes that each agent wishes to maximize her value for her bundle minus the price she pays.

Formally, if vi is agent i’s valuation function, then agent i’s quasilinear utility is ui(xi) = vi(xi) −
12This is also known as Walrasian equilibrium, competitive equilibrium, and general equilibrium, depending on the

context.
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p(xi), and the demand set is defined by

Di(p) = arg max
xi∈Rm≥0

(
vi(xi)− p(xi)

)
Some chapters of the thesis will use the fixed-budget model, and others use the quasilinear model.

Each chapter will explicitly state which model it is using (if it uses either).

Once the demand set is defined, we have the following definition of market equilibrium:

Definition 1.5.1. Given an allocation x and pricing rule p, (x, p) is a market equilibrium if both

of the following hold:

1. Each agent receives a bundle in her demand set: xi ∈ Di(p) for all i ∈ N .

2. The market clears: for all j ∈ M ,
∑
i∈N xij ≤ sj, and for all j ∈ M with nonzero cost,∑

i∈N xij = 1.13

In the fixed-budget model, it is more accurate to write that (x,B, p) is a market equilibrium,

where B = (B1, . . . , Bn). However, when it is clear from context (typically, when all budgets are

the same), we simply write (x, p). The quasilinear model has no budgets, so this is a non-issue.

Market equilibria have many nice properties, which we will explore in detail later. They include:

1. The mechanism is anonymous: different agents purchasing the same bundle always pay the

same price.

2. Any market equilibrium14, i.e., immediately satisfies envy-freeness: if agent i preferred agent

j’s bundle, agent i would have simply bought xj instead.15

3. There is a strong sense of agency : each individual has total control over their purchase, and

can be confident that their selection is optimal (based on whatever criteria they wish). This is

in contrast to other mechanisms (including ones in this thesis) which simply hand each agent

a bundle and say “here it is”.

4. Markets are a familiar concept to the general population, so mechanisms and analysis relating

to markets may be more easily explainable.

5. There is a plethora of research into market equilibrium that we can lean on when analyzing

these mechanisms. In contrast, the non-market mechanisms we use in this thesis typically

must be analyzed from scratch.

Finally, and perhaps most importantly, market equilibria for linear pricing offer strong welfare

guarantees. Our goal in some of the chapters of this thesis will be to prove welfare guarantees for

nonlinear pricing.

13We say that good j has nonzero cost for j if there is a bundle xi such that xi` = 0 for all ` 6= j, but p(xi) > 0. If
p(xi) =

∑
j∈M qjxij , this is equivalent to qj > 0.

14This assumes that the pricing rule is anonymous.
15Note that for the fixed-budget model, this assumes that all agents have the same budget.
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CES welfare and quasilinear utility

When considering quasilinear utility in this thesis, we will consider a slightly different version of the

CES welfare function where we consider each agent’s valuation instead of her overall utility:

Φρ(x) =
(∑
i∈N

vi(x)ρ
)1/ρ

The reason is that there implicitly exists a seller whose utility is
∑
i∈N p(xi), i.e., the total payment.

This conceptually “cancels out” the payment terms in each agent’s utility ui(xi) = vi(xi)−p(xi), so

we do not consider it from a welfare perspective. For simplicity, we use the above definition of CES

welfare throughout the thesis, and when not considering quasilinear utility, we simply let ui = vi.

1.5.2 Comparison of the fixed-budget and quasilinear models

Although these two models share many of the same conceptual messages, their technical implications

differ – in particular, the welfare guarantees. For linear pricing, the welfare properties of each model

are well-understood (and different):

Theorem 1.5.1 ([72, 73]). For the fixed-budget model and linear pricing, the market equilibrium

allocations are exactly the allocations maximizing budget-weighted Nash welfare: ΦNash(x,B) =∏
i∈N ui(xi)

Bi .

Theorem 1.5.2 (First Welfare Theorem). For the quasilinear model and linear pricing, the market

equilibrium allocations are exactly the allocations maximizing utilitarian welfare.16

As we discussed earlier, utilitarian welfare is thought be the most efficient, with Nash welfare

being something of a compromise between equality and efficiency. So why do these two market models

place the linear pricing equilibria at such different points along the equality/efficiency tradeoff?

The key is that the fixed-budget model maximizes budget-weighted Nash welfare. If all agent bud-

gets are the same, the outcome may be “equal” in some sense, but if the budgets vary substantially,

we lose that claim to equality. Furthermore, consider the following formal connection:

Theorem 4.9.1. Suppose (x, p) is a market equilibrium in the quasilinear model, and let Bi = p(xi)

for each i ∈ N . Then (x,B, p) is a market equilibrium in the fixed-budget model.

That is, if we use the quasilinear model to establish how much each agent i will spend at

equilibrium, and set that to be i’s budget in the fixed-budget model, then the two models become

equivalent. This of course means that the optimized welfare functions – for linear pricing, utilitarian

welfare and budget-weighted Nash welfare – also coincide. This theorem does not only apply to

linear pricing, and is our key tool in proving Theorem 4.9.2, which (somewhat) unifies CES welfare

maximization in the fixed-budget and quasilinear models. The reader may recall our discussion of

this in Section 1.4.1.

16This is a special case of the First Welfare Theorem, not the entirety of the First Welfare Theorem.
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Advantages of the quasilinear model

As discussed above, these two models are strongly connected, but they still have their own advantages

and disadvantages. To understand this, we must consider perhaps the most fundamental difference

between the two models: the quasilinear model allows agents to express the absolute magnitude of

their preferences, and the fixed-budget model does not.17 Both models are agents to express their

relative preferences between goods, i.e., which goods they like more than others. But in the fixed-

budget model, each agent will always spend exactly their budget, and they are only deciding how

to distribute their budget across goods. Thus if agent 1 values every good twice as much as agent

2, there is no way to express that.

Consequently, the fixed-budget model must treat those two agents the same, so the outcome must

not change if an agents scales up her preferences by some factor (this is known as independence of

individual scale). The only CES welfare function which satisfies this is Nash welfare, the product of

utilities. Thus it makes sense that the (linear pricing) equilibria maximize (budget-weighted) Nash

welfare in the fixed budget model.

Allowing nonlinear pricing does generalize the model somewhat, but it still leaves agents unable

to express the absolute magnitude of their preferences. This means that if we wish to maximize

other CES welfare functions – which do not satisfy independence of individual scale – we must make

some sort of assumption on the scale of utilities, e.g., every agent’s maximum utility is 1.

We do have some results for CES welfare in this model (Chapters 2 and 3), but overall, the

quasilinear model is much better suited to maximizing non-Nash CES welfare. In the quasilinear

model, agents not only choose how to distribute their budget across goods, they also choose their

budget. Thus it becomes possible to elicit the absolute magnitude of individual utilities. For this

reason, in the quasilinear model, we are able to prove welfare guarantees for a much wider range of

agent utilities (Chapter 4).

Advantages of the fixed-budget model

To be honest with the reader, the primary reason that some of our work uses the fixed-budget model

is quite mundane: the fixed-budget model is simply used more frequently in our subarea. Thus our

earlier private goods work use the fixed-budget model, and our later private goods work switched to

the quasilinear model.

That said, there are still advantages of the fixed-budget model. The first is that is that for some

application domains – in this thesis, public resource allocation – we are not imagining a traditional

market with real money (see Chapter 7). Instead, we are using a market-based framework where

each agent is given some amount of “fake money” that they can use to express their preferences. In

this case, we can ensure a sense of equality by giving each agent the same amount of fake money.

17Note that absolute magnitude of preferences is not meaningful without a unit of comparison: in the case of the
quasilinear model, money fills that role. Since agent i wants to maximize vi(xi)− p(xi), we are assuming that vi(xi)
is expressed in the same units as p(xi).
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Chapter 2

Markets beyond Nash welfare for

bandwidth allocation

In this chapter, we study the allocation of private goods via a market mechanism in the fixed-budget

model. We focus on agents with Leontief utilities, a class of utilities which generalizes the bandwidth

allocation problem. The majority of the economics and mechanism design literature has focused on

linear prices, meaning that the cost of a good is proportional to the quantity purchased. Equilibria

for linear prices are known to be exactly the maximum Nash welfare allocations.

Price curves allow the cost of a good to be any (increasing) function of the quantity purchased.

First, we show that an allocation can be supported by strictly increasing price curves if and only

if it is group-domination-free. A similar characterization holds for weakly increasing price curves.

We use this to show that given any allocation, we can compute strictly (or weakly) increasing price

curves that support it (or show that none exist) in polynomial time. These results use a variant

of Farkas’ Lemma along with a combinatorial argument to construct piecewise linear price curves.

For our second main result, we use Lagrangian duality to show that in the bandwidth allocation

setting, any allocation maximizing a CES welfare function can be supported by price curves. Taken

together, our results show that nonlinear pricing opens up multiple possibilities beyond Nash welfare

for market equilibria.

2.1 Introduction

In this chapter, we focus on the fixed-budget market model: each agent i has a set budget Bi, and

has no value for leftover money. The simplest version of this model is a Fisher market, first proposed

in 1892 by Irving Fisher [24, 80]. In Fisher markets, the pricing function p is linear: each good j

has a single real-number price pj , and the cost of a bundle xi is

p(xi) =
∑
j∈M

pjxij

15
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The market equilibria of Fisher markets are well-understood: in particular, they are guaranteed to

maximize Nash welfare [72, 73, 104]. However, much less attention has been given to nonlinear

prices.

There are three motivations behind the work in this chapter. First, in real market economies,

prices are often not linear, and depend on the quantity purchased1. We refer to prices of this form

as price curves. For example, “buying in bulk” may allow agents to purchase twice as much of some

resource for less than twice the price. In this case, the marginal price decreases as more of the good

is purchased. On the other hand, for a scarce resource, a central authority may choose to impose

increasing marginal costs to ensure that no single individual can monopolize the resource. Many

countries use this type of convex pricing for water in an effort to improve equality of access [175]. A

tremendous amount of work has been devoted to understanding the nature of linear prices, despite the

pervasiveness of price curves in the real world. This chapter attempts to ask the same fundamental

questions of price curves that have been answered for linear prices.

Second, imagine a social planner or mechanism designer who wishes to design a pricing scheme

to maximize some welfare function. If the social planner is happy with Nash welfare, then great!

They can just use linear pricing. But what if the social planner wishes to maximize a different

welfare function? Is it possible that using price curves instead of linear prices allows a wider set

of allocations to be equilibria? In particular, are there welfare functions other than Nash welfare

such that welfare-maximizing allocations can always be supported by price curves? (We say that an

allocation can be supported by price curves if there exist prices curves that make that allocation an

equilibrium.) Our work answers these questions in the affirmative.

The third motivation involves a more conceptual connection between markets and welfare func-

tions, both of which have been extensively studied in the economics literature. We know that linear-

pricing equilibria correspond to maximizing Nash welfare, but does this connection go deeper? Our

work hints at an affirmative answer to this question as well.

2.1.1 Leontief utilities

We assume throughout the chapter that agents have Leontief utility functions. An agent with a

Leontief utility function desires the goods in fixed proportions, e.g., one unit of CPU for every two

units of RAM. We can express agent i’s utility as

min
j∈M :wij 6=0

xij
wij

Recall that M is the set of goods, and xij is the quantity of good j which agent i receives. When

agents have Leontief utilities, a market equilibrium is guaranteed to exist [6].

Leontief utilities exhibit certain convenient properties that other utility functions do not. In

particular, such an agent will always purchase her goods exactly in the same proportions, and all

1One consequence of this is that there can be an incentive for agents to “team up”, which is not the case in linear
pricing. For example, it could be cheaper for one person to purchase the resource in bulk and then distribute it, as
opposed to each person buying her own: imagine ordering pizza for a party. We do not consider strategic behavior in
this chapter; see Section 2.3 for additional discussion.
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that changes is how much she purchases. We also assume that each agent has the same amount of

money to spend. However, most of our results do extend to the case of unequal budgets, as noted

later on.

2.1.2 Bandwidth allocation

Resource allocation with Leontief utilities generalizes the problem of network bandwidth allocation,

which is a well-studied area in its own right (for example, the work of Kelly [110] on proportional

fairness). In bandwidth allocation, each agent wishes to transmit data along a fixed route of links,

and thus desires bandwidth for exactly those links in equal amounts. In our setting, each link

corresponds to a good, so agent i has wij = 1 if and only if link j is in her desired route.

In the bandwidth allocation setting, price curves correspond naturally to a signaling mechanism

that provides congestion signals (e.g., in the form of a packet mark or drop) and an end-point

protocol such as TCP [42] corresponds naturally to agent responses. It has been known that different

marking schemes (such as RED and CHOKe [81, 139]) and versions of TCP lead to different objective

functions [138], with CES welfare (also known as “α-fairness”) being one such objective [20, 126].

However, a market-based understanding was developed only for Nash Welfare, starting with the

seminal work of Kelly et al. [110].

2.2 Results

A necessary and sufficient condition for the existence of price curves

Section 2.5 presents our first main result, which concerns the first motivation described above: trying

to understand fundamental properties of price curve equilibria. In particular, this section answers the

following question: given some allocation, is there a way to tell whether there exist price curves that

make this allocation an equilibrium? Furthermore, can such price curves be efficiently computed?

The answer boils down to a property we call group-domination-freeness. Roughly, a set of agents

a group-dominates a set of agents b if these sets are the same size, but for every good j and every

threshold τ ∈ R≥0, the number of agents in a receiving at least of τ of good j is at least as large as

the number of agents in b receiving at least τ of good j. The formal definition of group domination

is given in Section 2.5. An allocation is group-domination-free (GDF) if no group dominates any

other group. We show that an allocation can be supported by strictly increasing price curves if

and only if the allocation is GDF (Theorem 2.5.1)2. This characterization results in a polynomial

time algorithm to compute the underlying price curves or show that none exist (Theorem 2.5.2).

Section 2.8 gives an analogous characterization theorem and polynomial time algorithm for weakly

increasing price curves (Theorems 2.8.1 and 2.8.2).

Although the definition of group domination may seem slightly technical, we also demonstrate

its relation to the concept of stochastic dominance, and argue that it may in fact be interpreted as

2This result extends to the setting of unequal budgets if one instead considers “budget-weighted group-domination-
freeness”. We elaborate on this in Section 2.5.
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a fairness notion. The stochastic dominance interpretation will also suggest that group domination

is quite a strong property, and hence group-domination-freeness is a quite a weak assumption.

The proof of these characterization theorems involves the construction of a special matrix we call

the agent-order matrix A, which is a function of the allocation. We show that existence of strictly

increasing price curves is captured by strongly positive solutions (every entry of the solution vector

is positive) to Ay = 0. We relate group-domination-freeness to a property of this matrix, and then

invoke a duality theorem equivalent to Farkas’ Lemma [141] to complete the proof. The algorithm

for computing price curves is a linear program involving the agent-order matrix.

Maximum CES welfare allocations can be supported in bandwidth allocation

Our second main result concerns the second and third motivations: a social planner who wishes to

maximize a welfare function other than Nash welfare, and understanding the connection between

markets and welfare functions. We know that the maximum Nash welfare allocations can be sup-

ported by linear prices. If we allow price curves, are there other welfare functions whose maxima

can be supported?

First, we will need some assumption on the agents’ weights (recall that wij denotes agent i’

weight for good j). To see this, consider just two agents and one good. Since the agents have the

same budget, they must receive equal amounts of the good no matter the price curve. However, if

one agent derives less utility per unit of the good, this allocation doesn’t maximize any CES welfare

function except for Nash welfare3. One natural way to handle this is to assume that the agents’

weight vectors are normalized in some manner. The bandwidth allocation setting – wij ∈ {0, 1} for

all i and j – constitutes one such possibility (refer to Section 2.1.2 for additional discussion of this

setting).

Our second main result is that in the bandwidth allocation setting, the welfare-maximizing

allocations for any fixed CES welfare function with ρ ∈ (−∞, 0) ∪ (0, 1) can be supported by price

curves (Theorem 2.6.1). We prove this by writing a convex program to maximize CES welfare, and

using duality to construct explicit price curves. Furthermore, these price curves take on a natural

form: the cost of buying x of good j is qjx
1−ρ, where qj ≥ 0 is a constant derived from the dual4.

This result can be thought of as extending the work on price-based congestion control (pioneered

by Kelly et al. [110]) beyond Nash welfare to almost all CES welfare functions.

We also prove a converse of sorts: if an allocation x can be supported by price curves of the

form qjx
1−ρ, and the supply is exhausted for every good with nonzero price (i.e., qj 6= 0), then x

is a maximum CES welfare allocation (Theorem 2.6.1). This is analogous to the famous result of

Eisenberg and Gale: the linear-pricing equilibrium allocations are exactly the allocations maximizing

Nash welfare [72, 73].

One may wonder if Theorem 2.6.1 could be extended to ρ = 1, i.e., maximizing the sum of utilities.

3This example actually holds for a much wider class of utilities, not just Leontief. This is because for a single
good, all anyone can do is buy as much of that good as they can.

4These results extend to agents with unequal budgets if we instead consider the “budget-weighted CES welfare”,

i.e.,
(∑

i∈N Biu
ρ
i

)1/ρ
, where Bi is agent i’s budget. We discuss this in Section 2.6.4. The price curves will take the

exact same form.
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agent 1 agent 2 agent 3
good 1 1 0 1
good 2 0 1 1

Example 2.1: A bandwidth allocation instance where no maximum utilitarian welfare allocation can be
supported. The table above gives each agent’s weight wij ∈ {0, 1} for each good. Utilitarian welfare is
maximized by giving all of good 1 to agent 1 and all of good 2 to agent 2, leaving agent 3 with nothing.
This is impossible to support with price curves, because agent 3 can always buy a nonzero amount of the
goods she wants.

Example 2.1 shows that the answer is no, unfortunately. One may also wonder if Theorem 2.6.1

would generalize if we relax our constraint from wij ∈ {0, 1} to wij ∈ [0, 1]. The answer is again no;

this counterexample is more involved and is given by Theorem 2.9.1 in Section 2.9.

Information required by the social planner

In general, the price curves will depend on agents’ preferences, and so the social planner needs to

know agents’ preferences in order to compute them. This is true of linear-pricing markets as well:

the equilibrium prices depend on the utility functions of the agents. For our GDF characterization

result, the price curves can have a very complex shape that depends intricately on the specific

preferences, unlike linear prices. For this reason, we view the GDF characterization more as a

conceptual contribution than an actual mechanism. In contrast, for our CES welfare bandwidth

allocation result, the price curves have a very simple shape that is independent of the agents’ utility

functions (the price of buying x will be qjx
1−ρ, where qj is a Lagrange multiplier corresponding to

good j). This structure suggests a simple decentralized primal-dual algorithm similar to the work

of Kelly et al. [110], where on each step, every agent updates her (primal) allocation based on the

current prices on the links she cares about, and each link updates its (dual) price based on the total

flow through that link. We discuss this further in Section 2.6.2.

Additional results

We prove two additional results. First, we consider max-min welfare in Section 2.7, and show that

as long as agents’ weights are reasonably normalized, allocations with optimal max-min welfare can

be supported. Second, in Section 2.8, we give a characterization theorem for weakly increasing price

curves (Theorem 2.8.1). Just like strictly increasing price curves, we can compute weakly increasing

price curves (or show that none exist) in polynomial time, using a linear program (Theorem 2.8.2).

2.3 Prior work

The study of markets has a long history in the economics literature [173, 169, 6, 24]. Recently, this

topic has garnered significant attention in the computer science community as well (see [170] for an

algorithmic exposition). The vast majority of the literature has focused on linear prices. Perhaps

the most relevant classical result is the Second Welfare Theorem, which states that for any Pareto
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optimal allocation, there exists a (possibly unequal) redistribution of initial wealth which makes

that allocation a (linear-pricing) market equilibrium. In a similar vein, [82] showed that for linear

but fully personalized prices (i.e., we can independently assign different prices to different agents for

the same good), one can support any Pareto optimal allocation.

The important question, then, is what price curve equilibria offer that these prior results do not.

First, in many of societies, a centrally mandated redistribution of wealth is out of the question.

Similarly, fully personalized prices mean that we lose any claim to fairness, since agents may be

subjected to totally different prices for the same resource. In contrast, price curves do not require a

redistribution of wealth, and furthermore are anonymous, meaning that all agents are subject to the

same pricing scheme. These properties suggest that price curves are more practical, and indeed price

curves do appear in practice (as noted previously, the water sector is a good example of this [175]).

See Chapter 4 (in particular, Section 4.2.1) for more discussion.

We briefly mention an important property in mechanism design: strategy-proofness. A mech-

anism is strategy-proof if agents can never improve their utility by lying about their preferences.

Unfortunately, even in simple settings, the only mechanism for resource allocation that can simulta-

neously guarantee strategy-proofness and Pareto optimality is dictatorial, meaning that one agent

receives all of the resources [159]. This is clearly unacceptable, so we sacrifice strategy-proofness

in favor of Pareto optimality. Specifically, we assume throughout the chapter that agents always

truthfully report their preferences.

The remainder of the chapter is organized as follows. Section 2.4 formally defines the model.

Section 2.5 presents our first main result: that for strictly increasing price curves, an allocation can

be supported if and only if it is group-domination-free. Section 2.6 gives our second main result:

that in the bandwidth allocation setting, every maximum CES welfare allocation can be supported

by price curves. Section 2.7 shows that allocations with optimal max-min welfare can be supported

by price curves in a wide range of settings. In Section 2.8, we generalize our characterization theorem

from Section 2.5 to account for weakly increasing price curves. Section 2.9 provides counterexamples

to various claims that one might have hoped to prove. We also discuss in that section why certain

other classes of utilities – in particular, linear utilities – are much more difficult to analyze. Finally,

Section 2.10 provides some proofs that are omitted from earlier sections.

2.4 Model

We use the basic terminology and notation defined in Chapter 1. We assume goods are divisible,

meaning that xij can be any real number. Thus the main constraint a valid allocation must satisfy

is the supply constraint: ∑
i∈N

xij ≤ sj ∀j ∈M

We assume that agents have Leontief utilities:

ui(xi) = min
j∈M :wij 6=0

xij
wij
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where wij denotes the (nonnegative) weight agent i has for good j. For brevity, we will usually write

ui(xi) = minj∈M
xij
wij

and leave the wij 6= 0 condition implicit. The same holds for other contexts

where we are dividing by a value wij that may be zero. We assume that agents have Leontief utilities

throughout the chapter, and we assume that each agent has nonzero weight for at least one good.

We focus on welfarist objectives in this chapter: specifically, CES welfare:

Φρ(x) =

(∑
i∈N

ui(xi)
ρ

)1/ρ

where ρ is a constant in (−∞, 0) ∪ (0, 1].

In this chapter, we use the fixed-budget market model defined in Section 1.5. Unless otherwise

stated, we will assume that all agents have the same budget, and normalize all budgets to 1 without

loss of generality. For prices p = (p1, . . . , pm) ∈ Rm≥0, the cost of bundle xi is Cp(xi) =
∑
j∈M xijpj .

5

Bundle xi is affordable for agent i if Cp(xi) ≤ 1. Agent i’s demand set is the set of her favorite

affordable bundles, i.e.,

Di(p) = arg max
xi∈Rm≥0

: Cp(xi)≤1

ui(xi).

If pj > 0 for all j ∈M , an agent with Leontief utility will always purchase in exact proportion to

her weights: since agent i’s utility is determined by minj∈M
xij
wij

, violating these proportions cannot

increase her utility. Thus when discussing an arbitrary allocation x, we assume that each bundle xi

is in proportion to agent i’s weights: otherwise there is no hope of supporting such an allocation.

For brevity, we leave this assumption implicit throughout the chapter, rather than always stating

“for an arbitrary allocation x where each bundle is in proportion to agent i’s weights”.

The careful reader may note that we are glossing over a detail: if pj = 0 for some good j, agent

i can add more of good j to her bundle at no additional cost. This does not affect agent utilities at

all, but is technically possible. In order to avoid handling this uninteresting and sometimes messy

edge case, we assume throughout the chapter that for agents with Leontief utilities, demand sets

and arbitrary allocations are always in exact proportion to agent weights.

Formally, a Fisher market equilibrium (x,p) is an allocation x and price vector p ∈ Rm≥0 such

that

1. Each agent receives a bundle in her demand set: xi ∈ Di(p).

2. The market clears: for all j ∈M ,
∑
i∈N xij ≤ sj , and if pj > 0, then

∑
i∈N xij = sj .

For a wide class of agent utilities, including Leontief utilities, an equilibrium is guaranteed to

exist [6]6. Furthermore, the equilibrium allocations are the exactly the allocations which maximize

5Using the terminology from Section 1.5, Cp is the pricing rule. In this chapter, the pricing rule is fully determined
with the prices p1, . . . , pm (or, later, by the price curves f1, . . . , fm). For this reason, in this chapter we choose to use
use the Cp and Cf notation instead of the more general p(xi).

6Specifically, an equilibrium is guaranteed to exist as long agent utilities are continuous, quasi-concave, and non-
satiated. The full Arrow-Debreu model also allows for agents to enter to market with goods themselves and not only
money; the necessary conditions on utilities are slightly more complex in that setting.
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Nash welfare7. This is made explicit by the celebrated Eisenberg-Gale convex program [72, 73], and

combinatorial approaches to computing market equilibria [61, 104].

2.4.1 Price curves

Our work considers an expanded model where instead of assigning a single price pj ∈ R≥0 to each

good, we assign each good a price curve fj : R≥0 → R≥0. The function fj expresses the cost of

good j as a function of the quantity purchased. When we say “price curve”, we mean a function

fj that is weakly increasing (buying more of a good cannot cost less), normalized (fj(0) = 0), and

continuous. Setting fj(x) = pj · x for all j ∈M and all x ∈ R≥0 yields the Fisher market setting.

Given a vector of price curves f = (f1, . . . , fm), the cost of a bundle xi is now Cf (xi) =∑
j∈M fj(xij). Although the functions fj may not be linear, the cost of a bundle is still addi-

tive across goods. Each agent’s demand set is defined identically to the Fisher market setting:

Di(f) = arg max
xi∈Rm≥0

: Cf (xi)≤1

ui(xi).

The demand set is intuitively the same as in the Fisher market setting: each agent purchases

exactly in proportion to her weights, and buys as much as she can without exceeding her budget. A

price curve equilibrium (x, f) is an allocation x and vector of price curves f such that

1. Each agent receives a bundle in her demand set: xi ∈ Di(f).

2. The demand does not exceed supply:
∑
i∈N xij ≤ sj for all j ∈M8.

We say that price curves f support an allocation x if (x, f) is a price curve equilibrium. The first

question we address in this chapter is: what allocations x can be supported by prices curves?

2.5 Group domination

Recall that we require price curves to be continuous and weakly increasing. We wish to theoreti-

cally characterize which allocations can be supported by price curves so that we can (1) apply this

characterization in our subsequent proofs, and (2) construct an algorithm which can calculate price

curves in polynomial time.

The true necessary and sufficient condition for an allocation to be supported by price curves –

and an algorithm to compute them – is given in Section 2.8. However, this condition (“locked-agent-

freeness”) is somewhat unwieldy. Although weakly increasing price curves are sometimes necessary9,

7The conditions for the correspondence between Fisher market equilibria and Nash welfare are slightly stricter than
those for market equilibrium existence, but are still quite general. Sufficient criteria were given in [72] and generalized
slightly by [104].

8For Fisher market equilibria, the second condition also stipulated that whenever pj > 0,
∑
j∈M xij = sj . Without

this additional condition, cranking up all prices to infinity would result in trivial equilibria where all agents purchase
almost nothing and so would certainly not maximize Nash welfare. Such trivial price curve equilibria do exist under
our definition, but since we are not going to make any claims of the form “all price curve equilibria maximize a certain
function”, there is no issue with allowing these trivial equilibria to exist.

9Consider an instance with two agents and two goods, each with supply 1. Let the agents’ weights be given by
w11 = w21 = w12 = 1 and w22 = 0. Nash welfare is maximized by splitting good 1 evenly between the two agents, and
allowing agent 1 to purchase an equal quantity of good 2. This only possible if the price of good 2 is zero: otherwise,
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for now we will consider only strictly increasing price curves. The corresponding necessary and

sufficient condition is the cleaner notion of group-domination-freeness.

2.5.1 Group domination

We have termed the necessary and sufficient condition for the existence of strictly increasing price

curves “group-domination-freeness” (GDF). To gain intuition for this condition, consider an allo-

cation x and agents i, k. We will say that agent i dominates agent k if ∀j xij ≥ xkj and there

exists j for which this inequality is strict. Observe that this would prevent the existence of strictly

increasing price curves supporting allocation x – both agents must spend their full budget (otherwise

they could buy more of every good, since price curves are continuous), but agent i buys strictly more

than agent k. A similar scenario arises when considering any two weighted sets of agents a,b. We

can represent these weighted groups as vectors with a non-negative weight10 for each agent, where

we require that a and b have the same total agent-weight. If for every possible quantity τ ∈ R≥0 of

any good j, considering only agents purchasing at least τ of good j, the weight of the agents in a is

greater than or equal to the weight of agents in b, then b can never be made to pay more than a.

Essentially, for each additional δ of any good, as many agents from a must purchase that δ as agents

from b, so no matter how we price these increments, b never pays more. If this difference in weights

is strict for any (j, τ) pair, that implies some δ increment must cost 0 (because the total expenditure

of a and b must be equal), violating the requirement that price curves be strictly increasing.

Another way to gain intuition for group domination is by analogy to stochastic dominance.

Distribution a stochastically dominates distribution b if for every possible payoff τ ∈ R≥0, the

odds of getting at least τ from a are at least as high as the odds of getting at least τ from b.

One consequence of stochastic dominance is that any rational agent should prefer a to b – there

are no trade-offs, a is simply better than (dominant over) b. In fact, we can directly consider

weighted groups of agents as probability distributions. The total weight of each group must be the

same – without loss of generality, equal to 1. Consider sampling the allocations xij for any good

j with probability equal to the weight of each agent. The probability distribution a stochastically

dominating b is exactly equivalent to the weighted group a group-dominating b. Thus not only does

group domination create problems for pricing, it can arguably be considered unfair, as a is in some

sense objectively better-off than b11.

The formal definition of this condition is below.

Definition 2.5.1 (Group-domination-free (GDF)). Let a = (a1, . . . , an) and b = (b1, . . . , bn)

be vectors in Rn≥0 that assign a (possibly zero) weight to each agent, such that
∑
i∈N ai =

∑
i∈N bi.

Then a group-dominates b in an allocation x (denoted a � b) if for all j ∈M and for any threshold

agent 1 is paying more than agent 2. Recall that the Fisher market equilibrium prices are the dual variables of the
convex program for maximizing Nash welfare: thus the price of good 2 being zero corresponds to the fact that the
supply constraint for good 2 is not tight in this instance.

10Note that this is not the same weight as the wij representing an agent’s weight for a good.
11See [79] for an introduction to stochastic dominance.
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τ ∈ R≥0, ∑
i∈N : xij≥τ

ai ≥
∑

i∈N : xij≥τ

bi

and there exists a (j, τ) pair where the inequality is strict. x is group-domination-free if there do not

exist vectors a,b ∈ Rn≥0 such that a � b in x.12

We will also assume without loss of generality that for all i ∈ N , at least one of ai and bi is zero,

i.e., these are non-overlapping weighted groups: were this not the case, we could define a′ and b′ by

a′i = ai −min(ai, bi) and b′i = bi −min(ai, bi), and we would have a′ � b′ if and only if a � b.

Theorem 2.5.1 will show that an allocation can be supported with strictly increasing price curves

if and only if it is GDF.

2.5.2 Characterization of allocations supported by strictly increasing price

curves

In order to relate the existence of price curves to GDF, first observe that, for agents with Leontief

utilities, the conditions for a price curve equilibrium take on a relatively simple form. Recall that by

assumption, the allocation to be considered doesn’t violate supply, and each agent purchases goods

in exact proportion to her weights wij (see Section 2.4). Then the condition that xi ∈ Di(f) for all

i can be captured by Lemma 2.5.1, whose proof appears in Section 2.10. Intuitively, agent i fills up

her bundle in proportion to her weights until (a) she reaches her budget and (b) there exists a good

where buying more would cost more.

Lemma 2.5.1. Given price curves f , xi ∈ Di(f) if and only if both of the following hold: (a)

Cf (xi) = 1, and (b) there exists j ∈M such that for all ε > 0, fj(xij + εwij) > fj(xij).

We are now almost ready to prove Theorem 2.5.1 relating the existence of price curves to GDF.

However, the proof is rather intricate, so we begin by giving an intuitive overview thereof. Through-

out, we will refer to the example allocation x shown in Figure 2.1a to make the argument concrete.

(Note that the example allocation shown in the figure implicitly defines a corresponding Leontief

utility function for each agent, up to scaling by a constant, since we assume each agent fills up her

bundle in exact proportion to her weights wij .)

We will now use this example to illustrate three key observations regarding the existence of

strictly increasing price curves supporting an allocation x: (1) Only the points on the price curves

corresponding to agent allocations matter. (2) Only the order of the agents along the price curve

for each good, not their absolute allocations, matters. (3) The order of the agents can be captured

in an agent-order matrix such that weighted column and row sums represent agent costs and group

dominations, respectively.

12The “-free/-freeness” suffix may remind some readers of the popular fairness notion envy-freeness; this connection
is intended. If one agent does envy another, this constitutes an instance of group domination in the allocation, so
GDF implies envy-freeness. However, the reverse is not true: for an agent i to envy agent k, k must receive strictly
more of every good i cares about; for group domination, the difference need only be strict on one good. All market
equilibria are envy-free; GDF is a stronger notion corresponding exactly the the existence of a market equilibrium in
this setting.
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good 1 good 2 good 3
agent 1 0.6 0 0.2
agent 2 0.3 0 0
agent 3 0.1 1 0.4
agent 4 0 0 0.4

(a) example allocation x

good 1 good 2 good 3
1 1 1 0 1 0 -1

1 1 0 0 0 0 -1
1 0 0 1 1 1 -1
0 0 0 0 1 1 -1

(b) x represented as an agent-order matrix A

0.2 0.4 0.6 0.8 1

allocation of good 1

p
ri

ce

agent 4

agent 3

agent 2

agent 1

0.2 0.4 0.6 0.8 1

allocation of good 2

agents 1,2,4

agent 3

0.2 0.4 0.6 0.8 1

allocation of good 3

agent 2

agent 1

agents 3,4

(c) example price curves for allocation x

Figure 2.1: An illustrative example allocation and the construction of the corresponding agent-order matrix.

First we address observation (1). Consider the possible price curves shown in Figure 2.1c. Given

the price that each agent pays for each good, these are the only points that matter, in the sense

that (a) each agent’s total cost, which must equal 1, depends only on these points, and (b) an agent

must be able to purchase more of a good if the next fixed point on that curve has the same price,

and otherwise need not be able to do so, for instance if we make the price curves piece-wise linear

as shown. Thus when considering whether price curves are possible, we need only consider the set

of prices corresponding to agent allocations.

A similar argument addresses observation (2). As long as we fix the order of points along a

price curve, we can change the allocations arbitrarily (assuming they still obey the supply and

proportional-purchase assumptions) without changing the prices. Obviously, every agent will still

incur a cost of 1, and it will not change whether an agent can purchase more of a good (whether the

next point along the curve has the same price).

Finally, we come to the more complicated observation (3). We will first lay out how the agent-

order matrix is constructed, then illustrate its connection to both prices and group domination. The

matrix will have n rows, one for each agent, and a sub-block for each good, as shown in Figure 2.1b.

Within a sub-block, each column will correspond to a non-zero agent allocation (i.e., the non-zero

points shown in Figure 2.1c). The entry corresponding to agent i, good j, and allocation threshold

τ ∈ R≥0 will equal 1 if xij ≥ τ and 0 otherwise. Essentially, this will indicate which agent pays the

cost of the first, second, etc. section of each price curve. Additionally, we append a column of −1’s to

the end of the matrix. To see the connection to prices, consider a vector y such that Ay = 0,y 6= 0.

For instance, Figure 2.2a exhibits such a vector y for the matrix A shown in Figure 2.1b. y will

represent prices, so we require all the entries to be non-negative, denoted y ≥ 0; for strictly increasing
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1 1 1 0 1 0 −1
1 1 0 0 0 0 −1
1 0 0 1 1 1 −1
0 0 0 0 1 1 −1

×


0
1
0
0
0
1
1


=

0

(a) column sum of A implies price curves
(in this example, weakly increasing)



1 1 1 0
1 1 0 0
1 0 0 0
0 0 1 0
1 0 1 1
0 0 1 1
−1 −1 −1 −1


×


1
−1

0
0

 =



0
0
1
0
1
0
0


(b) row sum of A implies group domination
(precludes strictly increasing price curves)

Figure 2.2: Example row and column sums of the agent-order matrix from Figure 2.1b.

price curves, we require y to be strongly positive13, denoted y � 0. Specifically, within each block

(corresponding to a good j), the first entry represents the cost of increasing from 0 of good j to

the first non-zero point on the price curve, the second entry represents the cost of increasing from

the first point to the second point, and so on. The last entry in y, which we can assume equals 1

without loss of generality, represents the total cost expended by each agent. Thus Ay = 0 ensures

that each agent spends exactly 1 unit of money. (Ensuring that condition (b) of Lemma 2.5.1 be met

is slightly more complicated. However, for strictly increasing price curves, it is trivially satisfied.)

Thus we can see that the column sums of the agent-order matrix correspond to agent expendi-

tures, where the weight of each column in the sum corresponds to a section of the price curve. Row

sums, however, correspond to group domination. To see the connection, consider a vector z such

that AT z is strictly positive14, denoted AT z > 0. For instance, Figure 2.2b exhibits such a vector z

for the matrix A shown in Figure 2.1b. In a given z, the positive entries correspond to the weighted

agents in a dominating group a, while the (absolute value of the) negative entries are the weighted

agents in group b. Since the last entry of AT z must be nonnegative, the total weight of b is at least

as large as that of a. And since AT z > 0, all the entries are non-negative and at least one other

entry must be positive. This means that at every point on a price curve (any j, τ), the weight of

group a purchasing at least τ of good j is at least as much as the weight of group b purchasing τ ,

and for some (j, τ) this is strict. Clearly this is equivalent to a � b.

Having constructed the agent-order matrix and related its column and row sums to prices and

group domination, respectively, the final step applies a previously-known duality result equivalent

to Farkas’ Lemma [141], which establishes that valid prices (column sums) exist if and only if group

domination (row sums) do not. Specifically, we make use of the following result originally due to

Stiemke to prove Theorem 2.5.1.

Lemma 2.5.2 (1.6.4 in [167]). For a commutative, ordered field F, A a matrix over F, the following

are equivalent: (1) Ay = 0,y� 0 has no solution. (2) AT z > 0 has a solution.

Theorem 2.5.1. Let x be any allocation that obeys the supply constraints and gives at least one

agent a nonempty bundle. Then x be can supported by strictly increasing price curves if and only if

13Recall that a strongly positive vector has every entry greater than 0.
14Recall that a strictly positive vector has entries in R≥0 with at least one entry non-zero.
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x is GDF.

Proof. Recall that an allocation x can be supported if there exist price curves f such that xi ∈
Di(f) ∀i ∈ N , and

∑
i∈N xij ≤ 1 ∀j ∈M (i.e., x obeys the supply constraints). The latter condition

is satisfied by assumption, and by Lemma 2.5.1, for Leontief utilities and strictly increasing price

curves, the former condition holds if and only if the cost Cf (xi) = 1 ∀i.
Let Xj = {xij | i ∈ N} \ {0} be the set of distinct, non-zero amounts of good j allocated to

some agent under x. Label the elements of Xj as τ1
j , τ

2
j , . . . , τ

|Xj |
j such that τ1

j < τ2
j < · · · < τ

|Xj |
j .

Since fj(0) = 0, fj(x /∈ Xj) in some sense doesn’t matter – we only require that these “in-between”

areas of the price curve don’t violate continuity and are strictly increasing. Thus there exist strictly

increasing price curves f supporting x if and only if there exist functions f ′j : Xj → R≥0 such that

0 < f ′j(τ
1
j ) < f ′j(τ

2
j ) < . . . < f ′j(τ

|Xj |
j ) ∀j and Cf (xi) =

∑
j f
′
j(xij) = 1 ∀i.

Now we are ready to set up the agent-order matrix A ∈ Qn×(
∑
j |Xj |+1) to which we will apply

Lemma 2.5.2. Since each column will represent an allocation point for a specific good (corresponding

to its sub-block), we will write the column indices as
∑
`<j |X`|+ q, where j indicates the sub-block

and 1 ≤ q ≤ |Xj | is the index within that sub-block.

A

i, ∑
`<j

|X`|+ q

 =


−1 if j = m+ 1, q = 1 (last column)

0 if xij < τ qj

1 otherwise

Thus each row of A represents an agent, and each column (except the last) represents one point

of the functions f ′. Since x gives at least one agent a nonempty bundle by assumption, A has at

least two columns (one allocation point and the column of −1’s). We know by Lemma 2.5.2 that

∃y � 0 such that Ay = 0 if and only if there does not exist a z such that AT z > 0. To complete

the proof, we will show that the former condition is equivalent to the existence of strictly increasing

price curves supporting x, and the latter is equivalent to a group domination.

If ∃y� 0 such that Ay = 0, we may assume without loss of generality that the last entry in y is

1. Furthermore, define f ′j(τ
q
j )−f ′j(τ

q−1
j ) = y∑

`<j |X`|+q (for convenience, define f ′j(τ
0
j ) = f ′j(0) = 0).

Clearly y� 0 is equivalent to the requirement that 0 < f ′j(τ
1
j ) < . . . < f ′j(τ

|Xj |
j ) ∀j. Additionally,

Cf (xi) =
∑
j

fj(xij) =
∑
j

f ′j(xij) =
∑
j

∑
q:xij≥τqj

y∑
`<j |X`|+q = Aiy + 1

Thus Ay = 0 is equivalent to the requirement that Cf (xi) = 1 ∀i.
Finally, consider z such that AT z > 0. This is equivalent to a group domination a � b, where

ai = zi if zi > 0, bi = −zi if zi < 0, and all other entries are 0. Consider the product of the last

column of A with z, which equals −
∑
i zi ≥ 0. Without loss of generality, we can assume

∑
i zi = 0,

and thus
∑
i ai =

∑
i bi. If this is not true, then b would have greater weight than a, and decreasing

any weight in b can only increase coordinates of AT z or equivalently widen the gap between a and

b in terms of group domination. Now observe that for any good j and τ ∈ R≥0,
∑
i∈N :xij≥τ (ai− bi)
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is equal to the dot product of column
∑
`<j |X`| + q of A by z, where q is the largest value such

that τ qj ≤ τ . This holds because A
[
i,
∑
`<j |X`|+ q

]
is an indicator variable for xij ≥ τ qj , and by

construction no agent can have an allocation amount between τ qj and τ q+1
j . Therefore AT z > 0 is

equivalent to the requirement that
∑
i∈N :xij≥τ (ai− bi) ≥ 0 for all (j, τ) and that for some (j, τ) this

inequality is strict, i.e., AT z > 0 is equivalent to a � b.

Remark. Since the matrix A constructed in the proof of Theorem 2.5.1 is over the rationals, we can

also assume that the y or z obtained via Lemma 2.5.2 are over the rationals. In particular, we can

scale z to obtain z′ ∈ Zn with AT z′ > 0. Equivalently, this means that if a � b, we can assume

without loss of generality that ai, bi ∈ Z.

This characterization, in addition to allowing us to prove some of our subsequent results, implies

that we can compute price curves (or show that they do not exist) for a particular instance in

polynomial time. This is exhibited by the following linear program.

Theorem 2.5.2. Given a set of agents N , goods M , and an allocation x ∈ Rn×m≥0 , let A be the

corresponding agent-order matrix. In the following linear program, the optimal objective value is

strictly positive if and only if there exist strictly increasing price curves supporting x, in which case

y defines such curves.

max
y,η

η

s.t. Ay = 0

yk ≥ η ∀k

y−1 = 1

Proof. As per the proof of Theorem 2.5.1, there exist strictly increasing price curves supporting x if

and only if there is a solution to the system Ay = 0,y� 0. To turn this into a valid linear program,

instead of the strict inequality yk > 0 for each coordinate of y, we write yk ≥ η and attempt to

maximize η. Furthermore, we restrict the final entry of y as y−1 = 1, since otherwise y can be scaled

arbitrarily. If there is a solution with η > 0, then y corresponds to price curves as before, with each

entry representing the difference in price between adjacent allocation amounts. These points simply

need to be connected, e.g., in a piecewise linear fashion, to constitute valid price curves.

One may wonder if Theorem 2.5.1 generalizes to other classes of utility functions. Unfortunately,

the answer in general is no. Example 2.3 gives an instance with linear utilities that is GDF, but

cannot be supported by price curves.

In Section 2.7, we will show how the group-domination-freeness concept can be useful for proving

that allocations of interest can be supported by price curves: specifically, allocations with optimal

(or near optimal) max-min welfare. But first, a word about unequal budgets.
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2.5.3 Unequal budgets

It turns out that the characterization theorem of the previous section easily generalizes to agents

with unequal budgets. Since price curves are strictly increasing, the only additional requirement for

an allocation x to be supported is that each agent spends her entire budget Bi. In the agent-order

matrix, the last column of −1’s corresponded to each agent’s expenditure, so we simply need to

replace −1 with −Bi for each row i.

Following Lemma 2.5.2 with the modified agent-order matrix, the if-and-only-if characterization

becomes “budget-weighted group-domination-freeness”. A budget-weighted group domination still

requires that for all (j, τ), ∑
i∈N :xij≥τ

ai ≥
∑

i∈N :xij≥τ

bi

and that there exists j, τ where the inequality is strict. The only difference is that instead of requiring

both groups to have the same total weight, that weight is now scaled by each agent’s budget. That

is,
∑
i∈N aiBi =

∑
i∈N biBi. Note that when Bi = 1 for all i, this recovers the definition of group

domination.

2.6 CES welfare

In this section, we consider CES welfare functions:

ΦCES(x) =
(∑
i∈N

ui(xi)
ρ
)1/ρ

This section contains our second main result: that in the bandwidth setting (i.e., agents have Leontief

utilities where wij ∈ {0, 1} for all i ∈ N , j ∈ M), for any ρ ∈ (−∞, 0) ∪ (0, 1), any maximum CES

welfare allocation can be supported by price curves (Theorem 2.6.1). We present this result this in

Section 2.6.1. Next, we discuss why we are optimistic about the possibility of a simple decentralized

primal-dual algorithm for computing these price curves, similar to the work of Kelly et al. [110]

(Section 2.6.2). We also give a converse of sorts to Theorem 2.6.1 (Section 2.6.3), and briefly discuss

the case of unequal budgets (Section 2.6.4). Throughout this section, we let Ri = {j ∈M : wij = 1}
for brevity.

2.6.1 Main CES welfare result

We now state and prove Theorem 2.6.1. Our proof uses the dual of the convex program for maximiz-

ing CES welfare to construct explicit price curves that support a maximum CES welfare allocation.

The price curves take the very simple form of fj(x) = qjx
1−ρ for constants q1, . . . , qm that are

derived from the dual.

Theorem 2.6.1. If wij ∈ {0, 1} for all i ∈ N and j ∈ M , then for any ρ ∈ (−∞, 0) ∪ (0, 1), any

maximum CES welfare allocation can be supported by price curves of the form fj(x) = qjx
1−ρ for

each j ∈M .
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Proof. The proof proceeds in three steps.

Step 1: Setting up the convex program. We begin by writing the following program to

maximize CES welfare:

max
x∈Rn×m≥0

,

u=(u1...un)∈Rn≥0

(∑
i∈N

uρi

)1/ρ

s.t. ui ≤ xij ∀i ∈ N, j ∈ Ri∑
i∈N

xij ≤ sj ∀j ∈M

We could also have written the first constraint as uiwij ≤ xij , but since wij ∈ {0, 1}, the above

formulation is equivalent. Also, the objective
(∑

i∈N u
ρ
i

)1/ρ

is concave for any ρ ∈ (−∞, 0)∪ (0, 1),

so the resulting program is convex.

We can remove the exponent of 1/ρ from the objective without affecting the optimal point: the

optimal value may be affected, but the optimal solution (i.e., the arg max) will not. When ρ is

negative, this changes the program to a minimization program, but this can be handled by adding

a factor of 1/ρ to the objective.15 Thus consider a new convex program with objective function

max
x∈Rn×m≥0

,u∈Rn≥0

1
ρ

∑
i∈N u

ρ
i , and the same constraints.

Next, we write the Lagrangian of the new program. Let λij be the Lagrange multiplier associated

with the constraint ui ≤ xij and let qj be the Lagrange multiplier associated with the constraint∑
i∈N xij ≤ sj . We will use λ and q to denote the vectors of all such Lagrange multipliers. Then

the Lagrangian is given by

L(x,u,λ,q) =
1

ρ

∑
i∈N

uρi −
∑
i∈N

∑
j∈Ri

λij(ui − xij)−
∑
j∈M

qj

(∑
i∈N

xij − sj
)

Consider any maximum CES welfare allocation: this corresponds to a point (x∗,u∗) which is optimal

for the primal. We have strong duality by Slater’s condition, so there must exist λ∗ and q∗ such

that (x∗,u∗,λ∗,q∗) is optimal for L.

Step 2: Using the KKT conditions. The KKT conditions imply that the gradient of L

evaluated at (x∗,u∗,λ∗,q∗) must be zero for every variable with a positive value. Specifically, for

each variable y, either ∂L
∂y = 0, or y = 0 and ∂L

∂y ≤ 0.

First, we have ∂L
∂ui

(x∗,u∗,λ∗,q∗) = u∗i
ρ−1−

∑
j∈Ri λ

∗
ij = 0 for every i ∈ N with u∗i > 0. Suppose

u∗i = 0 for some i ∈ N : since ρ− 1 < 0, we would have u∗i
ρ−1 =∞, which contradicts ∂L

∂y ≤ 0. Thus

u∗i > 0, so u∗i = (
∑
j∈Ri λ

∗
ij)

1
ρ−1 for all i ∈ N .

Similarly, ∂L
∂xij

(x∗,u∗,λ∗,q∗) = λ∗ij − q∗j = 0 for every i ∈ N and j ∈ Ri with xij > 0. Since

u∗i > 0 for all i ∈ N , we must have x∗ij > 0 for all j ∈ Ri. Therefore λ∗ij = q∗j for all i ∈ N, j ∈ Ri, so

u∗i =
(∑

j∈Ri q
∗
j

) 1
ρ−1 . It will also be helpful to consider ∂L

∂xij
(x∗,u∗,λ∗,q∗) for j 6∈ Ri: in this case,

we have ∂L
∂xij

(x∗,u∗,λ∗,q∗) = qj = 0 whenever x∗ij > 0.

15We add a factor of 1/ρ instead of ρ because this will slightly simplify the analysis.
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Next, the KKT conditions also imply that (x∗,u∗,λ∗,q∗) satisfy complementary slackness, mean-

ing that the Lagrange multiplier of any non-tight constraint is equal to 0. We are specifically

interested in the constraint x∗ij ≤ u∗i for j ∈ Ri: either λ∗ij = q∗j = 0, or

x∗ij = u∗i =
( ∑
j∈Ri

q∗j

) 1
ρ−1

Step 3: Constructing the price curves. We now use the Lagrange multipliers q∗ to construct

explicit price curves. We define fj(x) by fj(x) = q∗jx
1−ρ. Since ρ ∈ (−∞, 0)∪(0, 1), we have 1−ρ > 0,

so these price curves are in fact increasing. We claim that (x∗, f) is a price curve equilibrium. To

see this, we explicit compute the cost of agent i’s bundle x∗i :

Cf (x
∗
i ) =

∑
`∈M

q∗` (x∗i`)
1−ρ

=
∑

`:q`,xi` 6=0

q∗` (x∗i`)
1−ρ

=
∑

`:q`,xi` 6=0

q∗`

( ∑
j∈Ri

q∗j

) 1−ρ
ρ−1

=
∑

`:q`,xi` 6=0

q∗`∑
j∈Ri

q∗j

To show that Cf (x
∗
i ) = 1, we just need to show that

∑
j:qj ,xij 6=0 q

∗
j =

∑
j∈Ri q

∗
j . Clearly

∑
j:qj ,xij 6=0 q

∗
j =∑

j:xij 6=0 q
∗
j . Since u∗i > 0, we have xij 6= 0 for each j ∈ Ri, so

∑
j:xij 6=0 q

∗
j ≥

∑
j∈Ri q

∗
j . To show

that the reverse inequality holds, it suffices to show that whenever j 6∈ Ri and xij 6= 0, qj = 0. This

is exactly one of the things we showed via the KKT conditions in Step 2.

Thus we have shown that Cf (x
∗
i ) = 1, so x∗i is affordable to agent i for all i ∈ N . Furthermore,

since u∗i =
(∑

j∈Ri q
∗
j

) 1
ρ−1

is finite, there must exist j ∈ Ri with q∗j > 0. Thus there is at least

one good j ∈ Ri such that buying more would cost more money, so by Lemma 2.5.1, x∗i is in agent

i’s demand set. We also know that
∑
j∈M x∗ij ≤ 1, since x∗ is a feasible solution to the primal.

Therefore (x∗, f) is a price curve equilibrium.

To compute the price curves, we only need to know q1, . . . , qm. Since these are the optimal

Lagrange multipliers of our convex program for computing CES welfare, and that program can be

solved in polynomial time, we can compute the price curves in polynomial time.

The structure of the price curve themselves (fj(x) = q∗jx
1−ρ) is also interesting when we consider

the interpretation of the parameter ρ: the smaller ρ is, the more we care about agents with small

utility. Recall that taking of ρ → −∞ yields max-min welfare, where we only care about the

minimum utility. When ρ = 1, we have utilitarian welfare, where we only care about overall

efficiency. This roughly corresponds to caring more about agents with higher utility. The limit as

ρ→ 0 corresponds to Nash welfare, which is a mix of caring about both agents with low utility and

those with high utility.

We know that maximum Nash welfare allocations are supported by linear price curves, i.e., those

with constant marginal prices. When ρ < 0, these marginal prices are increasing, making it easier

for agents who are buying less of each good. Since wij ∈ {0, 1}, ui(xi) = xij whenever wij 6= 0, so

the agents who are buying less are also the ones with lower utility. Thus price curves of this form for

ρ < 0 are benefiting the agents with low utility. Furthermore, the smaller ρ is, the faster marginal

prices grow, which corresponds to favoring agents with low utility even more. On the other hand,
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when ρ > 0, these marginal prices are decreasing. This favors agents with higher utility, which is

consistent with the interpretation of the CES welfare function with ρ > 0.

2.6.2 Decentralized primal-dual updates

In this section, we discuss how the simple structure of these price curves suggests a natural decen-

tralized primal-dual algorithm for computing said price curves. As established by Theorem 2.6.1,

the price of buying x of good j will be qjx
1−ρ. Specifically, for each j ∈ M , qj be the Lagrange

multiplier for the convex program for maximizing CES welfare with respect to that specific value of

ρ16.

For bandwidth allocation, each agent’s demand set depends only on the prices curves for goods

j ∈ Ri, i.e., the goods she cares about. For price curves of the form fj(x) = qjx
1−ρ, this means

that each agent’s demand given price curves f depends only on the dual prices qj for goods j ∈ Ri.
This means that given price curves f , agents can update their demands in a decentralized fashion.

Furthermore, the price set by each link should depend only on the flow through that link, i.e.,

{xij : i ∈ N, j ∈ Ri}. This means that given agent demands, each link can update its dual price

qj in a decentralized way (typically by raising the price if the demand is less than the supply, and

increasing the price if the demand exceeds the supply). This suggests a simple decentralized primal-

dual algorithm, where on each step, each agent updates her primal allocation xi in response to the

dual prices qj for j ∈ Ri, and each link updates its dual price in response to primal allocations xi.

This is similar to the work of Kelly et al. [110].

This type of algorithm is also called a tâtonnement. One recent approach to tâtonnement makes

use of the fact that the equilibrium prices are the Lagrange multipliers in the convex program to

maximize Nash welfare, and gives a tâtonnement process that is akin to gradient descent on the

dual program [48]. This approach also seems promising for our setting, since q1 . . . qm are exactly

the Lagrange multipliers in the convex program for maximizing CES welfare. We leave this as an

open question.

2.6.3 A converse to Theorem 2.6.1

In this section, we give a converse of sorts to Theorem 2.6.1: if an allocation x can be supported by

price curves f of the form fj(x) = q∗jx
1−ρ, and the supply is exhausted for any good with nonzero

price, then x must be a maximum CES welfare allocation. The requirement that the supply be

exhausted for any good with nonzero price (i.e.,
∑
i∈N xij = sj whenever qj 6= 0) is analogous to

the second condition in definition of Fisher market (i.e., standard linear pricing) equilibrium given

in Section 2.4.

The proof of Theorem 2.6.1 essentially hinges on the fact that when strong duality holds for a

convex program, the KKT conditions are sufficient for optimality. This is analogous to the proof

of Theorem 2.6.1, which is based on the fact that the KKT conditions are necessary for optimality.

The formal proof appears in Section 2.10.

16In general, different values of ρ will lead to different optimal allocations and Lagrange multipliers.
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Theorem 2.6.1. Suppose (x∗, f) is a price curve equilibrium where for all j ∈ M , fj(x) = q∗jx
1−ρ

for ρ ∈ (−∞, 1) and nonnegative constants q∗1 . . . q
∗
m. If

∑
i∈N x

∗
ij = sj whenever qj 6= 0, then x∗ is

a maximum CES welfare allocation.

2.6.4 Unequal budgets

Finally, we address the setting where agents may have different amounts of money to spend.

Let Bi be agent i’s budget. If we instead consider the budget-weighted CES welfare ΦCES(x) =(∑
i∈N Biui(xi)

ρ
)1/ρ

, then the proof of Theorem 2.6.1 extends directly. Duality tells us that agent i’s

utility must be ui(xi) =
(

1
Bi

∑
j∈Ri q

∗
j

) 1
ρ−1

. By using the same price curve form of fj(x) = q∗jx
1−ρ,

we get Cf (xi) =
∑
`∈Ri

Biq
∗
`∑

j∈Ri
q∗j

= Bi, so agent i is indeed spending exactly her budget. This can be

used to show that any allocation with maximum budget-weighted CES welfare can be supported by

price curves.

A social planner may prefer to give the same weight to each agent’s utility, even if the budgets are

not the same. Unfortunately, allocations with optimal unweighted CES welfare cannot be supported

(at least not exactly) when agents have different budgets. To see this, consider two agents with

different budgets and a single good: whichever agent has more money must receive a larger portion

of the good. But assuming the agents have the same weight for that good (which holds in the

bandwidth allocation setting or when weights are normalized somehow), the unweighted CES welfare

optimum would give each agent the same amount. This is analogous to the Fisher market setting:

the Fisher market equilibria for unequal budgets are exactly the allocations which maximize the

budget-weighted Nash welfare.

2.7 Max-min welfare

In this section, we show that under mild assumptions, price curves can support allocations with

either optimal max-min welfare, or arbitrarily close to optimal max-min welfare. As before, we

assume that agents have Leontief utility functions. Also, we refer to an allocation with optimal

max-min welfare as a max-min allocation.

The first thing we observe is that when agent weights are unconstrained in magnitude, there is

no hope to support any approximation of max-min welfare. Consider a single good and two agents

with weights w11 and w21 on that good. In this case, each agent i’s utility is just xi1/wi1, so the

max-min welfare of an allocation x is min( x11

w11
, x21

w21
). Now imagine that w11 is much larger than

w21: agent 1 needs significantly more of the good to achieve the same utility as agent 2. Then any

max-min allocation (or even any decent approximation) must give more of the good to agent 1 than

agent 2. But since agents have the same budgets, any price curve equilibrium must result in each

agent receiving half of the supply of good 1, which is a contradiction.

Thus in order to have any hope of even approximately supporting a max-min allocation, the

agent weights must be normalized in some way. Theorem 2.7.1 states that under a quite general

normalization assumption, we can support a max-min allocation.
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Theorem 2.7.1. Suppose there exist strictly increasing functions g1, . . . , gm such that for all i ∈ N ,∑
j∈M gj(wij) = 1. Then there exists a max-min allocation that can be supported by price curves.

Proof. Since the max-min welfare of an allocation is determined by the minimum agent utility, the

max-min welfare cannot be improved by making any agent’s utility higher than any other. Similarly,

since each agent’s utility is determined by minj∈M xij/wij , the max-min welfare cannot be improved

by allocating goods to an agent outside of her desired proportions. Thus there exists a max-min

allocation x where all agents have the same utility u, and where xij = u · wij for all i ∈ N and

j ∈M .

Since GDF is invariant to scaling by constants, this implies that x is GDF if and only if the

weight vectors themselves are GDF. That is, x is GDF if and only if the allocation x′ defined by

x′ij = wij is GDF. One realizes that the assumption of
∑
j∈M gj(wij) = 1 for all i ∈ N is literally

assuming that there exist (strictly increasing) price curves that support the allocation x′. Thus x′

is GDF by Theorem 2.5.1, so x is GDF, which completes the proof.

One natural corollary of Theorem 2.7.1 is the following:

Corollary 2.7.1.1. Suppose there exists some q ≥ 1 so that
∑
j∈M wqij = 1 for all i ∈ N . Then

there exists a max-min allocation that can be supported by price curves.

Theorem 2.7.1 has an interesting conceptual implication. We can think of price curves themselves

as a sort of “norm” on the allocation, and any allocation for which there is a “norm” which assigns

the same value to each agent’s bundle is reasonable enough that it can be supported by price curves.

The previous statement can be rephrased as “an allocation can be supported by price curves if

and only if there exist price curves which assign the same cost to each agent’s bundle”, and so is

functionally a tautology. Since there exists a max-min allocation which is a constant scaling of the

agent weights, this near-tautology carries over.

One final observation is that there are some interesting norms, such as the L∞ norm, which

cannot be written as the sum of increasing functions. In fact, there are cases where no max-min

allocation can be supported when agent weights have the same L∞ norm.17 Furthermore, the

following counterexample falls under the even simpler bandwidth allocation setting: wij ∈ {0, 1} for

all i, j.

Theorem 2.7.2. There exist instances where wij ∈ {0, 1} for all i ∈ N and j ∈M , but no max-min

allocation can be supported.

Proof. Consider an instance with three agents and two goods, each with supply 1. Let the agent

weights be given by the following table:

agent 1 agent 2 agent 3

good 1 1 0 1

good 2 0 1 1

17The L∞ norm is defined as maxj∈M wij .
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The unique max-min allocation is x11 = x22 = x31 = x32 = 1
2 . Thus any price curves f1, f2 must

satisfy Cf (x1) = f1( 1
2 ) = 1, Cf (x2) = f2( 1

2 ) = 1. But then Cf (x3) = f1( 1
2 ) + f2( 1

2 ) = 2, which is a

contradiction. Thus no max-min allocation can be supported.

The good news is that the L∞ norm can be approximated to arbitrary precision by Lq norms,

leading to the following theorem. We use ΦMM (x) = mini∈N ui(xi) to denote the max-min welfare

of allocation x.

Theorem 2.7.1. Suppose that maxj∈M wij = 1 for all i ∈ N . Then for every ε > 0, there exists an

allocation x that can be supported by price curves where ΦMM (x) ≥ (1− ε) maxx′ ΦMM (x′).

Proof. Let w′ij be rescaled versions of wij so that they are Lq-normed for a q to be chosen later.

Specifically, let αi = (
∑
j∈M wqij)

1/q, and let w′ij = wij/αi.

Note that
∑
j∈M w′qij = 1 for all i ∈ N . By Corollary 2.7.1.1, there exists an allocation with

optimal max-min welfare with respect to weights w′ij that can be supported by price curves. Let x

be this allocation. Then for all j ∈M and all other allocations x′,

min
i∈N

xij
w′ij
≥ min

i∈N

x′ij
w′ij

min
i∈N

αixij
wij

≥ min
i∈N

αix
′
ij

wij

min
i∈N

αiui(xi) ≥ min
i∈N

αiui(x
′
i)

In particular, let x∗ be the allocation maximizing max-min welfare with the respect to the true

weights wij : then mini∈N αiui(xi) ≥ mini∈N αiui(x
∗
i ). Since ui(x

∗
i ) ≥ ΦMM (x∗) by definition, we

have mini∈N αiui(xi) ≥ Φ(x∗) mini∈N αi.

Therefore for all k ∈ N , αkuk(xk) ≥ Φ(x∗) mini∈N αi. Therefore

uk(xk) ≥ Φ(x∗)
mini∈N αi

αk

and so

ΦMM (x) ≥ Φ(x∗)
mini∈N αi
maxi∈N αi

It remains to show that there exists q ≥ 1 such that mini∈N αi
maxi∈N αi

≥ 1 − ε. This follows from the

fact that lim
q→∞

αi = (
∑
j∈M wqij)

1/q = 1 for all i ∈ N , which completes the proof.

2.8 Characterization of allocations supported by weakly in-

creasing price curves

In Section 2.5, we showed that an allocation can be supported with strictly increasing price curves

if and only it is GDF. In this section, we provide the analogous necessary and sufficient condition

for the case where any (continuous, weakly increasing) price curves are permitted. This boils down
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to what we called locked-agent-freeness (LAF). LAF is not a particularly interesting condition on

its own – though as with GDF it implies a polynomial time algorithm for finding price curves – but

it is crucial in allowing us to prove that maximum CES welfare allocations can be supported.

For an allocation x, we wish to determine whether there exist price curves f such that (x, f)

is a price curve equilibrium. Assuming x obeys the supply constraints, we just need to determine

whether there exist price curves f such that xi ∈ Di(f) for all i ∈ N .

Recall that a � b if for all j ∈M and τ ∈ R≥0,
∑
i∈N :xij≥τ (ai− bi) ≥ 0, and there exists a (j, τ)

pair such that the inequality is strict. As discussed in Section 2.5, this implies that the aggregate

spending of a is at least that of b for any f , i.e.,∑
i∈N

(ai − bi)Cf (xi) ≥ 0

for any price curves f . Furthermore, we argued that for strictly increasing f , the inequality is strict,

so b cannot be made to pay as much as a. When we allow weakly increasing price curves, a � b

simply implies that, for any marginal price where a would have to pay strictly more than b, that

marginal price must be zero.

We still need to ensure that xi ∈ Di(f) ∀i ∈ N , i.e., that every agent spends her full budget and

cannot get more utility for free (Lemma 2.5.1). This requirement can be expressed by locked-agent-

freeness.

Definition 2.8.1 (Locked-agent-free (LAF)). For simplicity, we define two meanings of “locked”:

• Agent i is locked in an allocation x if there exists a domination a � b such that for all j ∈M
where xij > 0, and all sufficiently small ε > 0, a � b is strict at (j, xij + ε).

• The allocation is locked if there exists a � b which is strict at every (j, τ) for τ ∈ (0,maxi xij ].

If nothing is locked in allocation x, we say that x is locked-agent-free (LAF).

Intuitively, an agent being locked implies that the cost to increase her allocation must be zero,

which will violate condition (b) of Lemma 2.5.1. The allocation being locked implies that all marginal

prices must be zero, and thus all price curves must be identically zero. Clearly, any non-LAF

allocation cannot be supported by price curves. Perhaps surprisingly, the opposite directly holds as

well, as stated by Theorem 2.8.1.

The proof of Theorem 2.8.1 is similar to the proof of Theorem 2.5.1 for strictly increasing price

curves. The main difference is that strictly increasing price curves trivially satisfy condition (b) of

Lemma 2.5.1, preventing any agent from getting more utility for free. For weakly increasing price

curves, however, we need to add a constraint specifically to ensure that condition is satisfied. Thus

in addition to the agent-order matrix, we will define a marginal-cost matrix to ensure that no agent

has a marginal cost of zero to increase her utility. In order to incorporate this matrix, we use a

more general duality result than Lemma 2.5.2 (although still equivalent to Farkas’s Lemma [141]),

this one due to Motzkin. Recall that v > 0 denotes a strictly positive vector, and v � 0 strongly

positive.
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1 1 1 0 1 0 -1

1 1 0 0 0 0 -1
1 0 0 1 1 1 -1
0 0 0 0 1 1 -1

(a) x represented as a agent-order matrix A


1 1 1 1 1 1 1

0 0 1 0 0 0 0
1 1 1 1 1 1 1
1 1 1 1 1 1 1

(b) the corresponding marginal-cost matrix C

Figure 2.3: Example construction of the marginal-cost matrix from an agent-order matrix.

Lemma 2.8.1 (1.6.1 in [167]). For matrices A,B,C over R, the following are equivalent.

1. Ay = 0, By ≥ 0, Cy� 0 has no solution

2. ATu +BTv + CTw = 0,v ≥ 0,w > 0 has a solution

Theorem 2.8.1. Let x be an allocation which obeys the supply constraints and gives a nonempty

bundle to at least one agent. Then x can be supported by weakly increasing price curves if and only

if it is LAF.

Proof. Recall that an allocation x is supported by price curves f if xi ∈ Di(f) ∀i ∈ N , and∑
i∈N xij ≤ 1 ∀j ∈ M . The latter condition is satisfied by assumption, and by Lemma 2.5.1,

for Leontief utilities, the former condition holds if and only if the cost Cf (xi) = 1 and there exists

j ∈M such that ∀ε > 0 fj(xij + εwij) > fj(xij).

As before, let Xj = {xij | i ∈ N}\{0} be the set of distinct, non-zero amounts of good j allocated

to some agent under x. Label these elements such that τ1
j < τ2

j < · · · < τ
|Xj |
j . Since fj(0) = 0,

fj(x /∈ Xj) in some sense doesn’t matter – we only require that these “in-between” areas of the price

curve are weakly increasing and don’t violate continuity. Thus there exist price curves f supporting

x if and only if there exist functions f ′j : Xj → R≥0 such that

1. for all j ∈M , 0 ≤ f ′j(τ1
j ) ≤ f ′j(τ2

j ) ≤ · · · ≤ f ′j(τ
|Xj |
j ) (weakly increasing)

2. for all i ∈ N , Cf (xi) =
∑
j f
′
j(xij) = 1 (total cost 1)

3. for all i ∈ N , exists r, j ∈M such that f ′j(τ
r
j = xij 6= 0) < f ′j(τ

r+1
j ) (positive marginal cost)

Now we are ready to set up the matrices A,B,C (all of width
∑
j |Xj | + 1) to which we will

apply Lemma 2.8.1. As in the proof of Theorem 2.5.1, A will be the agent-order matrix, and the

solution vector y will represent the marginal prices, with the last entry representing the total cost

per agent. Thus, define

A

i, ∑
`<j

|X`|+ q

 =


−1 if j = m+ 1, q = 1 (last column)

0 if xij < τ qj

1 otherwise

Furthermore, let B be the square identity matrix I; this will ensure that the prices are weakly

increasing. Finally, we need to define the marginal-cost matrix C. As shown in Figure 2.3, we can
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create C based only on A: If agent i receives the largest amount of some good (row i has a 1 in the

last column of some sub-block), then agent i’s row in C is all 1’s. Intuitively, we can set the price

above maxi xij arbitrarily to ensure i has positive marginal cost, so it should be trivial to satisfy

Ciy > 0. Otherwise, agent i’s row is all zeros, except that within a sub-block if there is a 1 followed

by a 0 in row i in A, the position of that 0 becomes a 1 in C. Intuitively, these are the places i

would have to buy more of a good to increase her utility. Formally, define

C

i, ∑
`<j

|X`|+ q

 =


1 if ∃j′ A

[
i,
∑
`≤j′ |X`|

]
= 1

1 if q ≥ 1, A
[
i,
∑
`<j |X`|+ q

]
= 0, A

[
i,
∑
`<j |X`|+ q − 1

]
= 1

0 otherwise

Since x gives at least one agent a nonempty bundle by assumption, A,B,C have at least two

columns. We know by Lemma 2.8.1 that ∃y such that Ay = 0, By ≥ 0, Cy � 0 if and only if

6 ∃u,v,w such that ATu + BTv + CTw = 0,v ≥ 0,w > 0. To complete the proof, we will show

that the former condition is equivalent to the existence of weakly increasing price curves supporting

x, and the latter is equivalent to either x or an agent i being locked.

Define f ′j(τ
q
j )−f ′j(τ

q−1
j ) = y∑

`<j |X`|+q, where for convenience we let f ′j(τ
0
j ) = f ′j(0) = 0. Clearly

By = y ≥ 0 is equivalent to the requirement that price curves be weakly increasing. Furthermore,

note that Cy � 0 implies y > 0, so without loss of generality we can assume the last entry of y is

1. Thus as before, Ay = 0 is equivalent to the requirement that every agent’s total cost equals 1.

Revisiting Cy � 0, since y > 0 this is trivially satisfied for every row where agent i receives the

largest amount of some good – equivalently, agent i’s marginal cost can trivially be made positive.

Additionally, for all other agents, Ciy > 0 is by definition equivalent to having positive marginal

cost. Thus a solution vector y is equivalent to weakly increasing price curves supporting x.

If no such solution exists, then we have ATu+BTv+CTw = 0,v ≥ 0,w > 0. Rearranging, and

since B = I, this is equivalent to ATu ≥ CTw,w > 0. Without loss of generality, assume w is only

non-zero on entry i. Furthermore, for all k define ak = uk if uk > 0 and bk = −uk if uk < 0. Then

ATu ≥ CTw is equivalent to a � b such that the domination is strict wherever Ci is non-zero. If

Ci = 1, this is equivalent to allocation x being locked. Otherwise, this is equivalent to agent i being

locked. Thus ATu ≥ CTw,w > 0 is equivalent to something being locked in x.

Finally, we observe that LAF give us the following linear program, which computes price curves

(or shows that none exist) in polynomial time.

Theorem 2.8.2. Given a set of agents N , goods M , and an allocation x ∈ Rn×m≥0 , let A be the

corresponding agent-order matrix and C the marginal-cost matrix. In the following linear program,

the optimal objective value is strictly positive if and only if there exist strictly increasing price curves

supporting x, in which case y defines such curves.

max
y,η

η
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s.t. Ay = 0

yk ≥ 0 ∀k

Ciy ≥ η ∀i

y−1 = 1

Proof. As per the proof of Theorem 2.8.1, there exist strictly increasing price curves supporting x

if and only if there is a solution to the system Ay = 0,y ≥ 0, Cy � 0. To turn this into a valid

linear program, we replace the strict inequality Ciy > 0 with Ciy ≥ η and attempt to maximize η.

Furthermore, we restrict the final entry of y as y−1 = 1, since otherwise y can be scaled arbitrarily.

If there is a solution with η > 0, then y corresponds to price curves as before, with each entry

representing the difference in price between adjacent allocation amounts. These points simply need

to be connected, e.g., in a piecewise linear fashion, to constitute valid price curves.

2.9 Counterexamples

agent 1 agent 2

good 1 1 1

good 2 1 0

Example 2.2: An instance where it is necessary to give a price of zero to some goods (which is a form of
weakly increasing price curves) in order to support the maximum Nash or CES welfare allocation. Assume
each good has supply 1. Nash welfare is maximized by splitting good 1 evenly between the two agents,
and allowing agent 1 to purchase an equal quantity of good 2. This only possible if the price of good 2 is
zero: otherwise, agent 1 is paying more than agent 2. It can be verified that this same allocation is also the
maximum CES welfare allocation for any ρ ∈ (−∞, 0) ∪ (0, 1). For another interpretation, recall that the
Fisher market equilibrium prices are the dual variables of the convex program for maximizing Nash welfare:
thus the price of good 2 being zero corresponds to the fact that the supply constraint for good 2 is not tight
in this instance.

We showed in Section 2.6 that if wij ∈ {0, 1} for all i ∈ N and j ∈M , then for any ρ ∈ (−∞, 0)∪(0, 1),

every maximum CES welfare allocation can be supported by price curves. One natural question is

whether this result holds if we only assume that maxj∈M wij = 1 for all i ∈ N . The answer is no,

unfortunately, as demonstrated by the following theorem. Theorem 2.9.1 only rules out ρ in the

range ( 1
2 , 1), but we conjecture that counterexamples exist for all ρ ∈ (−∞, 0) ∪ (0, 1).

Theorem 2.9.1. For agents with Leontief utilities where maxj∈M wij = 1 for all i ∈ N , for every

ρ ∈ ( 1
2 , 1), there exist instances where no maximum CES welfare allocation can be supported by price

curves.

Proof. Consider the following instance with two goods with supply 1, and three agents, whose weights

are given by the following table:
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good 1 good 2

agent 1 1− ε 1

agent 2 1 1− ε
agent 3 1 1

Let x be a maximum CES welfare allocation. For brevity, we write ui = ui(xi). In the proof of

Theorem 2.6.1 given in Section 2.6, we used duality to show that for a fixed ρ, any maximum CES

welfare allocation x has the form

xij = wij

( ∑
j∈M

qjwij

) 1
ρ−1

for some constants q1, . . . , qm ∈ R≥0. Let χi =
(∑

j∈M qjwij

) 1
ρ−1

. In our case, we have

χ1 =
(
(1− ε)q1 + q2

) 1
ρ−1

χ2 =
(
q1 + (1− ε)q2

) 1
ρ−1

χ3 =
(
q1 + q2

) 1
ρ−1

Thus we have xij = wijχi for all i ∈ N and j ∈M . We proceed by case analysis.

Case 1: (1− ε)χ1 > χ3. In this case, we have

x11 = (1− ε)χ1 > χ3 = x31 and x12 = χ1 > χ3 = x32

So x1j > x3j for every good j. Let a be the vector with a1 = 1 and ai = 0 for i 6= 1, and let b be

the vector with b3 = 1 and bi = 0 for i 6= 3. Then a � b. Furthermore: the domination is strict at

x3j for each good j ∈ M . This means that agent 3 is locked. Therefore by Theorem 2.8.1, the x

cannot be supported by price curves, and we are done.

Case 2: (1 − ε)χ2 > χ1. By a symmetrical argument, we have x2j > x3j for every good j, so

agent 3 is again locked, and we are done.

Case 3: (1 − ε)χ1 ≤ χ3 and (1 − ε)χ2 ≤ χ3. This implies that (1 − ε)ρ−1χρ−1
1 ≥ χρ−1

3 and

(1− ε)ρ−1χρ−1
2 ≥ χρ−1

3 . Note that the inequality flipped because ρ− 1 < 0. Therefore

(1− ε)ρ−1χρ−1
1 + (1− ε)ρ−1χρ−1

2 ≥ 2χρ−1
3

(1− ε)ρ−1
(

(1− ε)q1 + q2

)
+ (1− ε)ρ−1

(
q1 + (1− ε)q2

)
≥ 2

(
q1 + q2

)
(1− ε)ρ−1(2− ε)

(
q1 + q2

)
≥ 2

(
q1 + q2

)
ln
(

(1− ε)ρ−1(2− ε)
)
≥ ln 2

(ρ− 1) ln(1− ε) ≥ ln 2− ln(2− ε)

ρ ≤ 1 +
ln 2− ln(2− ε)

ln(1− ε)
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Note that the sign flipped in the last step because ln(1− ε) < 0.

The resulting right hand side is some real-numbered value, so whenever ρ is greater than that,

we obtain a contradiction. Taking the limit as ε goes to 0 shows us that the right hand side may be

arbitrarily close to 1
2 . This shows that for any ρ > 1

2 , there exists an ε > 0 such that in the above

instance, no maximum CES welfare allocation can be supported by price curves.

2.9.1 Difficulties in analyzing linear utilities

We assumed throughout the chapter that agents have Leontief utilities. One natural question is

whether our results extend to other classes of utilities: in particular, linear utilities. The answer is

no, in general. A linear utility function is defined by

ui(xi) =
∑
j∈M

wijxij

where wij is still the weight that agent i has for good j.

Leontief utilities have the very nice property that agents always purchase goods in a fixed pro-

portion. It does not matter exactly how the cost within each bundle was distributed across goods,

because each agent will always purchase goods in the same proportions, regardless of the underlying

costs. We do not have this luxury with linear utilities. In this setting, the proportions in which each

agent purchases goods depend on a complex interaction between her values for the goods, and the

price curves. This makes it very difficult to reason about what agents will purchase given a set of

price curves. In fact, each agent’s optimization problem

arg max
xi∈Rm≥0

: Cf (xi)≤1

ui(xi)

may not even be convex.

Thus in order for (x, f) to form a price curve equilibrium for linear utilities, a complex set of

conditions would need to be satisfied. We note that Cf (xi) = 1 is still necessary, and so GDF

is still a necessary condition (for strictly increasing price curves), but it is certainly not sufficient

(Example 2.3).

2.10 Omitted proofs

Lemma 2.5.1. Given price curves f , xi ∈ Di(f) if and only if both of the following hold: (a)

Cf (xi) = 1, and (b) there exists j ∈M such that for all ε > 0, fj(xij + εwij) > fj(xij).

Proof. ( ⇐= ) Suppose the above conditions hold, but xi 6∈ Di(f). Then there exists x′i ∈ Di(f)

such that ui(x
′
i) = ui(xi) + ε for some ε > 0. Since we assume that xij is proportional to wij , agent

x must receive at least εwij more of each good j in order to increase her utility by ε. Furthermore,
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agent 1 agent 2
good 1 4 0
good 2 0 4
good 3 1 2
good 4 2 1

Example 2.3: For two agents with linear utilities, group-domination-freeness is not sufficient for the existence
of price curves. Consider the instance where the agents’ weights are given as above and the available supply
of each good is 1. Define x by x11 = x13 = x22 = x24 = 1 and xij = 0 otherwise. This allocation is EF and
GDF. To see that x cannot be supported by price curves, let j̃ = arg minj∈{3,4} fj(1). If j̃ = 3, then the cost
of good 3 is at most the cost of good 4, so agent 2 would buy good 3 instead of buying good 4. Similarly,
if j̃ = 4, then the cost of good 4 is at most the cost of good 3, so agent 1 would buy good 4 that instead of
buying good 3.

since price curves are increasing, fj(x
′
ij) ≥ fj(xij) for every good j. However, condition (b) of the

lemma implies that there exists a good j such that

fj(x
′
ij) ≥ fj(xij + εwij) > fj(xij)

and thus

Cf (x
′
i) =

∑
j∈M

fj(x
′
ij) >

∑
j∈M

fj(xij) = 1

which contradicts x′i ∈ Di(f).

( =⇒ ) Now suppose that at least one of the two conditions of the lemma does not hold. If

Cf (xi) 6= 1, then either Cf (xi) > 1 and the cost exceeds the budget, or Cf (xi) < 1 so by continuity

agent i could purchase more of every good and increase her utility. Either way xi 6∈ Di(f). Thus

assume that for every j, there exists an εj > 0 such that fj(xij + εjwij) = fj(xij). Then consider

the bundle x′i defined by x′ij = xij + εjwij . This bundle has the same cost as xi, but

ui(x
′
i) = min

j∈M

xij + εjwij
wij

> min
j∈M

xij
wij

= ui(xi)

contradicting xi ∈ Di(f).

Theorem 2.6.1. Suppose (x∗, f) is a price curve equilibrium where for all j ∈ M , fj(x) = q∗jx
1−ρ

for ρ ∈ (−∞, 1) and nonnegative constants q∗1 . . . q
∗
m. If

∑
i∈N x

∗
ij = sj whenever qj 6= 0, then x∗ is

a maximum CES welfare allocation.

Proof. First, for Nash welfare (ρ = 0), this is exactly Eisenberg and Gale’s result: the linear-pricing

equilibrium allocations are exactly the allocations maximizing Nash welfare [72, 73]. Thus for the

rest of this proof, we assume ρ 6= 0.

The proof follows a duality argument very similar to the proof of Theorem 2.6.1. We use the

same convex program for maximizing CES welfare, which, as stated in the proof of Theorem 2.6.1,

satisfies strong duality. Suppose (x∗,g) is a PCE, where gj(x) = q∗jx
1−ρ for all j ∈M for nonnegative

constants q∗1 . . . q
∗
m. Let u∗i = ui(x

∗
i ) be agent i’s utility for x∗, and let λ∗ij = q∗j . Let u∗ = u∗1 . . . u

∗
n,
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let q∗ = q∗1 . . . q
∗
m, and let λ∗ represent the vector of all λ∗ij ’s.

Since our convex program satisfies strong duality, the Karush-Kuhn-Tucker (KKT) conditions

are both necessary and sufficient for optimality. Specifically, if we can show that (x∗,u∗,λ∗,q∗)

satisfies the KKT conditions, then (x∗,u∗) is optimal for the primal. The KKT conditions are

primal feasibility, dual feasibility, complementary slackness, and stationarity. Since x∗ is a valid

allocation and u∗i is defined by u∗i = ui(x
∗
i ) for all i ∈ N , primal feasibility of (x∗,u∗) immediately

follows. Since q∗j ≥ 0 for all j ∈M by assumption and λ∗ij ≥ 0 by definition, we have dual feasibility

as well.

Complementary slackness requires that for every constraint, either the constraint is tight, or the

corresponding dual variable is equal to 0. For the supply constraints, we need to show that for all

j ∈ M , we have
∑
j∈M x∗ij = sj whenever q∗j = 0. This is satisfied by assumption. For the other

constraints, we need to show that for all i ∈ N, j ∈ Ri, either λ∗ij = 0 or x∗ij = u∗i . We will show

something slightly stronger: either λ∗ij = 0 or x∗ij = wiju
∗
i (for all j ∈ M , not just in Ri). Since

λ∗ij = q∗j , we have λ∗ij = 0 when q∗j = 0. Suppose q∗j 6= 0 and x∗ij 6= wiju
∗
i . First, we must have

x∗ij ≥ wiju∗i by the definition of Leontief utility, which implies that x∗ij > wiju
∗
i . Also, since q∗j 6= 0,

agent i must be spending money on good j; furthermore, she is purchasing more of good j than

she needs. Instead, she could purchase x′ij = wiju
∗
i and have some leftover money, which she could

use to buy slightly more of every good and increase her utility. This would imply that x∗i is not in

agent i’s demand set, which contradicts (x∗, f) being a price curve equilibrium. Therefore we have

x∗ij = wiju
∗
i whenever qj 6= 0, which satisfies the complementary slackness conditions.

For stationarity, we need to show that the gradient of L with respect to x and u vanishes at

(x∗,u∗,λ∗,q∗) for every coordinate that is not zero. Specifically, we need to show that for each

variable y, either ∂L
∂y = 0, or y = 0 and ∂L

∂y ≤ 0. First, for j ∈ Ri we have
∂L

∂xij
(x∗,u∗,λ∗,q∗ =

λ∗ij − q∗j ; by definition, this is equal to zero. For j 6∈ Ri, we have
∂L

∂xij
(x∗,u∗,λ∗,q∗) = −q∗j . This

is always nonpositive, since q∗j ≥ 0. We showed before that x∗ij = wiju
∗
i whenever qj 6= 0. Since

wij = 0 for j 6∈ Ri, we have either x∗ij = 0 or q∗j = 0; this satisfies the stationarity condition for

those variables.

Finally, consider u∗i : since (x∗, f) is a price curve equilibrium, everyone must have positive utility

(any agent could always buy a nonzero amount of every good, which would give her nonzero utility).

Thus we need to show that
∂L

∂ui
(x∗,u∗,λ∗,q∗) = u∗i

ρ−1−
∑
j∈Ri λ

∗
ij = 0 for each i ∈ N . Since (x∗, f)

is a price curve equilibrium, each agent must be exhausting her entire budget. Thus Cf (x
∗
i ) = 1 for

all i ∈ N , which gives us:

Cf (x
∗
i ) =

∑
j∈M

fj(x
∗
ij) =

∑
j∈M

q∗jx
∗
ij

1−ρ = 1

Furthermore, as argued above, we have x∗ij = wiju
∗
i whenever qj 6= 0. Therefore∑

j∈M
q∗jx
∗
ij

1−ρ =
∑
j:q∗j 6=0

q∗jx
∗
ij

1−ρ
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=
∑
j:q∗j 6=0

q∗j (wiju
∗
i )

1−ρ

= u∗i
1−ρ ∑

j:q∗j 6=0

q∗jw
1−ρ
ij

= u∗i
1−ρ ∑

j:q∗j 6=0

q∗jwij

where the last equality is because wij ∈ {0, 1}. Therefore we have

u∗i
1−ρ ∑

j:q∗j 6=0

q∗jwij = 1

∑
j:q∗j 6=0

q∗jwij = u∗i
ρ−1

u∗i
ρ−1 −

∑
j:q∗j 6=0

q∗jwij = 0

u∗i
ρ−1 −

∑
j∈Ri

q∗j = 0

u∗i
ρ−1 −

∑
j∈Ri

λ∗ij = 0

Therefore
∂L

∂ui
(x∗,u∗,λ∗,q∗) = u∗i

ρ−1 −
∑
j∈Ri λ

∗
ij is indeed 0. Thus the KKT conditions are

satisfied. Therefore (x∗,u∗,λ∗,q∗) is optimal for L, which implies that (x∗,u∗) is optimal for the

primal: in other words, x∗ is a maximum CES welfare allocation.

2.11 Conclusion

In this chapter, we analyzed price curves in several different settings, focusing on agents with Leontief

utilities. Our first main result was that for strictly increasing price curves, an allocation can be

supported if and only if it is GDF. We proved this by defining the agent-order matrix, and using

duality theorems to show the existence of a strongly positive solution to a particular system of linear

equations. Our second main result was that in the bandwidth allocation setting, the maximum CES

welfare allocation can be supported by price curves. These price curves took the simple form of

fj(x) = qjx
1−ρ. This is contrast to the standard linear pricing setting, where only maximum Nash

welfare allocations can be equilibria.

There are many possible directions for future research. The first is the possibility of a simple

primal-dual tâtonnement for price curves, as discussed in Section 2.6.2. We think that the approach

of [48] seems especially promising in this regard.

A second possible direction is studying price curves for other classes of agent utilities, and

in particular, linear utilities. We will discuss in Section 2.9 some of the challenges that linear

utilities pose for analyzing price curves, but perhaps everything would fall into place with the right
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framework.

Last but not least, we are intrigued by the connection between GDF and the agent-order matrix

and duality theorems, and we wonder if this connection could be useful for other resource allocation

problems as well.



Chapter 3

Optimal Nash equilibria for

bandwidth allocation

In bandwidth allocation, competing agents wish to transmit data along paths of links in a network,

and each agent’s utility is equal to the minimum bandwidth she receives among all links in her desired

path. The previous chapter showed the existence of price curve equilibria maximizing CES welfare,

but if agents act strategically, these welfare guarantees no longer hold. On the other hand, [30]

proposed a mechanism whose Nash equilibria have nearly optimal Nash welfare, but their approach

does consider other CES welfare functions.

In this chapter, we achieve the best of both worlds: we give a mechanism parametrized by ρ

whose Nash equilibria maximize CES welfare with respect to that same value of ρ. This holds for all

CES welfare functions except for ρ = 1. Our mechanism is a nonlinear variant of the classic trading

post mechanism. We also prove that fully strategyproof mechanisms for this problem are impossible

in general, with the exception of max-min welfare.

3.1 Introduction

As discussed in the previous chapter, the bandwidth allocation problem can be defined in two

equivalent ways:

1. Agents have Leontief utilities with wij ∈ {0, 1} for all i, j.

2. Each agent wishes to transmit data across a fixed path in a network, and her utility is equal

to the minimum bandwidth she receives among all links in her desired path, i.e., the rate at

which she is able to transmit data.

We use exactly the same model as in the previous chapter, with one exception: this chapter

focuses on strategic behavior. In particular, we will focus on Nash equilibrium. We study this

through the lens of implementation theory. A mechanism is said to Nash-implement a social choice

rule Ψ (for example, Ψ could denote Nash welfare maximization) if every problem instance has least

46
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one Nash equilibrium, and every Nash equilibrium outcome is optimal with respect to Ψ. This

is similar to saying that the price of anarchy – the ratio of the optimum and the “worst” Nash

equilibrium – of the mechanism is 1.1 In this chapter, we focus on pure Nash equilibria, i.e., we do

not consider randomized strategies.

The result of Kelly et al. [110] assumes that agents are not strategic, and thus the Nash equilibria

of their mechanism may be poor. In contrast, our augmented trading post mechanism will lead to

optimal Nash equilibria, not just for Nash welfare, but for an entire family of welfare functions.

3.1.1 Trading post

Our main tool will be an augmented version of the trading post mechanism. In the standard trading

post mechanism, each agent i submits a bid bij ∈ R≥0 on each good j, with the constraint that∑
j bij ≤ 1 for each agent i. Let xij be the fraction of good j that agent i receives: then trading

post’s allocation rule is xij =
bij∑
k bkj

. In words, each agent receives a share of the good proportional

to her share of the aggregate bid on that good. The bids consist of “fake money”: agents have no

value for leftover money.

Trading post has the desirable property that the information requirements are quite light. Each

agent’s best response only depends on the aggregate bid of the other agents (i.e.,
∑
k 6=i bkj), not on

their individual bids. Furthermore, the allocation rule is decentralized in the sense that there is no

centralized price computation, and each link j only needs to know the bids b1j , b2j , . . . bnj .

However, the vanilla version of trading post also has limitations. First of all, it is not even

guaranteed to have a Nash equilibrium for every problem instance.2 A partial solution to this was

proposed by [30]. For every ε > 0, they gave a modified version of trading post (parameterized by

ε) that always has a Nash equilibrium, and where every Nash equilibrium attains at least 1 − ε of

the maximum possible Nash welfare.3 In the language of implementation theory, this mechanism

Nash-implements a 1 − ε approximation of Nash welfare. In the course of our main result, we will

strengthen this to full Nash implementation. It is important to note that their mechanism still uses

the linear constraint of
∑
j bij ≤ 1; their modification has to do with a minimum allowable bid (see

Section 3.1.2 for additional discussion).

In this chapter, we augment the trading post mechanism by allowing nonlinear bid constraints:

instead of
∑
j bij ≤ 1, we require

∑
j fj(bij) ≤ 1 for each agent i, where each fj is a nondecreasing

function chosen by us ahead of time. Importantly, all agents are still subject to the same bid

constraint, and we use the same allocation rule of xij =
bij∑
k bkj

. This novel augmentation allows us

to Nash-implement a wide range welfare functions, as opposed to just Nash welfare. Specifically, we

will Nash-implement almost the entire family of CES welfare functions (see Section 3.1.3 for more

details). This is our main result.

1The price of anarchy [114] concept applies only when Ψ can be written as the maximization of some cardinal
function. This is true when Ψ denotes Nash welfare maximization, but is not true in general.

2This happens when there is a good that has large enough supply that is not the “rate limiting factor” for any
agent; see Sections 3.1.2 and 3.2.1 for additional discussion.

3They study Leontief utilities, which is a generalization of bandwidth allocation to the setting where agents may
desire goods in different proportions.
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3.1.2 Related work

Trading post and market games. The trading post mechanism – first proposed by Shapley

and Shubik [164], and sometimes called the “Shapley-Shubik game”4 – is an example of a strategic

market game (for an overview of strategic market games, see [93]). The study of markets has a long

history in the economics literature [6, 24, 169, 173]5, but most of this work assumes that agents are

price-taking, meaning that they treat the market prices are fixed, and do not behave strategically

to affect these prices.6 A market game, however, treats the agents as strategic players who wish to

selfishly maximize their own utility. Trading post does not have explicit prices set by a centralized

authority: instead, prices arise implicitly from agents’ strategic behavior. In particular,
∑
k bkj –

the aggregate bid on good j – functions as the implicit price of good j. Although the trading post

mechanism is well-defined for any utility functions, the Nash equilibria are not guaranteed to have

many nice properties in general, except in the limit as the number of agents goes to infinity [70] (in

this case, the trading post Nash equilibria converge to the price-taking market equilibria).

The paper most relevant to our work is [30], which analyzed the performance of trading post

(with a linear bid constraint) with respect to Nash welfare. They showed that for Leontief utilities

(which generalize bandwidth allocation), a modified trading post mechanism approximates the Nash

welfare arbitrarily well. Specifically, for any ε > 0, they gave a mechanism (parameterized by ε)

which achieves a 1−ε Nash welfare approximation: there is at least one Nash equilibrium, and every

Nash equilibrium has Nash welfare at least 1 − ε times the optimal Nash welfare. Thus the price

of anarchy is at most 1
1−ε ; equivalently, this mechanism Nash-implements a 1 − ε approximation

of Nash welfare. The reason that they were unable to perfectly implement Nash welfare is because

when there is a good with supply much larger than other goods7, vanilla trading post may not even

have a Nash equilibrium. To fix this, they added a minimum allowable bid, and showed that for any

ε > 0, there is a minimum bid that gives them a 1 − ε Nash implementation. Instead of having a

minimum allowable bid, we will add a special bid β, which will allow us to strengthen this to full

Nash implementation (see Section 3.2.1).

It is worth noting that [30] also considers a broader class of valuations than Leontief, but for

this broader class, only a 1/2 approximation is achieved. Another recent paper gave a strategyproof

mechanism achieving a 1/e ≈ .368 approximation of the optimal Nash welfare [51]. Their 1/e

approximation guarantee is weaker than the 1/2 guarantee of [30] (and the 1−ε guarantee for Leon-

tief), but strategyproofness is sometimes more desirable that Nash implementation. Unfortunately,

strategyproofness in the bandwidth allocation setting is generally impossible (Theorem 3.5.1).

Price-taking markets. The simplest mathematical model of a price-taking market is the Fisher

market, which we discussed earlier in this thesis. Recall that the market equilibria of Fisher markets

4A plethora of other names have been applied to this mechanism as well, including the proportional share mecha-
nism [78], the Chinese auction [124], and the Tullock contest in rent seeking [34].

5Recently, this topic has garnered significant attention in the computer science community as well (see [170] for
an algorithmic exposition).

6There is some work treating price-taking market models as strategic games; see e.g., [1, 31, 30].
7Specifically, this occurs when a good has price zero. Having a much larger supply than other goods is sufficient

but not necessary for this.
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are guaranteed to maximize Nash welfare [72, 73], and the equilibrium prices are equal to the optimal

Lagrange multipliers in the convex program for maximizing Nash welfare (the Eisenberg-Gale convex

program).

In Chapter 2, we extended this model to allow nonlinear prices, where the cost of a good may be

any nondecreasing function of the quantity purchased. These functions are called price curves. We

showed that for bandwidth allocation, for any ρ ∈ (−∞, 1), there exist price curves that make every

maximum CES welfare allocation a market equilibrium. Furthermore, these prices take a natural

form: the cost of purchasing x ∈ R≥0 of good j is gj(x) = qjx
1−ρ, for some nonnegative constants

q1 . . . qm. Interestingly, for ρ = 0 – which denotes Nash welfare – this function form reduces to a

linear price qj , and we know that linear pricing maximizes Nash welfare. Furthermore, q1 . . . qm are

the optimal Lagrange multipliers in the convex program for maximizing CES welfare.

Trading post with linear bid constraints (
∑
j bij ≤ 1) can be thought of as a market game

equivalent of the Fisher market model: it implements Nash welfare ([30] proved a 1−ε approximation,

but we will strengthen this to exact implementation), and the implicit trading post prices (the

aggregate bids) are equal to the Fisher market equilibrium prices. Our augmented trading post,

with bid constraint
∑
j fj(bij) ≤ 1, can be thought of as a market game equivalent of the price

curves model. The augmented trading post mechanism we use to implement CES welfare will use

fj(b) = b1−ρ for each good j, further strengthening this analogy.

Bandwidth allocation. Bandwidth allocation has been studied both with and without monetary

payments; we consider the latter setting, following the model of Kelly et al. [110]. Although it has

been known that different marking schemes (such as RED and CHOKe [81, 139]) and versions of

TCP lead to different objective functions (eg. [138]), a market-based understanding was developed

only for Nash Welfare, starting with the pioneering work of Kelly et al. [110]. Furthermore, the

market scheme of Kelly et al. is in the price-taking setting; the only strategic market analysis of

bandwidth allocation that we are aware of is the 1− ε approximation of Nash welfare due to [30].

Routing games. A related topic is that of routing games. In a routing game, each agent has a

fixed source and destination in the network, but chooses which path she uses to get there. Each agent

incurs a cost for each link she travels over, and the cost each agent pays is typically nondecreasing

function of the total traffic over that link. Each agent wishes to minimize the total cost she incurs

by strategically choosing which path to follow. In the standard bandwidth allocation model, each

agent has a fixed path, and her goal is to maximize the total amount of flow she is able to send

from her source to her destination (which is equal to the minimum bandwidth she receives among

links in her path). Instead of choosing which path to follow, each agent’s strategy is how she bids

(or more generally, how she interacts with the allocation mechanism). For an overview of routing

games, see [156].

Although one could consider a model where bandwidth allocation and routing are handled si-

multaneously (i.e., by allowing agents to choose their paths), that would be less accurate in terms of

how the internet actually works: routing (which is handled by IP) and bandwidth allocation (which

is handled by TCP) are generally separate problems. Our work is about bandwidth allocation,
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ρ = −∞ ρ ∈ (−∞, 1), ρ = 1

Nash-implementable? 3 (Thm. 3.5.3) 3 (Thm. 3.4.1) ?

DSE-implementable? 3 (Thm. 3.5.2) 7 (Thm. 3.5.1) 7 (Thm. 3.5.1)

Table 3.1: A summary of our main implementation results. Here ρ = −∞ denotes max-min welfare,
ρ ∈ (−∞, 1) includes Nash welfare as ρ = 0, and ρ = 1 denotes utilitarian welfare. DSE stands for “dominant
strategy equilibrium”. “3” indicates that the type of implementation specified by the row is possible for
the social choice rule specified by the column, while “7” indicates that we give a counterexample, and “?”
indicates an open question.

where pricing-based schemes (like trading post) naturally correspond to signaling mechanisms that

indicate which links are congested, and an end-point protocol like TCP [42] can be thought of as

agent responses.

Implementation theory. Implementation theory is the study of designing mechanisms whose

outcomes coincide with some desirable social choice rule. A social choice rule could be the maxi-

mization of a cardinal function, such as a CES welfare function, or something else, such as the set of

Pareto optimal allocations. A full survey is outside the scope of this chapter; we direct the interested

reader to [123].

The “outcome” of a mechanism is not really well-defined; we need to specify a solution concept.

The solution concept that we focus on for most of this chapter is Nash equilibrium. Possibly the

most crucial result regarding implementation in Nash equilibrium (Nash implementation, for short)

is due to Maskin [122], who identified a necessary condition for Nash implementation, and a partial

converse. He showed that in a very general environment (much broader than bandwidth allocation),

any Nash-implementable social choice rule must satisfy what he calls monotonicity. Monotonicity,

in combination with a property called no veto power, is sufficient for Nash implementation. In

Section 3.4.2, we show that CES welfare functions do not satisfy no veto power, and so cannot be

Nash-implemented by Maskin’s approach.

3.1.3 Our results

Our results fall into two categories, both summarized by Table 3.1.

Nash-implementing CES welfare functions. We view the Nash implementation of CES welfare

functions by trading post as our main result (Theorem 3.4.1). For each ρ ∈ (−∞, 1), we define an

augmented trading post mechanism with a nonlinear bid constraint of
∑
j b

1−ρ
ij ≤ 1 for each agent i.8

We denote this mechanism by AT P(ρ). We show that AT P(ρ) has at least one Nash equilibrium,

and that all of its Nash equilibria maximize CES welfare.

8The reader may notice that for ρ = 0 – which corresponds to Nash welfare – this constraint reduces to the standard
linear constraint of

∑
j bij ≤ 1, which is what we should expect: we know from [30] that trading post with the linear

constraint leads to good Nash welfare.
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Our result improves that of Chapter 2 by strengthening our price curve equilibrium (which

assumes agents are not strategic) to a strategic equilibrium, and improves that of [30] by generalizing

from just Nash welfare to all CES welfare functions (except ρ = 1) and strengthening their 1 − ε
approximation to exact implementation.9 Furthermore, because the price curve equilibria can be

computed in polynomial time (Section 2.6), our Nash equilibria can also be computed in polynomial

time.

Our proof makes use of the following results (stated informally):

1. Theorem 3.3.1: Any Nash equilibrium of AT P can be converted into an “equivalent” price

curve equilibrium.

2. Theorem 3.3.2: Any price curve equilibrium can be converted into an “equivalent” Nash equi-

librium of AT P.

3. Lemma 3.4.3 (Chapter 2): If x is a maximum CES welfare allocation, then there exist price

curves g of the form gj(x) = qjx
1−ρ such that (x,g) is a price curve equilibrium.

4. Lemma 3.4.4 (Chapter 2): If (x,g) is a price curve equilibrium and each gj has the form

gj(x) = qjx
1−ρ, then x is a maximum CES welfare allocation.

Lemmas 3.4.3 and 3.4.4 are slight restatements of results we proved in Chapter 2. Together, they

imply that x is a maximum CES welfare allocation if and only if it is a price curve equilibrium

with respect to some price curves g of the form gj(x) = qjx
1−ρ (where q1 . . . qm are nonnegative

constants). Theorems 3.3.1 and 3.3.2 allow us to convert between price curve equilibria and Nash

equilibria of AT P, and thus enable us to apply Lemmas 3.4.3 and 3.4.4 to the Nash equilibria of

AT P(ρ). Specifically, Theorem 3.3.1 in combination with Lemma 3.4.4 will show that any Nash

equilibrium ofAT P(ρ) maximizes CES welfare, and Theorem 3.3.2 in combination with Lemma 3.4.3

will show that AT P(ρ) has at least one Nash equilibrium.

Section 3.3 is devoted to proving our reduction between price curve equilibrium and Nash equi-

libria of trading post: Theorems 3.3.1 and 3.3.2. This reduction is the main tool we use to Nash-

implement CES welfare maximization. Section 3.4 then uses this reduction, in combination with

Lemmas 3.4.3 and 3.4.4, to prove our main theorem: Theorem 3.4.1.

Our trading post approach breaks down for ρ = −∞ and ρ = 1. We are able to Nash-implement

ρ = −∞ by a different mechanism (see below), but we were not able to resolve whether ρ = 1 is

Nash-implementable. We leave this as an open question.

Results for dominant strategy implementation and max-min welfare. A natural question

is whether these results can be improved from Nash implementation to implementation in dominant

strategy equilibrium (DSE). Section 3.5 shows that the answer is mostly no: for any ρ ∈ (−∞, 1],

there is no mechanism which DSE-implements CES welfare maximization (Theorem 3.5.1). We do

this by showing that there is no strategyproof mechanism for this problem: the revelation principle

9It is worth noting that the result of [30] holds for Leontief utilities, a generalization of bandwidth allocation
utilities.
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tells us that DSE-implementability implies strategyproofness, so impossibility of strategyproofness

implies impossibility of DSE implementation.

On the positive side, we show that max-min welfare (ρ = −∞) can in fact be DSE-implemented

by a simple revelation mechanism (Theorem 3.5.2). This is actually stronger than strategyproofness:

strategyproofness requires truth-telling to be a DSE, but does not rule out the possibility of addi-

tional dominant strategy equilibria that are not optimal. In contrast, DSE implementation requires

every DSE to be optimal.

Although every DSE is also a Nash equilibrium, DSE-implementability does not imply Nash-

implementability [58]. A DSE implementation requires every DSE to be optimal, but there could be

Nash equilibria (which are not dominant strategy equilibria) that are not optimal. This means that

Theorem 3.5.2 does not imply Nash-implementability of max-min welfare. In fact, our revelation

mechanism which DSE-implements max-min welfare is not a Nash implementation: there exist Nash

equilibria which are not optimal (see Section 3.5.2 for an example). Our last result of Section 3.5 is

that there is a different mechanism which does Nash-implement max-min welfare (Theorem 3.5.3).10

The rest of the chapter is structured as follows. Section 3.2 formally defines the models of

bandwidth allocation, price curves, trading post, and implementation theory. Section 3.3 presents

our reduction between price curves and our augmented trading post mechanism. In Section 3.4,

we use this reduction to Nash-implement CES welfare maximization for ρ ∈ (−∞, 1). Finally,

Section 3.5 handles DSE-implementation and max-min welfare.

3.2 Model

We continue to use the terminology and notation defined in Chapter 1. As in Chapter 2, we assume

that goods are divisible and that agents have Leontief utilities. Here we further restrict ourselves to

bandwidth allocation utilities, which take the form:

ui(xi) = min
j∈Ri

xij

where Ri is the set of links that agent i requires. We assume that Ri 6= ∅ for all i, i.e., each agent

desires at least one good. It will sometimes be useful to consider the Leontief weights wij where

wij = 1 if j ∈ Ri, and 0 otherwise.

We use the same family of CES welfare functions are our objectives:

Φρ(x) =

(∑
i∈N

ui(xi)
ρ

)1/ρ

where ρ is a constant in (−∞, 0)∪(0, 1]. Recall that the limits as ρ→ −∞ and ρ→ 0 yield max-min

welfare and Nash welfare, respectively. Throughout the chapter, we will use ρ = −∞ and ρ = 0 to

10The mechanism for Theorem 3.5.3 is unrelated to trading post: our trading post approach breaks down for both
max-min welfare and utilitarian welfare. This is because gj(x) = qjx

1−ρ is not a valid price curve when ρ→ −∞ or
when ρ = 1.
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denote max-min welfare and Nash welfare (e.g., “ This theorem holds for ρ ∈ (∞, 1)” would include

Nash welfare but not max-min welfare).

For ρ 6= 1, this function is strictly concave in u1(x1) . . . un(xn), so every optimal allocation x has

the same utility vector.11

Price curves. We use the same basic definitions of price curves as in Chapter 2. However, in this

chapter, we deviate in two small ways:

1. We assume that price curves are either strictly increasing, or identically zero (denoted gj ≡ 0).

2. Our market clearing condition is:
∑
i∈N xij ≤ sj for all j ∈ M , and

∑
i∈N xij = sj whenever

gj 6≡ 0.

Both of these are for convenience and do not substantially change the technical model. On a

high-level, we did not want to make these assumptions in Chapter 2 because we were interested in the

general question of which allocations can be market equilibria. In this chapter, we are interested in

optimizing a welfare function, so we can restrict ourselves to the type of price curves and allocation

that will be useful in that task.

We also emphasize that we are still not considering strategic behavior in the price curve model:

rather, we will use the price curve model as a tool for designing and analyzing our primary mechanism

(for which we will consider strategic behavior).

3.2.1 The trading post mechanism

In the standard trading post mechanism, each agent i places a bid bi ∈ Rm≥0, where bij ∈ R≥0 is the

amount i bids on good j. Each agent i must obey the constraint
∑
j∈M bij ≤ 1. We use b ∈ Rm×n≥0

to represent the matrix of all bids.

Each agent receives a fraction of the good in proportion to the fraction of the total bid on that

good. Formally,

xij =
bij∑
k∈N bkj

· sj

As in the Fisher market model, we assume that agents have no value for leftover money. The

aggregate bid on good j is
∑
k∈N bij , and can be thought of as the “price” of good j: in fact, this

analogy will be crucial in our proofs.

We augment the standard trading post mechanism in two ways. The first is necessary in order

to ensure the existence of equilibrium when goods have price zero, and the second is to extend this

mechanism to implement CES welfare functions beyond Nash welfare.

11There could be multiple optimal allocations, however. For example, consider one agent who desires two goods
with supply s1 and s2 > s1. The agent’s optimal utility will be s1, but we can either allocate the rest of the second
good anyway, or leave some unallocated; the utility is unaffected.



CHAPTER 3. OPTIMAL NASH EQUILIBRIA FOR BANDWIDTH ALLOCATION 54

Handling goods with price zero

In Fisher markets, it is possible for some goods to have price zero. This occurs when that good is not

the “rate-limiting factor”, i.e., there is enough of that good for everyone and the supply constraint

is not tight. This is a problem for standard trading post: in order to receive any amount of good j,

agent i must bid bij > 0. But if the supply constraint is not tight in the Fisher market setting, there

will be at least one agent receiving more of the good than they need. Such an agent will decrease

their bid so that she is only receiving what she needs. However, this process will continue infinitely,

with agents repeatedly decreasing their bids on this good, but never reaching bid 0.

To handle this, we present the following modified allocation rule. We allow an additional special

bid of β so that bij ∈ R≥0 ∪ {β}. Conceptually, a bid of 0 indicates that the agent actually does

not want the good; bidding β indicates that the agent desires the good, but is hoping to get it for

free, so to speak. We treat β as zero in arithmetic, for example, in the constraint
∑
j∈M bij ≤ 1.

Similarly, we interpret bij > 0 to mean bij 6∈ {0, β}.
Our modified allocation rule follows this series of steps:

1. If at least one agent bids a positive (i.e., neither 0 nor β) amount on good j, we follow the

standard trading post rule: xij =
bij∑
k∈N bij

sj .

2. However, if all agents bid 0 either or β on good j, then we allow each agent to have as much

good j as they want. Specifically, for any agent i with bij = β, let `i be an arbitrary good

with bi`i > 0. Then we allocate xij = xi`i . For completeness, if there is no good ` with bi` > 0

(although this will never happen at equilibrium), we set xij = 0. For agents i bidding 0 on

good j, we set xij = 0.

3. After following the above steps, for any good ` where
∑
i∈N xi` > s` (violating the supply

constraint), for all i ∈ N bidding β on good `, we set xij = 0 for all j ∈ M as a penalty. In

words, if so many agents try to get good j for free that the supply constraint is violated, they

are all penalized by receiving nothing. Not to worry: this will never happen at equilibrium.

This modification will allow us to simulate a good having price zero.

It is important that we allow separate bids of 0 and β. Consider a good j where bkj ∈ {0, β}
for all k ∈ N . Suppose some agent i does not need good j, and bidding β would cause the supply

constraint to be violated and the Step 3 penalty to be invoked. Such an agent can bid 0 on good j,

which allows her to still spend no money on this good, without the possibility of invoking the Step

3 penalty.

Allowing nonlinear constraints

It will turn out that trading post with the standard constraint of
∑
j∈M bij ≤ 1 implements Nash

welfare. To implement other CES welfare functions, let f = (f1 . . . fm) be nondecreasing functions

from R≥0 to R≥0. We call f the constraint curves. Like price curves, we assume that each fj is

continuous and normalized. Unlike price curves, we require each fj to be strictly increasing: fj ≡ 0
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is not allowed. Throughout the chapter, we will use f , f ′ to denote constraint curves and g,g′ to

denote price curves.

We define the mechanism AT P(f) as follows. Given bids b = (b1 . . . bn) ∈ Rn×m≥0 , AT P(f)

allocates each good j according to the three-step allocation rule described in the previous section.

However, each agent’s bid constraint is now∑
j∈M

fj(bij) ≤ 1

We can define Cf (bi) like we defined Cg(xi) for price curves g and a bundle xi. Specifically, Cf (bi) =∑
j∈M fj(bij). Thus each agent’s constraint is Cg(xi) ≤ 1 in the price curves model, and is Cf (bi) ≤ 1

in the trading post model.

The most natural case will be when f1 . . . fm are all the same function. In particular, let AT P(ρ)

be the mechanism where fj(b) = b1−ρ for all j ∈ M . In general, we will use AT P(f ,b) to denote

the allocation x produced by the mechanism AT P(f) when agents bid b ∈ Rn×m≥0 .

3.2.2 Implementation theory

This section covers only the basic concepts of implementation theory; we direct the reader to [123]

for a broad overview of this area.

A social choice rule Ψ takes as input a utility profile u = u1 . . . un and returns a set of “optimal”

outcomes. In our case, Ψ will represent maximizing a CES welfare function. Define Ψρ(u) by

Ψρ(u) = arg max
x∈Rn×m≥0

(∑
i∈N

ui(xi)
ρ
)1/ρ

In general, a social choice rule need not express the maximization of any cardinal function.

Let C be a solution concept (e.g., Nash equilibrium), H be a mechanism (sometimes called a

“game form”), and H(u) be the induced game for utility profile u.12 Let C(H(u)) be the set of

strategy profiles13 satisfying C for that game. For example, if C denotes Nash equilibrium, then

C(H(u)) would be the set of Nash equilibria of the game H(u). To distinguish between equilibrium

strategies (e.g., what agents bid) and equilibrium outcomes (e.g., the resulting allocation), we use

CX(H(u)) to denote the set of outcomes resulting from strategy profiles satisfying C.

Definition 3.2.1. A mechanism H C-implements a social choice rule Ψ if for any utility profile u,

∅ 6= CX(H(u)) ⊆ Ψ(u)

Using the running example of Nash equilibrium, H Nash-implements Ψ if for any utility profile

u, there is at least one Nash equilibrium, and every Nash equilibrium of H(u) results in an outcome

12In general, the difference between a game and a mechanism is that the game definition includes the agent utilities,
whereas a mechanism does not.

13A strategy profile is a list of strategies S1 . . . Sn, where Si is the strategy played by agent i. For trading post, a
strategy is bi ∈ Rm≥0, and a strategy profile is b ∈ Rm×n≥0 .
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that is optimal under Ψ. We denote the set of Nash equilibria of H(u) by NE(H(u)), and the set of

outcomes resulting from some Nash equilibrium by NEX(H(u)). When only a single utility profile

u is under consideration, we will frequently leave u implicit and write NE(H).

It is worth noting that some of the literature refers to Definition 3.2.1 as weak implementation,

where full implementation requires that CX(H(u)) = Ψ(u), i.e., every outcome that is optimal under

Ψ should be a Nash equilibrium outcome of H(u). We feel that this distinction is not important

in our case, since the utility vector in Ψρ(u) is unique (with the exception of ρ = 1, which we do

not Nash implement anyway): thus allocations x ∈ Ψρ(u) differ only in what they do with leftover

supply, i.e., supply that will not affect anyone’s utility. If one truly cared about this distinction,

our augmented trading post mechanism could be further augmented by allowing each agent another

special bid that indicated how much of the leftover supply they wanted. Since these special bids

would not affect the utilities, the Nash equilibrium utilities would not be affected, and there would

be a combination of leftover supply bids that achieves any maximum CES welfare allocation.14

We remind the reader of the following standard definitions:

1. Nash equilibrium: a strategy profile where no agent can strictly improve her utility by uni-

laterally changing her strategy. We consider only pure Nash equilibria, i.e., we do not allow

randomized strategies.

2. Dominant strategy: a strategy that is optimal regardless of what other agents do.

3. Dominant strategy equilibrium (DSE): a strategy profile where each agent plays a dominant

strategy.

4. Strategyproofness: A revelation mechanism (i.e., a mechanism that asks each agent to report

her utility function) is strategyproof if telling the truth is a dominant strategy for every agent.

DSE-implementability implies strategyproofness via the revelation principle15, but it is not gener-

ally true that any strategyproof social choice rule is DSE-implementable. Strategyproofness ensures

that truth-telling is a dominant strategy equilibrium, but there could also be bad equilibria that are

not consistent with Ψ.

By definition, every DSE is also a Nash equilibrium. However, it is not generally true that DSE-

implementability implies Nash-implementability [58]. DSE-implementability requires that every

DSE of the mechanism be optimal under Ψ, but the mechanism might have additional Nash equilibria

(that are not dominant strategy equilibria) that are not consistent with Ψ. We will need to take

both this and the previous paragraph into account when studying DSE implementation.

We now move on to our results, beginning with our reduction between price curves and AT P.

This reduction will be the main tool we use to show that AT P Nash-implement CES welfare maxi-

mization.

14We would also need to include another penalty step if the leftover supply bids lead to a supply constraint being
violated.

15See Chapter 9 of [135] for an introduction to the revelation principle.
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3.3 Reduction between price curves and augmented trading

post

In this section, we show that any equilibrium of our augmented trading post mechanism can be

transformed into a price curve equilibrium, and vice versa. Section 3.4 will use this result (along

with the existence of price curve equilibria maximizing CES welfare, as shown in Chapter 2) to prove

that the AT P(ρ) mechanism Nash-implements CES welfare maximization.

Section 3.3.1 describes the intuition behind the reduction. Section 3.3.2 presents some useful

necessary and sufficient conditions for price curve equilibrium and trading post Nash equilibrium.

Section 3.3.3 shows that any trading post Nash equilibrium can be transformed into a price curve

equilibrium (Theorem 3.3.1), and Section 3.3.4 shows that any price curve equilibrium can be trans-

formed into a trading post Nash equilibrium (Theorem 3.3.2).

3.3.1 Intuition behind the reduction

First, notice that augmented trading post and price curves have similar-looking constraints:
∑
j∈M fj(bij) ≤

1 and
∑
j∈M gj(xij) ≤ 1. If f = g, these constraints become identical, so bi is a feasible bid if and

only if xi is a feasible purchase subject to price curves g. Suppose that (x,g) is a price curve

equilibrium. For now, assume each gj is strictly increasing (the formal proof will also handle the

possibility of gj ≡ 0). Let x′ be the outcome of AT P(f) when agents bid b (i.e., x′ = AT P(f ,b)),

and suppose that bij = xij for all i, j: then

x′ij =
bij∑
k∈N bkj

sj =
xij∑
k∈N xij

sj = xij

where the last equality uses the fact that
∑
k∈N xij = sj when (x,g) is a PCE and gj 6≡ 0.

Thus the allocation resulting from AT P(f) under bids b is in fact x. Furthermore, since (x,g)

is a price curve equilibrium, each agent exhausts her price curve constraint: Cg(xi) = 1. Since

f = g and b = x, this implies that Cf (bi) = 1 for all i ∈ N . Furthermore, in any price curve

equilibrium with all nonzero prices, each agent should be spending exclusively on goods in her set

Ri, and purchasing them in equal amounts. Thus in the trading post outcome x′, each agent i also

also spending exclusively on j ∈ Ri and acquiring them in equal amounts.

We claim that b is a Nash equilibrium of AT P(f). Suppose the opposite: then there must exist

an agent i and an alternate bid b′i such that bidding b′i instead of bi increases her utility. Thus under

b′i, she receives strictly more of all goods in Ri. But this means that she must be bidding strictly

more on each of these goods, which would violate her bid constraint, since Cf (bi) = 1 is already

tight. Therefore b must be a Nash equilibrium of AT P(f).

The above is an informal proof of one direction of the reduction: transforming price curve

equilibria into trading post equilibria. Similarly, if we are given a Nash equilibrium b of AT P(f),

we can let g = f (actually, g will be a scaled version of f) and x = AT P(f ,b), and use the same

intuition to show that (x,g) is a price curve equilibrium.
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There are several additional complications. The largest of these is dealing with goods that have

price zero in g; indeed, this is the issue that prevents vanilla trading post from implementing Nash

welfare maximization [30]. Another difficulty is that in trading post, what you bid depends on others’

bids (whereas for price curves, it only depends on g). However, due to the nature of bandwidth

allocation utilities, agents will always purchase in proportion to their weights wij , and the outcomes

at equilibrium will correspond. We will end up with the following two theorems:

Theorem 3.3.1. Let f be constraint curves where each fj is homogenous of degree αj for some αj >

0. For bids b ∈ NE(AT P(f)), define nonnegative constants a1 . . . am by aj = (
∑
k∈N bkj/sj)

αj .

Define price curves g by

gj(x) =

0 if bij ∈ {0, β} ∀i ∈ N

ajfj(x) otherwise

Let x = AT P(f ,b). Then (x,g) is a price curve equilibrium.

Theorem 3.3.2. Let h be any constraint curve. Let (x,g) be a price curve equilibrium, and define

f and b by

fj(b) =

h(b) if gj ≡ 0

gj(b) otherwise
bij =


β if gj ≡ 0 and j ∈ Ri
0 if gj ≡ 0 and j 6∈ Ri
xij otherwise

Then b is a Nash equilibrium of AT P(f).

3.3.2 Equilibrium conditions for price curves and trading post

Recall that wij = 1 if j ∈ Ri, and 0 otherwise. The following lemma for trading post states a useful

necessary and sufficient condition for Nash equilibria of AT P(f).

Lemma 3.3.1. Let x = AT P(f ,b). Then b ∈ NE(AT P(f)) if and only if all of the following hold:

1. For all i ∈ N , xij = wijui(xi) for all j ∈M where there exists k ∈ N with bkj > 0.

2. For all i ∈ N , Cf (bi) = 1.

Proof. ( =⇒ ) Assume that the two conditions of the lemma are true. First, we claim that bij ∈ {0, β}
for all j 6∈ Ri: agent i only spends money on goods in Ri. This is because wijui(xi) = 0 for

j 6∈ Ri, but bij > 0 ensures that xij > 0, so xij = wijui(xi) would be impossible. Therefore

Cf (bi) =
∑
j∈M fj(bij) =

∑
j∈Ri fj(bij) = 1.

Now suppose that b is not a Nash equilibrium: then there exists an agent i and bid b′i such that

ui(x
′
i) > ui(xi), where x′ is the resulting allocation when agent i bids b′i and every agent k 6= i still

bids bk. Condition 1 implies that xij = ui(xi) for all j ∈ Ri with bij > 0 (since wij = 1 for j ∈ Ri).
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Since bij > 0 only when j ∈ Ri, we have xij = ui(xi) whenever bij > 0. Thus ui(x
′
i) > xij when

bij > 0. Since x′ij ≥ ui(x′i) for all j ∈ Ri, we have x′ij > xij when bij > 0.

We next claim that b′ij > bij whenever bij > 0. If there exists k 6= i with bkj > 0, then b′ij > bij

is necessary to ensure that x′ij > xij . The only other possibility is that bij > 0, but b′ij = β, and

bkj ∈ {0, β} for all k 6= i. But in this case, following Step 1 of AT P’s allocation rule, xij = sj . Then

ui(xi) = sj . This is the highest utility agent i could ever have, since ui(xi) ≤ sj for all j ∈ Ri. This

contradicts ui(x
′
i) > ui(xi). We conclude that b′ij > bij whenever bij > 0.

Therefore, since each fj is strictly increasing,∑
j∈M

fj(bij) =
∑

j:bij>0

fj(bij) <
∑

j:bij>0

fj(b
′
ij) ≤

∑
j∈M

fj(b
′
ij)

Since Cf (bi) =
∑
j∈M fj(bij) = 1 by assumption, we have

∑
j∈M fj(b

′
ij) > 1. This means that b′i

violates the bid constraint, and so is not a valid bid. Therefore b is a Nash equilibrium.

( ⇐= ) Suppose that b is a Nash equilibrium of AT P(f). If Cf (bi) > 1, bi violates the supply

constraint, so b cannot be a Nash equilibrium. If Cf (bi) < 1, agent i can improve her utility

by bidding slightly more on every good (and thus receiving slightly more of every good). Thus

Cf (bi) = 1 must hold.

Suppose xi` 6= wi`ui(xi) for some ` ∈ M where there exists k ∈ N with bk` > 0. By definition

of ui, ui(xi)wi` > xi` is impossible, so we must have xi` > wi`ui(xi). Consider a new bid b′i where

b′ij = bij for all j 6= `, but b′ij is such that x` = wi`ui(xi) (where x′ is the resulting allocation when

i bids b′i and each k 6= i bids bk). Thus b′i` < bi`.

By definition of ui, we have ui(x
′
i) = ui(xi), but Cf (b

′
i) < Cf (bi) = 1, since fj(b

′
ij) ≤ fj(bij) for

all j ∈ M , and f`(b
′
i`) < f`(bi`). Thus there must exist a bundle b′′i with b′′ij > b′ij for all j, but

Cf (b
′′
i ) ≤ 1, i.e., b′′i obeys the bid constraint. Furthermore, let x′′ be the resulting allocation when

i bids b′′i and each k 6= i bids bk: then x′′ij > x′ij for all j ∈ M . Therefore ui(x
′′
i ) > ui(x

′
i) = ui(xi).

But this means b cannot be a Nash equilibrium, which is a contradiction.

Next, we give an analogous lemma for price curve equilibrium. Note that the last condition in

Lemma 3.3.2 is simply one of the conditions in the definition of PCE.

Lemma 3.3.2. An allocation x and price curves g are a PCE if and only if all of the following

hold:

1. For all i ∈ N , xij = wijui(xi) whenever gj 6≡ 0.

2. For all i ∈ N , Cg(xi) = 1.

3. For all j ∈M ,
∑
i∈N xij ≤ sj, and

∑
i∈N xij = sj whenever gj 6≡ 0.

Proof. The third condition is simply one of the two conditions in the definition of PCE. The other

requirement for PCE is that xi ∈ Di(g) for all i ∈ N , so it suffices to show that xi ∈ Di(g) if and

only if Cg(xi) = 1 and xij = wijui(xi) whenever gj 6≡ 0.

( =⇒ ) Suppose that Cg(xi) = 1, and xij = wijui(xi) whenever gj 6≡ 0. We first claim that agent

i only spends money on goods in Ri. This is because wijui(xi) = 0 for j 6∈ Ri (because wij = 0
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for j 6∈ Ri), and spending money implies that gj 6≡ 0 and xij > 0, which makes xij = wijui(xi)

impossible. Thus Cg(xi) =
∑
j∈Ri gj(xij) =

∑
j∈Ri:gj 6≡0 gj(xij).

Now suppose for sake of contradiction that there exists another bundle x′i that is also affordable,

and ui(x
′
i) > ui(xi). For all j ∈ Ri with gj 6≡ 0, we have xij = wijui(xi) = ui(xi) (because wij = 1

for j ∈ Ri), so ui(x
′
i) > xij for j ∈ Ri, gj 6≡ 0. Therefore

Cg(xi) =
∑

j∈Ri:gj 6≡0

gj(xij) <
∑

j∈Ri:gj 6≡0

gj(x
′
ij) ≤

∑
j∈M

gj(x
′
ij) = Cg(x′i)

Since, Cg(xi) = 1, we have Cg(x′i) > 1. But this implies that x′i is not affordable, which is a

contradiction. Therefore xi ∈ Di(g).

(⇐= ) Suppose xi ∈ Di(g). If Cg(xi) > 1, xi is not affordable, which is impossible. If Cg(xi) < 1,

agent i can improve her utility by purchasing slightly more of every good. Thus
∑
j∈M gj(xij) = 1

must hold.

Suppose xi` 6= wi`ui(xi) for some ` ∈ M where gj 6≡ 0. By definition, ui(xi)wi` > xi` is

impossible, so we must have xi` > wi`ui(xi). Consider a bundle x′i where x′ij = xij for all j 6= `,

but x′i` = wi`ui(xi). Then ui(x
′
i) = ui(xi). Furthermore, g`(x

′
i`) < g`(xi`), so Cg(x′i) < Cg(xi) ≤ 1.

Consider another bundle x′′i where x′′ij > x′ij for all j ∈ M , but Cg(x′′i ) ≤ 1: this is always possible

because each gj is continuous, and Cg(x′i) < 1. Then x′′i is affordable, but ui(x
′′
i ) > ui(x

′
i) = ui(xi).

This contradicts xi ∈ Di(g).

We are now ready to move on to the reduction itself.

3.3.3 Transforming trading post equilibria into price curve equilibria

This direction of the reduction will require an additional mild condition, involving the following

definition.

Definition 3.3.1. We say that a function f : R≥0 → R≥0 is homogenous of degree α > 0 if for

any b, c ∈ R≥0, f(c · b) = cαf(b).

Our main result of this section is the following theorem:

Theorem 3.3.1. Let f be constraint curves where each fj is homogenous of degree αj for some αj >

0. For bids b ∈ NE(AT P(f)), define nonnegative constants a1 . . . am by aj = (
∑
k∈N bkj/sj)

αj .

Define price curves g by

gj(x) =

0 if bij ∈ {0, β} ∀i ∈ N

ajfj(x) otherwise

Let x = AT P(f ,b). Then (x,g) is a price curve equilibrium.

Before proving Theorem 3.3.1, we prove several helpful lemmas (Lemmas 3.3.3 – 3.3.5). Through-

out Lemmas 3.3.3 – 3.3.5, we assume x,g, and a1 . . . am are defined as in Theorem 3.3.1. We also
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assume that b ∈ NE(AT P(f)). Let x′ be the intermediate allocation after Step 2 of AT P’s alloca-

tion rule.

Our first lemma simply states that all agents end up with positive utility.

Lemma 3.3.3. For all i ∈ N , ui(xi) > 0.

Proof. It is always possible for each agent to bid a nonzero amount on each good and obtain nonzero

utility. Thus any Nash equilibrium must give each agent nonzero utility.

The following lemma states that the intermediate allocation after Step 2 is in fact the final

allocation.

Lemma 3.3.4. We have x = x′.

Proof. We need to show that Step 3 of AT P’s allocation rule is not invoked. Suppose it were

invoked: then there is an agent i who ends up with xij = 0 for all j, and thus ui(xi) = 0. But this

contradicts Lemma 3.3.3. We conclude that x = x′.

Lemma 3.3.5 states that under these constraint curves and bids, the bid constraint is equivalent

to the price curves constraint.

Lemma 3.3.5. For all i ∈ N , Cg(xi) = Cf (bi).

Proof. By the allocation rule of AT P, for all j ∈ M where there exists k ∈ N with bkj > 0, for all

i ∈ N , we have

x′ij =
bij∑
k∈N bkj

sj

Lemma 3.3.4 implies that x = x′. Also, since aj = (
∑
k∈N bkj/sj)

αj we have sj/
∑
k∈N bkj = a

−1/αj
j ,

so

xij =
bij∑
k∈N bkj

sj = bija
−1/αj
j

whenever there exists k ∈ N with bkj > 0. By the definition of g, gj 6≡ 0 if and only if there exists

k ∈ N with bkj > 0 (since constraint curves are assumed to be strictly increasing). Therefore

Cg(xi) =
∑
j∈M

gj(xij)

=
∑
j:gj≡0

gj(xij) +
∑
j:gj 6≡0

gj(xij)

=
∑
j:gj 6≡0

ajfj(xij)

=
∑
j:gj 6≡0

ajfj(bija
−1/αj
j )

=
∑
j:gj 6≡0

aj
aj
fj(bij)
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=
∑
j:gj 6≡0

fj(bij)

By the definition of g, gj ≡ 0 is equivalent to bkj ∈ {0, β} for all k ∈ N . Thus
∑
j:gj≡0 fj(bij) = 0,

so ∑
j:gj 6≡0

fj(bij) =
∑
j∈M

fj(bij)

= Cf (bi)

as required.

We are now ready to prove the main result of this section.

Theorem 3.3.1. Let f be constraint curves where each fj is homogenous of degree αj for some αj >

0. For bids b ∈ NE(AT P(f)), define nonnegative constants a1 . . . am by aj = (
∑
k∈N bkj/sj)

αj .

Define price curves g by

gj(x) =

0 if bij ∈ {0, β} ∀i ∈ N

ajfj(x) otherwise

Let x = AT P(f ,b). Then (x,g) is a price curve equilibrium.

Proof. Since b ∈ NE(AT P(f)), we have Cf (bi) = 1 for all i ∈ N by Lemma 3.3.1. This implies

Cg(xi) = 1 by Lemma 3.3.5. Lemma 3.3.1 also gives us xij = wijui(xi) whenever there exists

k ∈ N with bkj > 0. As before, gj 6≡ 0 if and only if there exists k ∈ N with bkj > 0. Therefore

xij = wijui(xi) whenever gj 6≡ 0.

Thus in order to apply Lemma 3.3.2, we just need to show that
∑
i∈N xij ≤ sj for all j ∈ M ,

and that
∑
i∈N xij = sj whenever gj 6≡ 0. Since x is a valid allocation, we immediately have∑

i∈N xij ≤ sj for all j ∈M . Consider an arbitrary good j with gj 6≡ 0: then by the definition of gj ,

there exists k ∈ N with bkj > 0. Thus good j is allocated according to Step 1 of AT P’s allocation

rule, and we get

x′ij =
bij∑
k∈N bkj

· sj

Summing this across agents gives us

∑
i∈N

x′ij =
∑
i∈N

bij∑
k∈N bkj

· sj = sj

Thus by Lemma 3.3.4,
∑
i∈N xij = sj , as required. Therefore we can apply Lemma 3.3.2 and

conclude that (x,g) is a PCE.
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3.3.4 Transforming price curve equilibria into trading post equilibria

Our main result of this section is the following theorem:

Theorem 3.3.2. Let h be any constraint curve. Let (x,g) be a price curve equilibrium, and define

f and b by

fj(b) =

h(b) if gj ≡ 0

gj(b) otherwise
bij =


β if gj ≡ 0 and j ∈ Ri
0 if gj ≡ 0 and j 6∈ Ri
xij otherwise

Then b is a Nash equilibrium of AT P(f).

The proof of this theorem is slightly more involved that the proof of Theorem 3.3.1, but the

intuition is the same. As before, we prove this theorem via a series of lemmas (Lemmas 3.3.6

– 3.3.11). Let x′ = AT P(f ,b) be the final allocation resulting from bids b, and let x′′ be the

allocation resulting from bids b after Step 2 of AT P’s allocation rule. We use these definitions and

assume that (x,g) is a PCE for the remainder of Section 3.3.4.

As in the other direction of the reduction, our first lemma states that all agents end up with

positive utility.

Lemma 3.3.6. For all i ∈ N , ui(xi) > 0.

Proof. Regardless of the price curves, it is always possible for each agent to buy a nonzero amount

of each good and obtain nonzero utility. Since xi ∈ Di(g), xi must give agent i nonzero utility.

We next claim that for all goods with nonzero price, the intermediate allocation after Step 2 of

AT P(f) is equal to x, the allocation from the price curve equilibrium.

Lemma 3.3.7. For all i ∈ N , x′′ij = xij whenever gj 6≡ 0.

Proof. When gj 6≡ 0, bij = xij . Since each good is required by at least one agent, and ui(xi) > 0 for

all i by Lemma 3.3.6, there exists k ∈ N where xkj > 0. Therefore bkj > 0, so we follow Step 1 of

AT P’s allocation rule. Thus for all i ∈ N ,

x′′ij =
bij∑
k∈N bkj

sj

=
xij∑
k∈N xkj

sj

Since (x,g) is a PCE, Lemma 3.3.2 gives us
∑
k∈N xkj = sj whenever gj 6≡ 0. Therefore

x′′ij =
xij∑
k∈N xkj

sj = xij

as required.
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The next lemma states that for all goods where some agent is bidding a positive amount, every

agent’s bundle in x′′ matches up exactly with her weights and her utility for xi.

Lemma 3.3.8. For all j ∈M where there exists k ∈ N with bkj > 0, we have x′′ij = wijui(xi).

Proof. By the definition of b, if bkj > 0 for some k ∈ N , then gj 6≡ 0. Since (x,g) is a price curve

equilibrium, we then have xij = wijui(xi) by Lemma 3.3.2. Lemma 3.3.7 gives us x′′ij = xij , so

x′′ij = wijui(xi).

Next, we show that each agent’s utility for her bundle after Step 2 is equal to her utility for xi.

Lemma 3.3.9. For all i ∈ N , ui(x
′′
i ) = ui(xi).

Proof. It suffices to show that for all j ∈ Ri, x′′ij = ui(xi).

Case 1: j ∈ Ri and gj 6≡ 0. Lemma 3.3.7 implies that x′′ij = xij in this case. Since (x,g) is a price

curve equilibrium, Lemma 3.3.2 implies that xij = wijui(xi). Since wij = 1 for j ∈ Ri, x′′ij = ui(xi),

as required.

Case 2: j ∈ Ri and gj ≡ 0. If gj ≡ 0, the definition of b implies that all agents bid either β or 0

on j. Thus will be following Step 2 of AT P’s allocation rule. By definition of b, bij = β in this case.

Following Step 2 of the AT P allocation rule, let `i be a good with bi`i > 0: then x′′ij = x′′i`i . Since

bi`i > 0 by assumption, we have x′′i`i = wi`iui(xi) by Lemma 3.3.8. Furthermore, bi`i > 0 implies

x′′i`i > 0, so wi`iui(xi) > 0. Thus we must have wi`i = 1, which implies x′′ij = x′′i`i = ui(xi).

Therefore x′′ij = ui(xi) for all j ∈ Ri, so ui(x
′′
i ) = ui(xi), as required.

The next lemma states that the intermediate allocation after Step 2 is equal to the final allocation

produced by AT P(f ,b).

Lemma 3.3.10. We have x′ = x′′.

Proof. We need to show that the penalty in Step 3 is not invoked. Suppose it is invoked: then there

is a good j allocated by Step 2 where
∑
i∈N x

′′
ij > sj . For each i ∈ N bidding β on good j, define

`i as usual: then x′′ij = x′′i`i . Since bi`i > 0, Lemma 3.3.8 implies that x′′i`i = wi`iui(xi) whenever

bij = β.

sj <
∑
i∈N

x′′ij =
∑

i:bij=β

x′′i`i =
∑

i:bij=β

wi`iui(xi)

By definition of b, we must have gj ≡ 0: that is the only situation where agents bid β. Furthermore,

bij = β if and only if j ∈ Ri. Also using wi`i ≤ 1 (in reality, wi`i = 1 exactly, but we only need the

inequality), gives us

sj <
∑
i:j∈Ri

wi`iui(xi) ≤
∑
i:j∈Ri

ui(xi)

Using wij = 1 if and only if j ∈ Ri then gives us

sj <
∑
i:j∈Ri

ui(xi) =
∑
i:j∈Ri

wijui(xi) =
∑
i∈N

wijui(xi)
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By definition of ui, xij ≥ wijui(xi) for all j ∈M . Therefore∑
i∈N

xij ≥
∑
i∈N

wijui(xi) > sj

But this implies that x is not a valid allocation, which is a contradiction. We conclude that Step 3

is not invoked, and thus ui(x
′
i) = ui(x

′′
i ), which is equal to ui(xi) by Lemma 3.3.9.

Next, we show that the price curves constraint and bid constraint coincide.

Lemma 3.3.11. For all i ∈ N , Cf (bi) = Cg(xi).

Proof. By the definition of b, bij ∈ {0, β} when gj ≡ 0. Therefore:

Cf (bi) =
∑
j∈M

fj(bij)

=
∑
j:gj 6≡0

fj(bij) +
∑
j:gj≡0

fj(bij)

=
∑
j:gj 6≡0

fj(bij)

=
∑
j:gj 6≡0

gj(xij)

=
∑
j∈M

gj(xij)

= Cg(xi)

We are now ready to prove the main result of this section.

Theorem 3.3.2. Let h be any constraint curve. Let (x,g) be a price curve equilibrium, and define

f and b by

fj(b) =

h(b) if gj ≡ 0

gj(b) otherwise
bij =


β if gj ≡ 0 and j ∈ Ri
0 if gj ≡ 0 and j 6∈ Ri
xij otherwise

Then b is a Nash equilibrium of AT P(f).

Proof. Suppose (x,g) is a price curve equilibrium. By Lemma 3.3.2, we have Cg(xi) = 1 for all i ∈ N .

Thus Lemma 3.3.11 implies that Cf (bi) = 1 as well, which satisfies condition 2 of Lemma 3.3.1.

Lemma 3.3.8 implies that x′′ij = wijui(xi) whenever there exists k ∈ N with bkj > 0. Combining

this with Lemmas 3.3.9 and 3.3.10 gives us x′ij = wijui(x
′
i) whenever there exists k ∈ N with bkj > 0.

This satisfies condition 1 of Lemma 3.3.1. Therefore by Lemma 3.3.1, b is a Nash equilibrium of

AT P(f).
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3.4 Nash-implementing CES welfare functions with trading

post

In this section, we use the reduction between price curves and augmented trading post to show that

for any ρ ∈ (−∞, 1), AT P(ρ) Nash-implements CES welfare maximization. Recall that AT P(ρ) is

the augmented trading post mechanism where fj(b) = b1−ρ for all j ∈ M . Our key tools will be

the reduction from Section 3.3, and pair of lemmas from Chapter 2 regarding price curve equilibria.

The final result is Theorem 3.4.1:

Theorem 3.4.1. For any ρ ∈ (−∞, 1), the mechanism AT P(ρ) Nash-implements the maximum

CES welfare social choice rule.

Before we can prove Theorem 3.4.1, we need one more property: Section 3.4.1 shows that scaling

the constraint curves does not affect the set of Nash equilibrium outcomes. We then prove the main

theorem in Section 3.4.2.

3.4.1 Nash equilibria of trading post are invariant to scaling of constraint

curves

In order to use the reduction from Section 3.3, we would like to set fj(b) = gj(b) = qjb
1−ρ. However,

this would not be a valid mechanism: q1 . . . qm depend on the utility profile u, and the mechanism

cannot depend on u. In this section, we show that scaling by q1 . . . qm does not affect the Nash

equilibrium outcomes of AT P. This will allow us to use the mechanism AT P(ρ) instead, which

does not depend on u.

Recall that for the mechanism AT P(f), NE(AT P(f)) is the set of Nash equilibrium bids b, and

NEX(AT P(f)) is set of allocations x resulting from some b ∈ NE(AT P(f)).

Lemma 3.4.1. Let a1 . . . am be positive constants and let f be constraint curves where each fj is ho-

mogenous of degree αj > 0. Define f ′ by f ′j(b) = ajfj(b). Then NEX(AT P(f)) ⊆ NEX(AT P(f ′)).

Proof. Let x be an arbitrary allocation in NEX(AT P(f)); we will show that x ∈ NEX(AT P(f ′)).

By definition, there exist bids b ∈ NE(AT P(f)) such that x = AT P(f ,b). Define b′ by b′ij =

a
−1/αj
j bij when bij > 0 and b′ij = bij otherwise. We first show that Cf ′(b

′) = Cf (b):∑
j∈M

f ′j(b
′
ij) =

∑
j∈M

ajfj(a
−1/αj
j bij) =

∑
j∈M

aj(a
−1/αj
j )αjfj(bij) =

∑
j∈M

fj(bij)

Let x′ = AT P(f ′,b′). For any good j where b′kj > 0 for some k ∈ N (and thus also bkj > 0),

x′ij =
b′ij∑
k∈N b

′
kj

=
a
−1/αj
j bij∑

k∈N a
−1/αj
j bkj
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=
bij∑
k∈N bkj

= xij

Thus for any good j where b′kj > 0 for some k ∈ N , we have x′ij = xij . For any good j where

b′kj ∈ {0, β} for all k, we also have bkj ∈ {0, β} for all k. Thus in both cases we follow Step 2 of

AT P’s allocation rule. Since x′ij = xij for the good j where b′kj > 0 for some k, Step 2 results in

x′ij = xij for goods where b′kj ∈ {0, β} for all k. Therefore x′ = x.

This implies that ui(xi) = ui(x
′
i) for all i ∈ N . Therefore xij = wijui(xi) if and only if

x′ij = wijui(x
′
i). Thus the conditions of Lemma 3.3.1 hold for b, f if and only if they hold for b′, f ′.

Therefore since b ∈ NE(AT P(f)), we have b′ ∈ NE(AT P(f ′)), and thus x = x′ ∈ NEX(AT P(f ′)).

We conclude that NEX(AT P(f)) ⊆ NEX(AT P(f ′)).

Lemma 3.4.2. Let a1 . . . am be positive scalars and let f be constraint curves where each fj is

homogenous of degree αj. Define f ′ by f ′j(b) = ajfj(b). Then NEX(AT P(f)) = NEX(AT P(f ′)).

Proof. Lemma 3.4.1 gives us NEX(AT P(f)) ⊆ NEX(AT P(f ′)), so it remains only to show that

NEX(AT P(f ′)) ⊆ NEX(AT P(f)). We can actually do this by symmetry. Define a′1 . . . a
′
m by

a′j = 1/aj . Then a′1 . . . a
′
m are positive scalars such that fj(b) = a′jf

′
j(b). Each f ′j is also be

homogenous of degree αj :

f ′j(c · b) = ajfj(c · b) = cαjajfj(b) = cαjf ′j(b)

Then we can apply Lemma 3.4.1 with the roles of f ′ and f swapped to give us NEX(AT P(f ′)) ⊆
NEX(AT P(f)), which completes the proof.

3.4.2 Main theorem

The last tool we need is the following pair of lemmas from Chapter 2, restated here for convenience:

Lemma 3.4.3. For utility profile u, ρ ∈ (−∞, 1), and x ∈ Ψρ(u), there exist price curves g such that

(x,g) is a price curve equilibrium. Furthermore, for each j ∈M , gj takes the form gj(x) = qjx
1−ρ

for some nonnegative constants q1 . . . qm.

Lemma 3.4.4. Suppose ρ ∈ (−∞, 1) and that price curves g take the form gj(x) = qjx
1−ρ for each

j ∈M , for some nonnegative constants q1 . . . qm. Then if (x,g) is a PCE, x ∈ Ψρ(u).

Lemma 3.4.3 states that for any maximum CES welfare allocation x, there exist price curves of

the form gj(x) = qjx
1−ρ where (x,g) is a PCE. Lemma 3.4.4 states the converse: if g takes the

form gj(x) = qjx
1−ρ for nonnegative constants q1 . . . qm, and (x,g) is a PCE, then x is a maximum

CES welfare allocation. Furthermore, q1 . . . qm are the Lagrange multipliers of the convex program

for maximizing CES welfare, so q1 . . . qm can be computed in polynomial time.

We are now finally ready to prove that AT P(ρ) Nash-implements Ψρ. We will make of the follow

results from previous sections:
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1. Theorem 3.3.1: Any Nash equilibrium of AT P can be converted into an “equivalent” price

curve equilibrium.

2. Theorem 3.3.2: Any price curve equilibrium can be converted into an “equivalent” Nash equi-

librium of AT P.

3. Lemma 3.4.2: The set of Nash equilibrium outcomes of AT P is invariant to constant scaling

of the constraint curves.

4. Lemma 3.4.3: For any maximum CES welfare allocation x, there exist price curves g of the

form gj(x) = qjx
1−ρ such that (x,g) is a PCE.

5. Lemma 3.4.4: If there exist price curves g of the form gj(x) = qjx
1−ρ such that (x,g) is a

PCE, then x is a maximum CES welfare allocation.

Recall that for a utility profile u, the induced game of mechanism AT P(ρ) is denoted by

AT P(ρ)(u). We left u implicit when dealing with Nash equilibria in previous sections, but we

make it explicit here.

Theorem 3.4.1. For any ρ ∈ (−∞, 1), the mechanism AT P(ρ) Nash-implements the maximum

CES welfare social choice rule.

Proof. We need to show that for any utility profile u, ∅ 6= NEX(AT P(ρ)(u)) ⊆ Ψρ(u): in words, for

any u, there is at least one Nash equilibrium, and every Nash equilibrium allocation of AT P(ρ)(u)

is a maximum CES welfare allocation with respect to ρ and u.

Pick any x∗ ∈ Ψρ(u), and define q1 . . . qm and g as in Lemma 3.4.3. Define f by fj(b) = qjb
1−ρ

when qj 6= 0, and fj(b) = b1−ρ when qj = 0. By Lemma 3.4.2, we have NEX(AT P(ρ)(u)) =

NEX(AT P(f)(u)). Thus it suffices to show that ∅ 6= NEX(AT P(f)(u)) ⊆ Ψρ(u).

We first show that NEX(AT P(f)(u)) 6= ∅, i.e., AT P(f)(u) has at least one Nash equilibrium.

By Lemma 3.4.3, (x∗,g) is a PCE. Since gj(x) = qjx
1−ρ by Lemma 3.4.3, we have fj(b) = gj(b)

whenever qj 6= 0 (which is equivalent to gj ≡ 0). When gj ≡ 0, fj(b) = b1−ρ, which is strictly

increasing. Thus f satisfies the requirements of Theorem 3.3.2. If we define b as a function of x∗ as

in Theorem 3.3.2, then by Theorem 3.3.2, b ∈ NE(AT P(f)(u)). Therefore AT P(f)(u) has at least

one Nash equilibrium.

It remains to show that NEX(AT P(f)(u)) ⊆ Ψρ(u), i.e., every Nash equilibrium outcome of

AT P(f)(u) is a maximum CES welfare allocation. Consider an arbitrary x ∈ NEX(AT P(f)(u)).

Then there exists b ∈ NE(AT P(f)(u)) such that x = AT P(f ,b). Noting that each fj is homoge-

nous of degree 1−ρ, define g′ as a function of f and a1 . . . am as a function of b as in Theorem 3.3.1:

aj =
(∑

k∈N bkj

sj

)1−ρ
and g′j(x) =

0 if bij ∈ {0, β} ∀i ∈ N

ajfj(x) otherwise

By Theorem 3.3.1, (x,g′) is a PCE. Furthermore, we can write each g′j as g′j(x) = q′jx
1−ρ for

nonnegative constants q′1 . . . q
′
m. Therefore by Lemma 3.4.4, x ∈ Ψρ(u).
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Thus we have shown that x ∈ Ψρ(u) for all x ∈ NEX(AT P(f)(u)), so NEX(AT P(ρ)(u)) ⊆
Ψρ(u). Since NEX(AT P(ρ)(u)) = NEX(AT P(f)(u)), we conclude that ∅ 6= NEX(AT P(ρ)(u)) ⊆
Ψρ(u).

Finally, we note that a Nash equilibrium b ∈ NE(AT P(ρ)(u)) can be computed in polynomial

time. Since q1 . . . qm are the Lagrange multipliers of the convex program for maximizing CES

welfare, they can be computed in polynomial time. Then Theorem 3.3.2 can be applied to obtain

b′ ∈ NE(AT P(f)(u)), and finally Lemma 3.4.2 yields an equivalent b ∈ NE(AT P(ρ)(u)).

Maskin’s approach and no veto power

As discussed in Section 3.1.2, Maskin proved that in a very general environment, any social choice

rule satisfying monotonicity and no veto power is Nash-implementable [122]. We briefly show that

bandwidth allocation does not satisfy no veto power for any ρ ∈ (−∞, 1], and thus is not conducive

to Maskin’s approach.

Definition 3.4.1. A social choice rule Ψ satisfies no veto power if whenever there exists an al-

location x where for all i ∈ N except at most 1, ui(xi) ≥ ui(yi) for all allocations y, we have

x ∈ Ψ(u).

In words, if there is a single allocation that everyone (except at most one agent) agrees is their

favorite, then that allocation should be optimal under Ψ (the last agent should not be able to “veto”

this allocation). In general, agents will not agree on a favorite allocation: each agent would like to

receive all of the resources herself. However, when agents’ Ri sets are pairwise disjoint, it is possible

for all agents to agree on a favorite allocation.

Consider an instance with n agents and n goods, each with supply 1. For all i ∈ N , let Ri = {i}:
each agent just desires a single good. Consider the allocation x where for all i ∈ {1 . . . n−1}, xii = 1,

but xnn = 0 (and xij = 0 otherwise). For agents 1 . . . n−1, this is the most utility they can possibly

get, so this satisfies the precondition of Definition 3.4.1. However, for any ρ ∈ (−∞, 1], x 6∈ Ψρ(u),

because the CES welfare can be improved by increasing xnn. Specifically, for every ρ, the unique

optimal CES allocation has xii = 1 for all i ∈ {1 . . . n}.

3.5 Dominant strategy implementation, strategyproofness,

and max-min welfare

In Section 3.4, we showed that for every ρ ∈ (−∞, 1), CES welfare maximization is Nash-implementable.

A natural question to ask is whether this result can be improved to dominant strategy equilib-

rium implementation (DSE implementation, for short). In Section 3.5.1, we show that for every

ρ ∈ (−∞, 1], Ψρ is not DSE-implementable (Theorem 3.5.1). In contrast, Section 3.5.2 shows that

max-min welfare (ρ = −∞) is in fact DSE-implementable by a simple revelation mechanism (Theo-

rem 3.5.2). Finally, Section 3.5.3 uses a more complex mechanism to show that max-min welfare is

also Nash-implementable (Theorem 3.5.3).
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Review of relevant concepts. An important property related to DSE implementation is strat-

egyproofness. Recall that a mechanism is strategyproof when honestly reporting one’s preferences

is always a dominant strategy. As discussed in Section 3.2.2, DSE-implementability implies strate-

gyproofness by the revelation principle, but the converse is not necessarily true: strategyproofness

ensures that truth-telling is a dominant strategy equilibrium, but there could also be bad dominant

strategy equilibria. For our positive result DSE result (Theorem 3.5.2), we will show that our mech-

anism is strategyproof, and also that there are no bad dominant strategy equilibria. For our negative

DSE result (Theorem 3.5.1), we show that the social choice rule in question is not strategyproof,

which implies that it is not DSE-implementable.

Furthermore, as also discussed in Section 3.2.2, DSE-implementability does not imply Nash-

implementability: DSE-implementability requires every DSE to be consistent with Ψ, but the mech-

anism might have additional (non-DSE) Nash equilibria that are not consistent with Ψ. In fact, our

DSE implementation of max-min welfare is not a Nash implementation: it may have Nash equilibria

that are not optimal (see Section 3.5.2). In Section 3.5.3, we give a more complex mechanism that

does Nash-implement max-min welfare (Theorem 3.5.3).

We briefly discuss a subtlety relating to uniqueness (and lack thereof). In a sense, all strate-

gyproof mechanisms that implement a social choice rule Ψ are the same: they all ask agents to report

their utility functions u1 . . . un, then compute an outcome x ∈ Ψ(u)16. However, if Ψ(u) contains

multiple elements (i.e., there are multiple optimal allocations), it may matter which is chosen. If

leftover supply is allocated arbitrarily, it can be hard to reason about the optimal allocation under

different utility profiles. Furthermore, not even the optimal vector of agent utilities is unique for

max-min welfare and utilitarian welfare (although it is for ρ ∈ (−∞, 1)).

Consequently, for both of our positive results (Theorems 3.5.2 and 3.5.3), we will specify our

mechanism such that it selects a unique allocation for each utility profile u (even when they are

multiple optimal allocations). For our negative result (Theorem 3.5.1), we will give an instance where

an agent lying makes her utility in every new optimal allocation strictly larger than her utility in

every optimal allocation under a truthful report.

3.5.1 For all ρ ∈ (−∞, 1], CES welfare maximization is not DSE-implementable

To show impossibility of DSE implementation, it is sufficient to show impossibility of strategyproof-

ness. Our counterexample will be the following instance with 5 agents and 7 goods, where each row

is an agent, each column is a good, and the cell in the ith row and jth column gives wij :

g1 g2 g3 g4 g5 g6 g7
agent 1 1 1 0 0 0 0 1
agent 2 0 0 1 1 0 0 1
agent 3 0 0 0 0 1 1 1
agent 4 1 0 1 0 1 0 0
agent 5 0 1 0 1 0 1 0

16This is in the setting where no payments are involved, like this chapter. If payments are allowed, these mechanisms
can of course differ in what agents are asked to pay.
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Let the supply of good 7 be 2, and let all other goods have supply 1. Notice that agents 1,

2, and 3 all conflict on good 7, but otherwise are not in competition. Agents 4 and 5 are not in

competition with each other, but each conflicts with each of agents 1, 2, and 3. Let u denote this

utility profile, and u′ denote the utility profile where R′4 = {1, 3, 5, 7} instead of R4 = {1, 3, 5}, and

all other utilities are unchanged. We will claim that under utility profile u, agent 4 can increase her

utility by misreporting R′4 instead of R4.

We will prove this using two main lemmas. Lemma 3.5.1 states that when agent 4 truthfully

reports R4, her utility is strictly less than 1/2. Lemma 3.5.3 states that when agent 4 lies and reports

R′4 instead, her utility is at least 1/2 (Lemma 3.5.2 is a tool used in the proof of Lemma 3.5.3). Note

that each lemma is referring to agent 4’s true utility function u4.

Lemma 3.5.1. For every ρ ∈ (−∞, 1], every x ∈ Ψρ(u) has u4(x4) < 1/2.

Proof. For ρ = 0, an optimal Nash welfare allocation can be computed explicitly, and any such

allocation x will have u4(x4) < 1/2. Recall that although the optimal allocation may not be unique,

the optimal utility vector is, since Nash welfare is strictly concave.

Let A = {1, 2, 3} and B = {4, 5}. For ρ ∈ (−∞, 0)∪(0, 1], we write the following convex program

for maximizing CES welfare:

max
u1,u2,u3,u4,u5∈R≥0

(uρ1 + uρ2 + uρ3 + uρ4 + uρ5)1/ρ

s.t. ui + uk ≤ 1 ∀i ∈ A, k ∈ B

u1 + u2 + u3 ≤ 2

We are using ui as a variable in the convex program, but we will reserve ui(xi) to denote agent i’s

utility for x ∈ Ψρ(u).

By construction, for every i ∈ A and k ∈ B, there is a good such j such that xij +xkj ≤ 1 where

wij = wkj = 1. This implies that for any x ∈ Ψρ(u), ui(xi) + uk(xk) ≤ 1 for all i ∈ A and k ∈ B.

Similarly, the supply constraint of good 7 implies that u1(x1) + u2(x2) + u3(x3) ≤ 2. Furthermore,

any such allocation is indeed feasible: simply let xij = wijui(xi) for all i ∈ N . This means that the

set of possible utilities for feasible allocations is equal to the set of feasible solutions u1 . . . u5 to the

above convex program. Thus this program correctly maximizes CES welfare. This implies that for

every x ∈ Ψρ(u), there exists an optimal solution to the above convex program u∗1 . . . u
∗
5 such that

ui(xi) = u∗i for all i ∈ N . We proceed by case analysis.

Case 1: u∗1 + u∗2 + u∗3 = 2. In this case, one of those three agents must have utility at least 2/3.

Since agent 4 is in competition with each of those agents for a good with supply 1, this implies that

u∗4 = 1/3 < 1/2.

Case 2: u∗1 + u∗2 + u∗3 6= 2. Because of the convex program’s second constraint, u∗1 + u∗2 + u∗3 > 2

is not feasible, so we must have u∗1 + u∗2 + u∗3 < 2. In this case, the convex program above reduces

to:

max
u1,u2,u3,u4,u5∈R≥0

(uρ1 + uρ2 + uρ3 + uρ4 + uρ5)1/ρ
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s.t. ui + uk ≤ 1 ∀i ∈ A, k ∈ B

We next claim that there exists u∗A and u∗B such that u∗i = u∗A for all i ∈ A, and u∗k = u∗B for all

i ∈ B. Suppose there exists i, i′ ∈ A such that u∗i < u∗i′ . Then we could increase u∗1 while still

obeying the constraints of this program, and increase 1
ρ (uρ1 + uρ2 + uρ3 + uρ4 + uρ5). That would imply

that u∗1 . . . u
∗
5 could not be optimal. Furthermore, an identical argument applies to the agents in b.

Therefore there exists u∗A and u∗B such that u∗i = u∗A for all i ∈ A, and u∗k = u∗B for all i ∈ B, so

we can further rewrite the convex program as

max
uA,uB∈R≥0

(3uρA + 2uρB)1/ρ

s.t. uA + uB ≤ 1

where (u∗A, u
∗
B) is the optimal solution of this program. Clearly we must have u∗B = 1 − u∗A.

Furthermore, we claim that we can change the objective function from (3uρA + 2uρB)1/ρ to 1
ρ (3uρA +

2uρB), and that this changes the optimal value of the program, but does not change the optimal

solution, i.e., the argmax. This because when ρ > 0, maximizing (3uρA + 2uρB)1/ρ is equivalent to

maximizing 3uρA + 2uρB , and when ρ < 0, maximizing (3uρA + 2uρB)1/ρ is equivalent to minimizing

3uρA + 2uρB , which is equivalent to maximizing 1
ρ (3uρA + 2uρB). Thus our new convex program is

max
uA∈[0,1]

1

ρ
(3uρA + 2(1− uA)ρ)

This is a program we can analyze. For ρ = 1, the objective function becomes uA + 2, so we

immediately have u∗A = 1 and thus u∗4 = u∗B = 0. For ρ < 1, we take the derivative with respect to

uA should be 0 when evaluated at u∗A:

3u∗A
ρ−1 − 2(1− u∗A)ρ−1 = 0

3u∗A
ρ−1 = 2(1− u∗A)ρ−1

3
1
ρ−1u∗A = 2

1
ρ−1 (1− u∗A)

(3
1
ρ−1 + 2

1
ρ−1 )u∗A = 2

1
ρ−1

u∗A =
2

1
ρ−1

3
1
ρ−1 + 2

1
ρ−1

u∗A =
1

(3/2)
1
ρ−1 + 1

Since ρ < 1, ρ − 1 is negative, so 1
ρ−1 is negative. Then since 3/2 > 1, (3/2)

1
ρ−1 < 1. Altogether,

this implies that

u∗1 = u∗2 = u∗3 = u∗A > 1/2 and u∗4 = u∗5 = u∗B < 1/2

as required.
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The following lemma is a standard property of strictly concave and differentiable functions: it

essentially states that any such function is bounded above by any tangent line. This lemma is

sometimes called the “Rooftop Theorem”. To avoid confusion with u′ and x′, we use Dh to denote

the derivative of h, instead of h′ (this is Euler’s notation for derivatives).

Lemma 3.5.2. Let h : R → R be strictly concave and differentiable. Then for all a, b ∈ R where

a 6= b, h(a) < h(b) + (Dh(b))(a− b).

Lemma 3.5.3. For any ρ ∈ (−∞, 1], for any x′ ∈ Ψρ(u
′), u4(x′4) ≥ 1/2.

Proof. It suffices to show that u′4(x′4) ≥ 1/2: since R4 ⊂ R′4, we have

u4(x′4) = min
j∈R4

x′4j ≥ min
j∈R′4

x′4j = u′4(x′4)

For ρ = 1, the set of optimal allocations can be computed explicitly to see that for all x′ ∈ Ψρ=1(u′),

u′i(x
′
i) = 1/2 for all i ∈ N .

We now use this to show that for any ρ ∈ (−∞, 1), for any x′ ∈ Ψρ(u
′), u′i(x

′
i) = 1/2 for all

i ∈ N . Intuitively, the larger ρ is, the more we care about efficiency and the less we care about

fairness. But if the most efficient solution (i.e., the optimal allocation for ρ = 1) coincides with the

most fair solution (i.e., having all utilities equal), then no matter how much we care about efficiency

vs fairness, we should get the same outcome.

Let x∗ be any allocation in Ψρ=1(u′): then u′i(x
∗
i ) = 1/2 for all i ∈ N . Fix a ρ ∈ (−∞, 1)

and let h(a) = 1
ρa

ρ if ρ 6= 0, and h(a) = log(a) if ρ = 1. In both of these h is strictly concave

and differentiable. Consider any allocation y where for some i ∈ N , ui(yi) 6= 1/2. For brevity, let

u′∗i = u′i(x
∗
i ) and u′yi = u′i(yi).

For all such i, Lemma 3.5.2 implies that h(u′yi ) < h(u′∗i ) + (Dh(u′∗i ))(u′yi − u′∗i ) for u′∗i 6= u′yi .

When u′yi = 1/2 = u′∗i , we have h(u′yi ) = h(u′∗i ) + (Dh(u′∗i ))(u′yi − u′∗i ) = 0. Thus for ρ 6= 0, we have

∑
i∈N

1

ρ
(u′yi )

ρ
=
∑
i∈N

h(u′yi )

<
∑
i∈N

(
h(u′∗i ) + (Dh(u′∗i ))(u′yi − u

′∗
i )
)

=
∑
i∈N

(1

ρ
(u′∗i )

ρ
+ (Dh(1/2))(u′yi − u

′∗
i )
)

=
1

ρ

∑
i∈N

(u′∗i )
ρ

+
∑
i∈N

(Dh(1/2))(u′yi − u
′∗
i )

=
1

ρ

∑
i∈N

(u′∗i )
ρ

+ (Dh(1/2))
(∑
i∈N

u′yi −
∑
i∈N

u′∗i

)
Since x∗ ∈ Ψρ=1(u′),

∑
i∈N u

′∗
i ≥

∑
i∈N u

′y
i . Therefore (Dh(1/2))

(∑
i∈N u

′y
i −

∑
i∈N u

′∗
i

)
≤ 0, so

1

ρ

∑
i∈N

(u′yi )
ρ
<

1

ρ

∑
i∈N

(u′∗i )
ρ
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As before, this implies that
(∑

i∈N (u′yi )
ρ)1/ρ

<
(∑

i∈N (u′∗i )
ρ)1/ρ

. The analysis for ρ = 0 (i.e.,

Nash welfare) is the same, except we end up with
∑
i∈N log(u′yi ) <

∑
i∈N log(u′∗i ) instead, which

implies
∏
i∈N u

′y
i <

∏
i∈N u

′∗
i .

Thus for any allocation y where there exists i ∈ N with u′i(yi) 6= 1/2, the CES welfare of x∗ is

better than the CES welfare of y. This implies that for any ρ ∈ (−∞, 1], any x′ ∈ Ψρ(u
′) must have

u′i(x
′
i) = 1/2 for all i ∈ N .

Theorem 3.5.1. For all ρ ∈ (−∞, 1], Ψρ is not DSE-implementable.

Proof. Similar to the proof of Theorem 3.5.2, it suffices to show that Ψρ cannot be computed in a

strategyproof mechanism. Suppose there were a strategyproof mechanism H: then for utility profile

u, H must return an allocation x ∈ Ψρ(u), and for utility profile u′, H must return an allocation

x′ ∈ Ψρ(u
′). By Lemmas 3.5.1 and 3.5.3, we have u4(x4) < 1/2 and u4(x′4) ≥ 1/2. If agent 4 reports

R′4 = {1, 3, 5, 7} instead of R4 = {1, 3, 5}, she alters the utility profile from u to u′, which resulting

in her receiving a bundle with higher utility. Therefore H is not strategyproof.

3.5.2 Maxmin welfare is DSE-implementable

We will claim that Mechanism 1 DSE-implements max-min welfare. We are using ui as a variable in

the convex program in Step 2, but we will reserve ui(xi) for denoting agent i’s utility for a bundle

xi. We could have used ui ≥ γ and uiwij ≤ xij for our first two constraints, but requiring ui = γ

and uiwij = xij ensures a unique solution (and does not affect the optimal value).

Mechanism 1 A simple revelation mechanism which DSE-implements max-min welfare.

1. Ask each agent i report her set of desired goods Ri (which fully specifies her utility function
ui and her weights wi1 . . . wim).

2. Let (x∗,u∗) be an optimal solution the following convex program:

max
x∈Rn×m≥0

,

u=(u1...un)∈Rn≥0

γ

s.t. ui = γ ∀i ∈ N
uiwij = xij ∀i ∈ N, j ∈M∑
i∈N

xij ≤ sj ∀j ∈M

3. Return the allocation x∗.

We say that an allocation x is max-min-optimal if the minimum utility in x is the largest possible

minimum utility among all valid allocations. Formally, mini∈N ui(xi) = maxx′ mini∈N ui(x
′
i).

Lemma 3.5.4. Assume agents truthfully report their desired sets of goods. Then Mechanism 1

correctly computes a max-min-optimal allocation.
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Proof. Let x be the allocation returned by Mechanism 1, and suppose there exists y such that

mink∈N uk(yk) > mink∈N uk(xk). Consider the allocation x′ where x′ij = wij mink∈N uk(yk) for all

i, j. Then ui(x
′
i) = mink∈N uk(yk) for all i ∈ N . Furthermore, yij ≥ wijui(yi) by definition of ui(yi),

and ui(yi) ≥ ui(x′i), so

yij ≥ wijui(yi) ≥ wijui(x′i) = x′ij

Thus since y is a valid allocation, so is x′. Therefore x′ is feasible for our convex program, and

mini∈N ui(x
′
i) = mini∈N ui(yi) > mini∈N ui(xi), so x could not have been an optimal solution to

our convex program.

Lemma 3.5.5. Mechanism 1 is strategyproof.

Proof. Let R1 . . . Rn be the true desired sets of goods. Suppose for sake of contradiction that there

exists an instance where an agent i can increase her utility by reporting some R′i 6= Ri. Let xi and

x′i be agent i’s bundles when she reports Ri and R′i, respectively (assuming other agents make the

same reports in both cases). Due to the constraint uiwij = xij , our mechanism will set x′ij = 0 for

all j 6∈ R′i. If R′i ( Ri, then there exists a j ∈ Ri where j 6∈ R′i. Thus x′ij = 0, which implies that

ui(x
′
i) = 0, since j ∈ Ri.

Suppose Ri ( R′i, and let w′i1 . . . w
′
im be the weights associated with R′i. In this case, there exists

a j ∈ R′i \ Ri, so w′ij = 1 and wij = 0. We claim that any utility vector u1 . . . un that is feasible in

the original program (when agent i reports Ri) is also feasible in the new program (when agent i

reports R′i). Let xkj = ukwkj and x′kj = ukw
′
kj . Since w′kj ≥ wkj for all k, j, we have x′kj ≥ xkj for

all j ∈ M , so
∑
k∈N xkj ≤

∑
k∈N x

′
kj ≤ sj . Thus if x′ and u1 . . . un are feasible together, so are x

and u1 . . . un. This means that the optimal value of the new program is at most the optimal value of

the original program: the objective functions are the same, and the feasible set for the new program

is a subset of that of the original program. Since each agent’s utility is equal to the objective value

of the convex program, this means that agent i’s utility when she reports R′i cannot improve.

Thus we have shown that reporting R′i 6= Ri cannot improve agent i’s utility. We conclude that

this mechanism is strategyproof.

Theorem 3.5.2. Mechanism 1 DSE-implements max-min welfare.

Proof. Lemma 3.5.5 implies that there is at least one DSE: in particular, truthful revelation is a

DSE. Thus it remains only to show that there are no “bad” dominant strategy equilibria, i.e., every

DSE results in a max-min-optimal allocation.

We claim that in any DSE, the vector of utilities is the same as in the truthful DSE, which we

know has optimal max-min welfare by Lemma 3.5.4. Since this is a revelation mechanism, each agent

just reports a utility function ui. Let u = u1 . . . un be the true utility profile, and let u′ = u′1 . . . u
′
n

be an arbitrary DSE. Since the mechanism is strategyproof, we know that u is also a DSE. Thus for

every agent i, ui and u′i are both dominant strategies (it is possible that ui = u′i).

For each r ∈ {1 . . . n + 1}, define another utility profile ur where each agent i ∈ {1 . . . r − 1}
reports ui and each agent i ∈ {r . . . n} reports u′i. Suppose every agent is reporting according to

ur. If agent r switches from reporting u′r to truthfully reporting ur, she alters the utility profile
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from ur to ur+1. Let xr and xr+1 be the resulting allocations for reported utility profiles ur and

ur+1, respectively. Since reporting ur and reporting u′r are both dominant strategies for agent r,

she must be indifferent between xr and xr+1 (according to her true utility function, ur). Formally,

ur(x
r
r) = ur(x

r+1
r ).

Next, by the definition of the mechanism, each agent has the same utility for her resulting bundle

(according to the utility function she reports). Let γr be every agent’s utility for the allocation xr,

according to her reported utility function uri : u
r
i (x

r
i ) = γr. Our next claim is that ui(x

r
i ) = γr, i.e.,

each agent’s true utility for xr is γr. As before, we know that Ri ⊆ R′i for each agent i: reporting

R′i ( Ri always results in getting zero utility. This means that Ri ⊆ Rri . Furthermore, the convex

program ensures that each agent i receives the same amount of every good in her reported set Rri .

Thus we have

uri (x
r
i ) = min

j∈Rri
xrij = min

j∈Ri
xrij = ui(x

r
i )

Therefore ui(x
r
i ) = γr, i.e., each agent’s true utility for xr is γr. In particular, ur(x

r
r) = γr and

ur(x
r+1
r ) = γr+1.

We showed above that ur(x
r
r) = ur(x

r+1
r ), so we now have γr+1 = γr for all r. This implies

γ1 = γn+1. Thus each agent’s true utility for x1 (which is γ1) is the same as each agent’s true utility

for xn+1 (which is γn+1). By definition, xn+1 is the resulting allocation when each agent truthfully

reports ui, and x1 is the resulting allocation when each agent reports u′i. Thus we have shown that

each agent’s utility is the same in these two allocations.

Since u′ was an arbitrary DSE, we have shown that in any DSE, every agent’s utility is the same

as in the truthful outcome. Therefore the outcome of any DSE is a max-min-optimal allocation.

The above mechanism does not Nash-implement max-min welfare

In this section, we show that our DSE implementation of max-min welfare is not a Nash implemen-

tation, i.e., there may be Nash equilibria that are not optimal. Consider an instance with n agents

and n goods, where each agent i’s true set of desired goods is Ri = {i}. Assume each good has

supply 1. The unique max-min-optimal allocation has xii = 1 for all i ∈ N and xij = 0 for j 6= i,

i.e., it gives the entirety of each good to the unique agent who desires it. This results in each agent

having utility 1, and thus max-min welfare of 1.

Now consider the strategy profile where each agent i reports that she desires every good, i.e.,

reports M . The resulting allocation will give each agent exactly 1/n of each good, resulting in

each agent’s utility (according to her true utility function) being 1/n. We claim that this is a Nash

equilibrium. Suppose an agent i reports R′i instead of M . If R′i = ∅, agent i receives nothing, so

that cannot increase her utility. Thus let j be any good in R′i. Since the other n − 1 agents are

also reporting that they desire good j, our mechanism would divide j evenly across all the agents,

resulting in agent i receiving xij = 1/n. Since our mechanism gives each agent equal the same

quantity of each good in their reported set, agent i does not receive more than 1/n of any good, so

her utility is at most 1/n (in fact, it will be exactly 1/n). Thus agent i cannot improve her utility

by bidding some R′i 6= M , so the strategy profile where each agent reports M is a Nash equilibrium.
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Furthermore, the max-min welfare is 1/n, which is actually a factor of n worse than the optimal

max-min welfare of 1.

3.5.3 Maxmin welfare is Nash-implementable

Our Nash implementation of max-min welfare will use some of the same intuition from our DSE

implementation. However, we will have to be careful to avoid bad equilibria like the one described

in Section 3.5.2. Let H denote Mechanism 1 (which DSE-implements max-min welfare), and let

HX(u) denote the allocation produced by H when the reported utility profile is u.

Mechanism 2 operates as follows. First, it asks each agent to report not only her own utility

function, but the utility function of every agent. Recall that the utility function is specified by the

set of desired goods; hence, agent i reports R1(i) . . . Rn(i), where Rk(i) is the set of goods that agent

i says agent k desires.

Step 2 defines ηi and N̄ , which will be used later to penalize agents in a way that aligns incentives.

The scalar ηi denotes the number of agents k where what agent i says that agent k wants (Rk(i))

conflicts what agent k says that she wants (Rk(k)). We will penalize agents for having large values

of ηi to incentivize them to come to a consensus. The set N̄ contains the set of agents i where for

some other agent k, agent i is saying that agent k wants more goods than agent k is saying that

she actually wants (i.e., Rk(k) ( Rk(i)). We will penalize this specific type of disagreement more

strongly; the reason will become clear in the proof of Theorem 3.5.3.

Step 3 defines αi ∈ [0, 1]: αi = 1 represents no penalty, and αi = 0 represents an absolute penalty

(i.e., that agent will end up with no utility). Specifically, αi = 0 for each agent in N̄ , and for those

agents not in N̄ , a higher ηi leads to a higher penalty. Next, we use the mechanism H to compute a

max-min-optimal allocation x′ ignoring agents in N̄ . It is crucial that we ignore those agents when

computing this allocation. Finally, we return an allocation x which is just x′ with the αi penalties

applied. As usual, xi and yi are vectors in Rm≥0.

The first thing to notice is that we have solved the problem from Section 3.5.2. We claim that

each agent i reporting Rk(i) = M for all k ∈ N is not longer a Nash equilibrium when agent i’s true

desired set is a strict subset of M . This is because if agent i shrinks Ri(i) to her true subset, but

reports Rk(i) = M for all k 6= i, N̄ will contain every agent except for her. This means that she

would get all of the resources in Step 3, which clearly increases her utility. The other agents would

then respond by setting Ri(k) = Ri(i) so that they are no longer in N̄ , but this at least shows that

Rk(i) = M for all i, k ∈ N is not a Nash equilibrium.

For the rest of this section, we will use R̃ = R̃1 . . . R̃n to denote the true desired sets of goods,

and ũ = ũ1 . . . ũn to denote the corresponding utility profile.

Lemma 3.5.6. When each agent reports R̃, Mechanism 2 returns a max-min-optimal allocation.

Proof. In this case, we have N̄ = ∅ and αi = 1 for all i ∈ N . Thus the u used in Step 4 is the true

utility profile, so H computes a max-min-optimal y allocation with respect to the true preferences.

Since αi = 1 for all i ∈ N , we have x = y, so Mechanism 2 does indeed return a max-min-optimal

allocation.
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Mechanism 2 A mechanism which Nash-implements max-min welfare.

1. Ask each agent i to report R1(i) . . . Rn(i), where Rk(i) ⊆M for each k ∈ N .

2. For each i ∈ N , let ηi = |{k ∈ N : Rk(k) 6= Rk(i)}|. Define the set N̄ by N̄ = {i ∈ N : ∃k ∈
N s.t. Rk(k) ( Rk(i)}.

3. For each i ∈ N , define αi ∈ [0, 1] as follows. If i ∈ N̄ , then αi = 0. Otherwise, let αi = 1−ηi/n.

4. Let u be the utility profile where the set of goods desired by agent i is Ri(i) if i 6∈ N̄ , and is ∅
if i ∈ N̄ . Let y = HX(u).

5. Return the allocation x where for each i ∈ N , xi = αiyi.

Lemma 3.5.7. The strategy profile where each agent reports R̃ is a Nash equilibrium.

Proof. Suppose the opposite: then there exists an agent i who can report R′1(i) . . . R′n(i) and increase

her utility. When all agents report R̃, let α̃i be agent i’s value of αi, let ỹ be the intermediate

allocation produced in Step 4, and let x̃ be the final resulting allocation. When agent i reports

R′1(i) . . . R′n(i) and all other agents report R̃, we use α′i, y′, and x′ analogously.

Thus we have assumed that ũi(x
′
i) > ũi(x̃i), i.e., she is strictly happier when she deviates and

reports R′1(i) . . . R′n(i). Since x′i = α′iy
′
i and x̃i = α̃iỹi, we have ũi(α

′
iy
′
i) > ũi(α̃iỹi). When all agents

report R̃, all agents are in agreement, so α̃i = 1. Since α′i ≤ 1, we have α′i ≤ α̃i. Therefore we must

have ũi(y
′
i) > ũi(ỹi).

We claim that after this deviation, N̄ = ∅. If i ∈ N̄ , she receives zero utility, so such a deviation

could not help her. Since all agents k 6= i report the same thing, the only way for agent k 6= i to

be in N̄ is if what agent k is reporting that agent i wants (which in this case is R̃i) is a superset of

what agent i is reporting that she wants (which in this case is R′i(i)). If R′i(i) ( R̃i, then there is a

good j ∈ R̃i that agent i will receive none of, i.e., y′ij = 0. This is because the convex program in

H will only allocate agent i a portion of good j if good j is in her reported set. Thus R′i(i) ( R̃i

implies that ũi(y
′
i) = 0. Therefore agent i’s utility cannot have improved, which is a contradiction.

Therefore after the deviation, N̄ = ∅. This means that y′ is just the max-min-optimal allocation

computed by Mechanism 1 for utility profile R̃1, R̃2 . . . R
′
i(i) . . . R̃n. But this implies that agent i is

improving her utility for the allocation produced by Mechanism 1 by reporting R′i(i) instead of R̃i.

This contradicts the strategyproofness of Mechanism 1 (by Lemma 3.5.5). Thus ũi(y
′
i) > ũi(ỹi) is

impossible, which implies that each agent reporting R̃ is in fact a Nash equilibrium.

Theorem 3.5.3. Mechanism 2 Nash-implements max-min welfare.

Proof. We need to show that for each problem instance, Mechanism 2 has at least one Nash equilib-

rium, and every Nash equilibrium is optimal. Lemma 3.5.7 implies that at least one Nash equilibrium

exists, so it remains to show that every Nash equilibrium results in a max-min-optimal allocation.

Consider an arbitrary Nash equilibrium where agent i reports R1(i) . . . Rn(i). First, note that

each agent i can always achieve i 6∈ N̄ and αi = 1 by having Rk(i) = Rk(k) for each k 6= i. This also
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does not restrict what she reports for Ri(i), which is what actually affects the allocation y. Thus in

any Nash equilibrium, we have N̄ = ∅, αi = 1 for all i ∈ N , and Rk(i) = Rk(k) for all i, k ∈ N .

Since H allocates a portion of good j to agent i only if j is in agent i’s reported set, if Ri(i) ( R̃i,

then agent i will receive zero utility. Reporting Ri(i) = R̃i instead (and still reporting Rk(i) = Rk(k)

for k 6= i, so that she is not in N̄) would give her nonzero utility, so Ri(i) ( R̃i is impossible in a

Nash equilibrium. Thus we must have R̃i ⊆ Ri(i) for all i ∈ N .

Now suppose that R̃i ( Ri(i). Suppose that agent i reports R′i(i) = R̃i instead (and reports

the same Rk(i) for each k 6= i). Then since every agent k 6= i is reporting Ri(k) = Ri(i), we now

have R′i(i) ( Ri(k) for each k 6= i. This means that N̄ contains every agent except for i, so every

agent other than i is ignored when computing the allocation y. This means that the allocation y

gives agent i her maximum possible utility (which is minj∈R̃i sj : the minimum supply of any good

she desires). Since agent i is still reporting Rk(i) = Rk(k) for all k 6= i, she still has αi = 1, which

means that in the final allocation x, she receives her maximum possible utility.

Therefore in any Nash equilibrium, for each i ∈ N , either Ri(i) = R̃i (i.e., she is reporting her

true set), or R̃i ( Ri(i) and agent i is receiving her maximum possible utility. We proceed by case

analysis.

Case 1: Every agent agent is reporting Ri(i) = R̃i. Since we have Rk(i) = Rk(k) for all i, k ∈ N ,

each agent must be reporting R̃. Then by Lemma 3.5.6, we get a max-min-optimal allocation in

this case.

Case 2: At least one agent i is reporting R̃i ( Ri(i) and thus is receiving her maximum possible

utility of minj∈R̃i sj . Let γ = minj∈R̃i sj : then for any allocation x′,

min
k∈N

uk(x′k) ≤ ui(x′i) ≤ γ

i.e., the value of the max-min objective can never be more than γ. Since H gives each agent the

same utility (according to her reported preferences), for all k ∈ N we have

γ = min
j∈Rk(k)

xkj ≥ min
j∈R̃k

= ũk(xk)

where the inequality is because R̃i ⊆ Ri(i). Thus we have mink∈N ũk(xk) = γ. Thus x must be

max-min-optimal.

Therefore we have shown that in either case, the Nash equilibrium must result in a max-min-

optimal allocation. We conclude that Mechanism 2 Nash-implements max-min welfare.

3.6 Conclusion and future work

In this chapter, we showed that every CES welfare function except ρ = 1 can be Nash-implemented

by an augmented trading post mechanism. This strengthened previous results which only handled

Nash welfare [30] or assumed agents did not behave strategically (Chapter 2). Next, we showed that

DSE implementation for this problem is generally impossible, with the exception of max-min welfare,

where a simple revelation mechanism does indeed DSE-implement max-min welfare. Although this



CHAPTER 3. OPTIMAL NASH EQUILIBRIA FOR BANDWIDTH ALLOCATION 80

revelation mechanism does not Nash-implement max-min welfare, we were able to Nash-implement

max-min welfare with a different mechanism.

We were not able to resolve whether utilitarian welfare is Nash-implementable for bandwidth

allocation. Our trading post mechanism breaks down in this setting, since fj(b) = b1−1 = 1 is not a

valid constraint curve. Maskin’s monotonicity approach is not viable either, since utilitarian welfare

does not satisfy no veto power. We leave this as an open question.

Another interesting direction would be to extend these results to a wider range of utility functions.

Our reduction between price curves and trading post means that if price curve equilibria maximizing

CES welfare were shown to exist for a wider range of utility functions, it seems likely that our Nash

implementation results would carry over as well (depending on the form of the price curves).

It would also be interesting to consider another dimension of strategic behavior by allowing

agents to choose which path in the network to use. In this case, we could write each agent’s utility

function as ui(xi) = maxp∈Pi minj∈p xij , where Pi is the set of paths from agent i’s desired source to

desired destination. This is reminiscent of routing games, in that agents are strategically choosing

their paths, but still distinct, in that each agent may use the same link in different quantities (i.e.,

receive different amounts of bandwidth). Although this model is less accurate in terms of how the

internet actually works (see Section 3.1), it may be an appropriate model for other situations.

More broadly, we feel that trading post is a powerful mechanism that is able to simulate a price-

taking market while also handling strategic behavior. We wonder if trading post, or variants thereof,

may be useful in designing mechanisms for other resource allocation problems as well.



Chapter 4

Counteracting inequality in

markets via convex pricing

In this chapter, we study the connection between convex pricing and CES welfare in the quasilinear

market model. For linear pricing, the First Welfare Theorem states that Walrasian equilibria1

maximize the sum of agent valuations. This ensures efficiency, but can lead to extreme inequality

across individuals. Many real-world markets – especially for water – use convex pricing instead,

often known as increasing block tariffs (IBTs). IBTs are thought to promote equality, but there is

a dearth of theoretical support for this claim.

In this chapter, we study a simple convex pricing rule and show that the resulting equilibria

are guaranteed to maximize a CES welfare function. Furthermore, a parameter of the pricing rule

directly determines which CES welfare function is implemented; by tweaking this parameter, the

social planner can precisely control the tradeoff between equality and efficiency. Our result holds

for any valuations that are homogeneous, differentiable, and concave. We also give an iterative

algorithm for computing these pricing rules, derive a truthful mechanism for the case of a single

good, and discuss Sybil attacks.

4.1 Introduction

Recall that in the quasilinear model, an agent’s utility is her value for the resources she obtains

(her valuation), minus the money she spends (her payment). The First Welfare Theorem states that

in this setting, the linear-pricing Walrasian equilibria are exactly the allocations maximizing utili-

tarian welfare, i.e., the sum of agent valuations. Thus linear pricing implements utilitarian welfare

in Walrasian equilibrium (sometimes abbreviated “WE”). The result is powerful, but also limit-

ing. Maximizing utilitarian welfare yields the most efficient outcome, but may also cause maximal

inequality (see Figure 4.1).

1The terms “market equilbria” and “Walrasian equilibria” are equivalent. In this section, we use “Walrasian
equilibrium” because that is the more common term in the quasilinear model literature.
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w1 = 1 w2 = 6 w3 = 5

price = 6

w1 = 1 w2 = 6 w3 = 5

Figure 4.1: An example of how linear pricing can lead to maximal inequality. Consider the three agents
above and a single good (say, water), where each agent i’s value for x units of the good is wi ·x. The unique
linear-pricing Walrasian equilibrium sets a price of 6 per unit, which results in agent 2 buying all of the good
and the other two agents receiving nothing. More generally, the equilibrium price reflects the maximum
anyone is willing to pay, and anyone who is not willing to pay that much is priced out of the market and
receives nothing. In contrast, our nonlinear pricing rule always ensures that everyone receives a nonzero
amount; see Section 4.2.

One common alternative is convex pricing. In this chapter, we study convex pricing rules p of

the form

p(xi) =
(∑

j

qjxij

)1/ρ

where xi is bundle agent i receives, xij ∈ R≥0 is the fraction of good j she receives, q1, . . . , qm

are constants, and ρ ∈ (0, 1] determines the curvature of the pricing rule. Like linear pricing, p is

still anonymous, meaning that agents’ payments depend only on their purchases (and not on their

preferences, for example).

When ρ = 1, p reduces to linear pricing. When ρ < 1, p is strictly convex, meaning that

doubling one’s consumption will more than double the price. This will make it easy to buy a small

amount, but hard to buy a large amount, which intuitively should lead to a more equal distribution

of resources. As the curvature of the pricing rule grows, this effect should be amplified, leading to

a different equality/efficiency tradeoff.

Our work seeks to formalize that claim. We will show that the Walrasian equilibria of these convex

pricing rules are guaranteed to maximize a constant elasticity of substitution (CES) welfare function,

where the choice of ρ determines the specific welfare function and thus the precise equality/efficiency

tradeoff (Theorem 4.4.1). Our result holds for a wide range of agent valuations.

Convex pricing in the real world. Convex pricing is especially pervasive in the water sector,

where such pricing rules are known as increasing block tariffs (IBTs) [175], typically implemented

with discrete blocks of water (hence the name). IBTs have been implemented and empirically studied

in Israel [12], South Africa [38], Spain [86], Jordan [112], and the United States [152], among many

other countries.

IBTs are often claimed to promote equality in water access [175], but there has been limited

theoretical evidence supporting this (see [127] for one of the only examples). On the other hand, a

common concern is that IBTs may lead to poor “economic efficiency” [19, 127]. Our work shows

that at least on a theoretical level, convexity of pricing does not necessarily lead to inefficiency: it

simply maximizes a different welfare function than the traditional utilitarian one. In particular, it

82



maximizes a CES welfare function.

The Second Welfare Theorem and personalized pricing. The Second Welfare Theorem is

perhaps the most famous theoretical result regarding implementation in Walrasian equilibrium. It

states any Pareto optimum can be a WE when an arbitrary redistribution of initial wealth is allowed.2

Another method that achieves the same goal is personalized pricing, where different agents can be

charged different (linear) prices [82]. In contrast, convex pricing is anonymous: agents purchasing

the same bundle always pay the same price.

Each of these approaches has its own pros and cons, and our goal in this chapter is not to

claim that convex pricing is “better” than any other approach (or vice versa). Regardless of which

approach is “best” in any given situation, convex pricing is widely used in practice, and is often

claimed to promote equality. Our goal in this chapter is to formally quantify that claim.

More broadly, our work can be thought of as weaving together the previously disjoint threads of

CES welfare and convex pricing to provide theoretical support for the oft-cited but rarely quantified

claim that IBTs promote equality.

4.2 Results and related work

Main result: convex pricing implements CES welfare maximization in Walrasian equi-

librium. Our main result is that for convex pricing of the form p(xi) = (
∑
j qjxij)

1/ρ for any

ρ ∈ (0, 1]3, a Walrasian equilibrium is guaranteed to exist, and every WE maximizes CES welfare

with respect to ρ. This holds for a wide range of agent valuations.

Theorem 4.4.1 (Simplified version). Assume each valuation is homogeneous of degree r,4 differen-

tiable, and concave, and fix ρ ∈ (0, 1]. Then an allocation x = (x1, . . . , xn) maximizes CES welfare

if and only if there exist constants q1, . . . , qm ∈ R≥0 such that for the pricing rule

p(xi) =
(∑

j

qjxij

)1/ρ

,

x and p form a WE.

Note that the ρ in p(xi) is the same ρ for which CES welfare is maximized.

We call the reader’s attention to two important aspects of this result. Perhaps most impor-

tantly, our result is not simply a reformulation of the First Welfare Theorem: although maximizing

CES welfare for valuations v1, . . . , vn is equivalent to maximizing utilitarian welfare for valuations

vρ1 , . . . , v
ρ
n, the First Welfare Theorem does not say anything about the agent demands in response

2Specifically, for any Pareto optimal allocation, there exists a redistribution of initial wealth which makes that
allocation a WE. However, our quasilinear utility model does not have a concept of initial wealth (alternatively, initial
wealth is simply an additive constant in agents’ utilities which does not affect their behavior), so this result is not as
mathematically relevant. See Section 4.2.1 for additional discussion.

3The case of ρ < 0 is slightly unintuitive, as it can result in agents who care more receiving less of the good.
Consequently, implementation in WE is impossible; see Theorem 4.8.3.

4A valuation is homogeneous of degree r if scaling any bundle by a constant c scales the resulting value by cr.
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to this convex pricing rule. The First Welfare Theorem also does not help with identifying the exact

conditions under which Theorem 4.4.1 holds, e.g., homogeneity of valuations.5

Secondly, the class of homogeneous, differentiable, and concave valuations is quite large: it

generalizes most of the commonly studied valuations, e.g., linear, Cobb-Douglas, and CES (note

that here we are referring to CES agent valuations, not CES welfare functions). Although Leontief

valuations are not differentiable, we handle them as a special case and show that the same result

holds (Theorem 4.10.1).

The following additional properties are of note:

1. For this class of utilities, Theorem 4.4.1 generalizes the First Welfare Theorem:6 when ρ = 1,

p(xi) yields linear pricing and CES welfare yields utilitarian welfare.

2. The constants q1, . . . , qm will be the optimal Lagrange multipliers for a convex program max-

imizing CES welfare. This connection to duality will be very helpful for computing these WE

(see Section 4.5).

3. Our pricing rule is strictly convex for ρ < 1, with the curvature growing as ρ goes to 0. The

smaller ρ gets, the easier it is to buy a small amount, but the harder it is to buy a large amount.

Intuitively, this should prevent any single individual from dominating the market and lead to

a more equitable outcome. Furthermore, the marginal price at xi = 0 is zero, which ensures

that everyone ends up with a nonempty bundle (in contrast to linear pricing: see Figure 4.1).

Theorem 4.4.1 provides a tight relationship between the curvature of the pricing rule and the

exact equality/efficiency tradeoff.

Towards an implementation. We also prove several supporting results: in particular, regarding

implementation. The WE from Theorem 4.4.1 can always be computed by asking each agent for her

entire utility function, and then solving a convex program for maximizing CES welfare maximization

to obtain the optimal Lagrange multipliers q1, . . . , qm. However, this is not very practical: people are

generally not able to articulate a full cardinal utility function, and even if they are, doing so could

require transmitting an enormous amount of information. Section 4.5 presents our first supporting

result: an iterative algorithm for computing the WE, where in each step, each agent only needs to

report the gradient of her valuation at the current point. Our algorithm is based on the ellipsoid

method, and inherits its polynomial-time convergence properties. We recognize that even valuation

gradient queries may be difficult for agents to answer, and we leave the possibility of an improved

implementation – in particular, a tâtonnement7 – as an open question.

Truthfulness. Our second supporting result considers a different approach to implementation:

truthful mechanisms. Walrasian equilibria are generally not truthful: agents can lie about their

5In fact, not only is homogeneity necessary, but homogeneity of the same degree is necessary: if we allow the degree
of homogeneity to differ across agents, the result no longer holds (Theorem 4.8.2).

6One direction of the First Welfare Theorem (if (x, p) is a linear pricing WE, then x maximizes utilitarian welfare)
holds in a much more general setting; see Section 4.11.

7A tâtonnement is an iterative algorithm which only asks demand queries, i.e., what would each agent purchase
given the current prices. Demand queries may be easier to answer than the valuation gradient queries in our algorithm.
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preferences to affect the equilibrium prices for their personal gain.8 For ρ = 1, the Vickrey-Clarke-

Groves (VCG) mechanism is known to truthfully maximize utilitarian welfare [135]. For the case

of a single good and any ρ ∈ (0, 1), we give a mechanism which truthfully maximizes CES welfare

(Theorem 4.6.1). We also show that our mechanism is the unique truthful mechanism up to an

additive constant in the payment rule (Theorem 4.6.2). The proof of Theorem 4.6.2 is quite involved,

and requires techniques from real analysis such as Kirszbraun’s Theorem for Lipschitz extensions

and the Fundamental Theorem of Lebesgue Calculus.

Negative results. We prove the following negative results. Most importantly, we show that for

any ρ 6= 1, linear-pricing WE can have arbitrarily poor CES welfare (Theorem 4.8.1); were this not

the case, perhaps it would suffice to simply use linear pricing and accept an approximation of CES

welfare. Next, note that Theorem 4.4.1 requires each agent’s valuation to be homogeneous with the

same degree r. We show that when agents’ valuations have different homogeneity degrees, there exist

instances where no pricing rule can implement CES welfare maximization in WE (Theorem 4.8.2),

and thus our assumption is necessary. We also show that CES welfare maximization cannot be

implemented in WE for ρ < 0 (Theorem 4.8.3), and discuss the special case of ρ = 0 (i.e., Nash

welfare).

There is an additional crucial issue which any practical implementation of Theorem 4.4.1 would

need to address: Sybil attacks. A Sybil attack is when a selfish agent attempts to gain an advantage

in a system by creating fake identities [69]. Since the pricing rule from Theorem 4.4.1 is strictly

convex for ρ < 1, an agent can decrease her payment by masquerading as multiple individuals and

splitting her purchase across those identities.9 In Section 4.7, we propose a model for analyzing

Sybil attacks in markets, and show that if these attacks are possible, there exist instances where no

pricing rule can implement CES welfare maximization in WE (Theorem 4.7.3).10

Additional results. In Section 4.9, we explore connections between our results in the quasilinear

utility model, and the Fisher market fixed-budget model. Section 4.10 shows that Theorem 4.4.1

extends to Leontief valuations, which are not differentiable (so the main proof does not apply).

Leontief valuations have been a focus of prior work, so we find is worthwhile to handle this as a

special case.

4.2.1 Related work

The study of markets has a long history in economics [6, 24, 80, 169, 173]. Recently, this topic

has received substantial attention in the computer science community as well (see [170] for an

8Another interpretation is that WE assumes agents are price-taking (i.e., treat the prices are given and do not lie
about their preferences to affect the equilibrium prices) and breaks down when agents are price-anticipating.

9In contrast, for ρ = 1, there is nothing to be gained by creating fake identities.
10There are combinations of parameters, however, where our pricing rule is naturally robust to Sybil attacks: in

particular, when vi(x)(1−ρ) ≤ κ (where vi(x) is agent i’s value for the maximum CES welfare allocation and κ is the
identity creation cost). This suggests a natural way for an equality-focused social planner to choose a specific value
for ρ: estimate the identity creation cost and scale of valuations in the system of interest, and pick ρ to be as small
as possible without incentivizing Sybil attacks.
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algorithmic introduction). We first provide some important background on the First and Second

Welfare Theorems, and then move on to more recent related work.

The First and Second Welfare Theorems. Conceptually, the First Welfare Theorem estab-

lishes an efficiency property that any WE must satisfy, and the Second Welfare Theorem deals with

implementing a wide range of allocations as WE. The two welfare theorems originate in the context

of Arrow-Debreu markets [6], which generalize Fisher markets to allow for (1) agents to enter the

market with goods (as opposed to just money)11 and (2) production of goods. The statements of

the First and Second Welfare Theorems in that model are, respectively, “Any (linear pricing) WE

is Pareto optimal” and “Any Pareto optimal allocation can be a (linear pricing) WE with transfers,

i.e., under a suitable redistribution of initial wealth”.

In the Fisher market and quasilinear utility models, the First Welfare Theorem can be strength-

ened to “Any (linear pricing) WE maximizes budget-weighted Nash welfare” [72, 73, 170] and “Any

(linear pricing) WE maximizes utilitarian welfare”, respectively. The version of the Second Wel-

fare Theorem stated above is appropriate for Fisher markets, since agents’ budgets constitute the

“initial wealth”. However, for quasilinear utilities, there is no notion of initial wealth (alternatively,

initial wealth is an additive constant in agents’ utilities which does not affect their behavior). Thus

for quasilinear utilities, allowing transfers actually does not affect the set of WE. This may seem

counterintuitive, since the Second Welfare Theorem (which still holds in this setting) states that

any Pareto optimum can be a WE. However, Pareto optimality here is referring to agents’ overall

quasilinear utilities, not the agents’ valuations. It can be shown that the only allocations which

are Pareto optimal with respect to the quasilinear utilities are allocations maximizing utilitarian

welfare, which are already covered by the First Welfare Theorem (without transfers).

Thus on a technical level, the Second Welfare Theorem is not helpful in the world of quasilinear

utilities. However, even when the Second Welfare Theorem is mathematically relevant, a centrally

mandated redistribution of wealth is often out of the question in practice.

CES welfare and the equality/efficiency tradeoff in healthcare. CES welfare have seen

substantial use in healthcare under the name of isoelastic welfare functions. This began with [171],

largely motivated by concerns abeout purely utilitarian approaches to healthcare (i.e., allocating

resources to maximize total health in a community, without concern for equality). Since these

decisions can affect who lives and who dies, significant effort has been invested into understanding

the equality/efficiency tradeoff, with this class of welfare functions serving as a theoretical tool [67,

137, 171]; see Section 4.2.1 for additional discussion.

There have also been several empirical studies aiming to understand the general population’s

view of the equality/efficiency tradeoff, with results generally indicating a disapproval of purely

utilitarian approaches to healthcare [68, 176]. For example, a survey of 449 Swedish politicians

found widespread rejection of purely utilitarian decision-making in healthcare, and under some

conditions, the respondents were willing to sacrifice up to 15 of 100 preventable deaths in order to

ensure equality across subgroups [118].

11These are known as “exchange markets” or “exchange economies”.
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CES welfare and α-fairness in networking. CES welfare functions have also enjoyed con-

siderable attention from the field of networking, under the name of α-fairness (the parameter α

corresponds to 1 − ρ in our definition). The α-fairness notion was proposed by [126], motivated in

part as a generalization of the prominent proportional fairness objective (which is equivalent to Nash

welfare) [110]. See [17] and references therein for further background on α-fairness in networking. To

our knowledge, a market-based understanding was developed only for proportional fairness, starting

with the seminal work of Kelly et al. [110].

The rest of the chapter is organized as follows. Section 4.3 formally defines the model. In

Section 4.4, we present our main result: a simple convex pricing rule implements CES welfare

maximization in WE for ρ ∈ (0, 1] (Theorem 4.4.1). Section 4.5 presents an iterative algorithm for

computing these WE. In Section 4.6, we consider truthful mechanisms for CES welfare maximization.

Section 4.7 discusses Sybil attacks, and Section 4.8 presents our negative results. Section 4.9 discusses

connections to Fisher markets, Section 4.10 shows that our main result extends to Leontief valuations,

Section 4.11 discusses the First Welfare Theorem in more detail, and Section 4.12 provides some

proofs omitted from earlier sections.

4.3 Model

We use the same basic terminology and notation as the previous two chapters (which was defined

in Chapter 1). We continue to focus on divisible goods, where xij can be any real number. In this

chapter, we normalize the supply of each good to be 1 without loss of generality.

This chapter assumes quasilinear utility: ui(xi) = vi(xi) − pi where pi is the payment charged

to agent i. When each agent’s payment only depends on the bundle she receives, i.e., pi = p(xi), we

call p a pricing rule. With the exception of Section 4.6, we will focus on pricing rules. For vi, we

make the following standard assumptions throughout the chapter:

1. Nonzero: There exists a bundle xi such that vi(xi) > 0.

2. Montone: If xij ≥ yij for all j ∈M , then vi(xi) ≥ vi(yi).

3. Normalized: vi(0, . . . , 0) = 0.

Our positive results require the following three additional properties, which we will mention

explicitly whenever used:

4. Concave: For any bundles xi, yi and constant λ ∈ [0, 1], we have vi(λxi+(1−λ)yi) ≥ λvi(xi)+

(1− λ)ui(yi).

5. Homogeneous of degree r: for any bundle xi and constant λ ≥ 0, vi(λxi) = λrvi(xi). For

0 < r < 1, this models diminishing returns. Note that homogeneity implies normalization, and

for monotone and concave vi, we must have r ≥ 0 and r ≤ 1 respectively.

6. Differentiable: for any bundle xi and all j ∈M ,
∂vi(xi)

∂xij
is defined.
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Weighted CES welfare. We use the same CES welfare objective as in previous chapters, but

we know also consider weighed CES welfare. For multipliers a = (a1, a2 . . . an) ∈ Rn≥0 and ρ ∈
(−∞, 0)∪(0, 1], the (weighted) CES welfare of an allocation x is Φa(ρ,x) =

(∑
i∈N aivi(xi)

ρ
)1/ρ

. We

will use Ψa(ρ) to denote CES welfare maximization, i.e., Ψa(ρ) = arg maxx∈Rm≥0
:
∑
i xij≤1 ∀j Φa(ρ,x).

There may be multiple optimal allocations (for example, if there is a good which no one values),

so Ψa(ρ) denotes a set. Thus x ∈ Ψa(ρ) denotes that x has maximum CES welfare. When each

agent has the same multiplier (other than Section 4.9, this will always be the case), we simply write

Φ(ρ,x) and Ψ(ρ).

As an illustrative example, consider a single good and valuations that are homogeneous of degree

1. Utilitarian welfare results in the good being entirely allocated to agents with wi = maxk wk,

with other agents receiving nothing (see Figure 4.1). In contrast, for ρ < 1, the unique allocation

maximum CES welfare welfare gives the following bundle xi ∈ R>0 to each agent i (Lemma 4.6.2):

xi =
wi

ρ
1−ρ∑

k wk
ρ

1−ρ
. One natural case is ρ = 1/2, which results in a proportional allocation.

4.4 Main result

We begin with our main result: for a wide range of valuations and any ρ ∈ (0, 1], a simple convex

pricing rule leads to CES welfare maximization in Walrasian equilibrium. Our pricing rule has many

additional interesting properties; to avoid redundancy, we refer the reader back to our discussion in

Section 4.2. On a high level, the proof relies on the KKT conditions for CES welfare maximization

and the KKT conditions for each agent’s demand set, and uses Euler’s Theorem for homogeneous

functions to conjoin the two. This will result in the following theorem:

Theorem 4.4.1. Assume each vi is homogeneous of degree r, concave, and differentiable. For any

ρ ∈ (0, 1] and any allocation x, we have x ∈ Ψ(ρ) if and only if there exist q1, . . . , qm ∈ R≥0 such

that for the pricing rule

p(xi) = ρr
ρ−1
ρ

( ∑
j∈M

qjxij

)1/ρ

,

(x, p) is a WE. Furthermore, q1, . . . , qm are optimal Lagrange multipliers for Program 4.1.

4.4.1 Proof setup

We begin by setting up the two relevant convex programs and proving several lemmas. For valuations

v1 . . . vn, nonnegative multipliers a = a1 . . . an, and ρ ∈ (−∞, 0) ∪ (0, 1], consider the following

nonlinear program for maximizing CES welfare:

max
x∈Rn×m≥0

1

ρ

∑
i∈N

aivi(xi)
ρ (4.1)

s.t.
∑
i∈N

xij ≤ 1 ∀j ∈M
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Since the constraints are linear and the objective function is concave (since ρ ≤ 1), Program 4.1 is

a convex program. Program 4.1 depends on ρ, but we will leave this implicit when clear from context:

we will simply say “x is optimal for Program 4.1” as opposed to “x is optimal for Program 4.1 with

respect to ρ”. Note also that we are maximizing 1
ρ

∑
i∈N aivi(xi)

ρ instead of the true CES welfare

Φa(ρ,x) = (
∑
i∈N aivi(xi)

ρ)1/ρ; this will lead to the same optimal allocation x and will simplify the

analysis.

When a is not specified, we assume that a = 1. Nonuniform multipliers will only be used in

Section 4.9 when we consider connections to Fisher markets, but we include them here for complete-

ness.

Next, consider each agent’s demand set given a pricing rule p:

Di(p) = arg max
xi∈Rm≥0

(
vi(xi)− p(xi)

)
(4.2)

When p is convex (as in Theorem 4.4.1), −p is concave. Since vi is also concave, vi(xi) − p(xi) is

concave, so each agent’s demand set defines a convex program (Program 4.2). Program 4.2 depends

on i, the agent in question, but again we leave this implicit when it is clear from context.

We will also use the following theorem, due to Euler. We include a short proof in Section 4.12.12

Theorem 4.4.2 (Euler’s Theorem for homogeneous functions). Let f : Rm≥0 → R be differentiable

and homogenous of degree r. Then for any b = (b1, . . . bm) ∈ Rm≥0,
∑m
j=1 bj

∂f(b)

∂bj
= rf(b).

Before we state and prove Theorem 4.4.1, we note one other property: for a pricing rule of the

form p(xi) = c(
∑
j∈M qjxij)

1/ρ where c > 0, good j has nonzero cost (for the purposes of Walrasian

equilibrium) if and only if qj = 0.

4.4.2 Proof of Theorem 4.4.1

The proof of Theorem 4.4.1 is divided into three parts. The first part involves setting up the KKT

conditions for Programs 4.1 and 4.2. The second assumes that x ∈ Ψ(ρ) and proves that (x, p) is a

WE, and the third assumes that (x, p) is a WE and proves that x ∈ Ψ(ρ).

Proof of Theorem 4.4.1. Part 1: Setup. Let q denote the vector (q1, . . . , qm) ∈ Rm≥0; then the La-

grangian of Program 4.1 is L(x,q) = 1
ρ

∑
i∈N vi(xi)

ρ−
∑
j∈M qj(

∑
i∈N xij−1).13 Since Program 4.1

is convex and satisfies strong duality by Slater’s condition, the KKT conditions are both necessary

and sufficient for optimality. That is, x is optimal for Program 4.1 (which is equivalent to x ∈ Ψ(ρ))

if and only if there exist Lagrange multipliers q ∈ Rm≥0 such that both of the following hold:14

12The reason we provide a proof is that this theorem is often stated with the requirement of continuous differentia-
bility, but in fact only requires differentiability; to avoid any confusion, we provide a proof only using differentiability.

13The expert reader may notice that we have omitted the x ∈ Rm×n≥0 constraint from the Lagrangian. We do this

to slightly simplify the analysis. The effect on the KKT conditions is that stationarity changes from “For all i, j,
∂L(x,q)
∂xij

= 0” to “For all i, j,
∂L(x,q)
∂xij

≤ 0, and the inequality holds with equality when xij > 0”.
14The KKT conditions also include primal feasibility and dual feasibility. Since we will only work with valid

allocations x and nonnegative q1, . . . , qm, these two conditions are trivially satisfied.
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1. Stationarity:
∂L(x,q)

∂xij
≤ 0 for all i, j. Furthermore, if xij > 0, the inequality holds with

equality.

2. Complementary slackness: for all j ∈M , either
∑
i∈N xij = 1, or qj = 0.

For a given (i, j) pair,
∂L(x,q)

∂xij
is equal to vi(xi)

ρ−1 ∂vi(xi)

∂xij
−qj , so stationarity for Program 4.1 is

equivalent to: qj ≥ vi(xi)ρ−1 ∂vi(xi)

∂xij
for all i, j, and when xij > 0, the inequality holds with equality.

Next consider Program 4.2, which defines each agent’s demand set. This program has no con-

straints (other than xi ∈ Rm≥0), so we can ignore complementary slackness. Thus by the KKT

conditions, xi ∈ Di(p) if and only if for every j ∈ M ,
∂vi(xi)

∂xij
≤ ∂p(xi)

∂xij
, and if xij > 0, the in-

equality holds with equality (stationarity). We can explicitly compute the partial derivatives of p:
∂p(xi)

∂xij
= r

ρ−1
ρ qj

(∑
`∈M q`xi`

) 1−ρ
ρ .

Part 2: Optimal CES welfare implies WE. Suppose that x ∈ Ψ(ρ). Then there exists

q ∈ Rm≥0 such that qj ≥ vi(xi)ρ−1 ∂vi(xi)

∂xij
for all j, and qj = vi(xi)

ρ−1 ∂vi(xi)

∂xij
whenever xij > 0. Using

the latter in combination with Euler’s Theorem for homogeneous functions, for each (i, j) pair we

have

∂p(xi)

∂xij
= r

ρ−1
ρ qj

(∑
`∈M

q`xi`

) 1−ρ
ρ

= qj

(
r−1

∑
`:xi`>0

q`xi`

) 1−ρ
ρ

= qj

(
r−1

∑
`:xi`>0

vi(xi)
ρ−1 ∂vi(xi)

∂xi`
xi`

) 1−ρ
ρ

(stationarity for xi` when xi` > 0)

= qj

(
r−1vi(xi)

ρ−1
∑
`∈M

∂vi(xi)

∂xi`
xi`

) 1−ρ
ρ

= qj
(
r−1vi(xi)

ρ−1rvi(xi)
) 1−ρ

ρ (Euler’s Theorem)

= qjvi(xi)
1−ρ

Thus
∂p(xi)

∂xij
= qjvi(xi)

1−ρ. Next, we claim that xi ∈ Di(p) for all i ∈ N . Fix an agent i; we show

by case analysis that xi satisfies stationarity (for Program 4.2) for each j ∈M .

Case 1: qj = vi(xi)
ρ−1 ∂vi(xi)

∂xij
. Then

∂p(xi)

∂xij
= qjvi(xi)

1−ρ = vi(xi)
ρ−1 ∂vi(xi)

∂xij
vi(xi)

1−ρ =
∂vi(xi)

∂xij
,

and we are done.

Case 2: xij = 0 and qj ≥ vi(xi)ρ−1 ∂vi(xi)

∂xij
. Then similarly,

∂p(xi)

∂xij
= qjvi(xi)

1−ρ ≥ vi(xi)ρ−1 ∂vi(xi)

∂xij
vi(xi)

1−ρ =

∂vi(xi)

∂xij
, and again we are done. Therefore xi ∈ Di(p) for all i ∈ N .

Since x is a valid allocation,
∑
i∈N xij ≤ 1 for all j ∈ M . This, combined with complementary

slackness for Program 4.1, is identical to the market clearing condition for Walrasian equilibrium.

Thus we have shown that if x ∈ Ψ(ρ), there exist q1, . . . , qm (which are optimal Lagrange multipliers

for Program 4.1) such that for pricing rule p as defined, (x, p) is a WE.
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Part 3: WE implies optimal CES welfare. This is similar to Part 2. Suppose there exists

q ∈ Rm≥0 such that for pricing rule p(xi) = ρr
ρ−1
ρ (
∑
j∈M qjxij)

1/ρ, (x, p) is a WE. Recall the partial

derivatives of p:
∂p(xi)

∂xij
= qj

(
r−1

∑
`∈M q`xi`

) 1−ρ
ρ . We multiply each side by xijr

−1, and sum both

sides over j:

r−1
∑
j∈M

xij
∂p(xi)

∂xij
=
(
r−1

∑
`∈M

q`xi`

) 1−ρ
ρ

r−1
∑
j∈M

qjxij

r−1
∑

j:xij>0

xij
∂p(xi)

∂xij
=
(
r−1

∑
`∈M

q`xi`

) 1−ρ
ρ +1

Since (x, p) is a WE, we have xi ∈ Di(p) for all i ∈ N . Thus
∂vi(xi)

∂xij
=

∂p(xi)

∂xij
whenever xij > 0, so

r−1
∑

j:xij>0

xij
∂vi(xi)

∂xij
=
(
r−1

∑
`∈M

q`xi`

)1/ρ

r−1
∑
j∈M

xij
∂vi(xi)

∂xij
=
(
r−1

∑
`∈M

q`xi`

)1/ρ

vi(xi) =
(
r−1

∑
`∈M

q`xi`

)1/ρ

(Euler’s Theorem)

vi(xi)
ρ−1 =

(
r−1

∑
`∈M

q`xi`

) ρ−1
ρ

Using this in combination with
∂p(xi)

∂xij
= qj

(
r−1

∑
`∈M q`xi`

) 1−ρ
ρ , we get

qj =
∂p(xi)

∂xij

(
r−1

∑
`∈M

q`xi`

) ρ−1
ρ

=
∂p(xi)

∂xij
vi(xi)

ρ−1

Next, we claim that (x,q) satisfies stationarity for Program 4.1. We proceed by case analysis for

each (i, j) pair. Stationarity for Program 4.2 implies that these are the only two possible cases.

Case 1:
∂vi(xi)

∂xij
=

∂p(xi)

∂xij
. In this case, qj =

∂vi(xi)

∂xij
vi(xi)

ρ−1, and we are done.

Case 2: xij = 0 and
∂vi(xi)

∂xij
≤ ∂p(xi)

∂xij
. In this case we have qj ≥

∂vi(xi)

∂xij
vi(xi)

ρ−1, and we are

again done.

Thus (x,q) satisfies stationarity for Program 4.1. Furthermore, the second condition of Walrasian

equilibrium is again identical to the complementary slackness condition. We conclude that x ∈ Ψ(ρ),

and that q1, . . . , qm are optimal Lagrange multipliers for Program 4.1. This completes the proof.

The following corollary states that under this pricing rule, each agent’s resulting value will be

proportional to the her payment. This property will be helpful in future sections, and may also be

interesting independently.
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Corollary 4.4.1.1. Assume each vi is homogeneous of degree r, concave, and differentiable, and

let p(xi) = (
∑
j∈M qjxij)

1/ρ for some q ∈ Rm≥0. Then if xi ∈ Di(p), p(xi) = ρrvi(xi).

Proof. As before, stationarity for Program 4.2 gives us
∂vi(xi)

∂xij
=

∂p(xi)

∂xij
whenever xij > 0. Also note

that by definition, p is homogeneous of degree 1/ρ. Using these two properties in combination with

Euler’s Theorem, we get

∂vi(xi)

∂xij
=
∂p(xi)

∂xij
for all j ∈M s.t. xij > 0∑

j∈M
xij

∂vi(xi)

∂xij
=
∑
j∈M

xij
∂p(xi)

∂xij

rvi(xi) =
1

ρ
p(xi)

Multiplying both sides by 1/ρ completes the proof.

4.5 Towards an implementation

Theorem 4.4.1 guarantees the existence of Walrasian equilibria maximizing CES welfare, but says

nothing about how to find these equilibria. As discussed in Section 4.2, we could always explicitly

ask each agent for her valuation, and directly solve Program 4.1. However, agents are generally not

able to articulate their entire valuations, and even if they are, doing so could be extremely tedious.

In this section, we give an iterative algorithm for computing the WE given by Theorem 4.4.1. The

algorithm will just compute the optimal allocation; Lemma 4.5.1 shows how the equilibrium pricing

rule can easily be obtained once the optimal allocation is in hand. Our algorithm is computationally

equivalent to running the general-purpose ellipsoid method on Program 4.1, i.e., it explores the

exact same sequence of allocations. The key is that we are able to implement the ellipsoid method

only using valuation gradient queries, i.e., “tell me the gradient of your valuation at this point”.

We immediately inherit the correctness and polynomial-time convergence properties of the ellipsoid

algorithm. Throughout this section, we make the same assumptions as in Theorem 4.4.1: each vi is

concave, homogeneous of degree r, and differentiable.

First, recall that the pricing rule from Theorem 4.4.1 takes the form p(xi) = ρr
ρ−1
ρ (
∑
j∈M qjxij)

1/ρ.

Since ρ and r are constants, it suffices to compute q = q1, . . . , qm. Helpfully, Theorem 4.4.1 tells us

that if q are optimal Lagrange multipliers for Program 4.1, then (x, p) is a WE for any x ∈ Ψ(ρ).

The next lemma states if we know an x ∈ Ψ(ρ), and have access to the gradients of the agents’

valuations at x, we can determine optimal Lagrange multipliers.

Lemma 4.5.1. Let x ∈ Ψ(ρ). Then we can determine optimal Lagrange multipliers q using only

∇v1(x1), . . . ,∇vn(xn).

Proof. First, using Euler’s Theorem for homogeneous functions (Theorem 4.4.2), we can obtain

v1(x1), . . . , vn(xn) using only ∇v1(x1), . . . ,∇vn(xn). Next, since x ∈ Ψ(ρ), the KKT conditions for
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Program 4.1 imply that whenever xij > 0, qj = vi(xi)
ρ−1 ∂vi(xi)

∂xij
. Fix a j ∈ M . If xij > 0 for

some agent i, then qj = vi(xi)
ρ−1 ∂vi(xi)

∂xij
. We know all the values on the right hand side, so we can

compute qj . if xij = 0 for all i ∈ N , then complementary slackness implies that qj = 0.

Thus it suffices to find an allocation x ∈ Ψ(ρ), which is equivalent to finding an x that is optimal

for Program 4.1. There are many iterative algorithms for solving convex programs of this form.

Furthermore, many only require (1) oracle access to the objective function and its gradient, and (2)

a separation oracle15 for the constraint set (and no additional assumptions of strong convexity or

other properties). For the sake of specificity, we focus on the ellipsoid method [33], but any algorithm

with these properties is sufficient for our purposes.

Lemma 4.5.2 ([33]). Let f be a convex function and let X be a convex set. Consider the program

minx∈X f(x). Let E be a ball containing the minimum of f , and suppose there exists a polynomial-

time separation oracle for X . Then the ellipsoid method starting from E requires only oracle access

to f and ∇f , and converges to the minimum of f in polynomial time.

In our case, we have a trivial polynomial-time separation oracle: simply check each constraint

to see if it is violated. For the gradient of our objective function, we have
∂

∂xij

(
1
ρ

∑
i∈N vi(xi)

ρ
)

=

∂vi(xi)

∂xij
vi(xi)

ρ−1. By Euler’s Theorem for homogeneous functions (Theorem 4.4.2), we have

∂vi(xi)

∂xij
vi(xi)

ρ−1 =
∂vi(xi)

xij

(
r−1

∑
`∈M

xi`
∂vi(xi)

xi`

)ρ−1

(4.3)

Similarly,

1

ρ

∑
i∈N

vi(xi)
ρ =

1

ρ

∑
i∈N

(
r−1

∑
j∈M

xij
∂vi(xi)

∂xij

)ρ
(4.4)

Therefore for any allocation x, we can compute both the objective function value and the gradient

of the objective function using only the gradients of v1, . . . , vn. The final ingredient we need is an

initial ball guaranteed to contain the optimum; we can simply enclose the entire feasible region in a

ball of constant radius.

Thus we get the following iterative algorithm for computing the equilibrium pricing rule:

1. Run the ellipsoid method (or any other suitable convex optimization algorithm) to solve Pro-

gram 4.1.

2. At the start of each iteration, ask each agent i for the gradient of vi at the current point x.

3. Whenever the algorithm requires the gradient of the objective function at x, compute it via

Equation 4.3.

15A separation oracle is an algorithm which, given a point x and a convex set X , determines whether x ∈ X . If
x 6∈ X , it must return a separating hyperplane (if X is specified by a set of constraints, returning a violated constraint
is sufficient).
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4. Whenever the algorithm requires the objective function value at x, compute it via Equation 4.4.

Lemma 4.5.2 immediately implies correctness and polynomial-time convergence.

4.5.1 Eliciting the gradients of valuations

The above algorithm (as well as Lemma 4.5.1) requires us to have access the gradients of agents’

valuations. We could simply ask each agent for this information explicitly; depending on the appli-

cation domain, this may or may not be reasonable. An alternative approach is to relate ∇vi(xi) to

agent i’s willingness to pay. For example, consider the following query to agent i: “Suppose you have

already bought the bundle xi. What is the smallest marginal price for good j such that you would

not buy more of good j?” The KKT conditions for agent i’s demand set imply that the answer to

this question is exactly
∂vi(xi)

∂xij
(assuming that the agent would not buy more if she is indifferent).

Such a query could be implemented in a variety of ways. One possibility would be gradually

increasing the hypothetical marginal price of good j in a continuous fashion, and asking agent i to

say “stop” when she would no longer buy more of good j (in a “moving-knife”-like fashion). Also,

rather asking agents about hypothetical marginal prices, one could build the necessary marginal

prices into an actual pricing rule, e.g., even one as simple as p(xi) =
∑
j∈M cjxij . The choice of

implementation would depend heavily on the specific problem setting; our point here is that there

are a variety of ways to elicit ∇vi(xi) via queries about what agent i would purchase in different

(hypothetical) situations.

4.6 Truthfulness

An alternative approach to implementation is via truthful mechanisms. Walrasian equilibria are

generally not truthful: agents can sometimes create more favorable equilibrium prices by lying about

their preferences. In this section, we present a truthful mechanism for optimizing CES welfare in

the case of a single good (Theorem 4.6.1), and show that it is unique up to additive constants in

the payment rule (Theorem 4.6.2). Note that uniqueness beyond additive constants in the payment

rule can never be achieved without additional assumptions (e.g., individual rationality), since such

constants do not affect the behavior of agents.

Before formally stating and proving these results, we mention an important distinction between

this section and Section 4.5. Section 4.5 is an implementation of the WE from Theorem 4.4.1

(which we know maximizes CES welfare). In contrast, the truthful mechanism from this section is

an implementation of CES welfare maximization directly, not an implementation of the WE from

Theorem 4.4.1. Indeed, we know that the payment rule from Theorem 4.4.1 is not truthful, so we

must consider a different payment rule if we desire truthfulness.

To define our truthful mechanism we need the following two lemmas, whose proofs appear in

Appendix 4.12. The first states that for a single good, homogeneous and differentiable functions take

a very simple form. The second states that for a single good, the maximum CES welfare allocations

take a very simple form; also, for ρ 6= 1, the optimum is unique.
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Lemma 4.6.1. Let f : R≥0 → R≥0 be differentiable and homogeneous of degree r. Then there exists

c ∈ R≥0 such that f(x) = cxr.

Lemma 4.6.2. Let m = 1 and vi(xi) = wix
r
i for all i ∈ N where r ∈ (0, 1]. Then ρ ∈ (0, 1] and

rρ 6= 1, x ∈ Ψ(ρ) if and only if

xi =
wi

ρ
1−rρ∑

k∈N wk
ρ

1−rρ

If x ∈ Ψ(ρ) and r = ρ = 1, then whenever xi > 0, wi = maxk∈N wk.

We now define our mechanism. For ρ = 1, the VCG mechanism truthfully maximizes utilitarian

welfare [135], so assume ρ ∈ (0, 1). We ask each agent i to report wi (where vi(xi) = wi · xri ),
assume the wi’s are truthful, and output the (unique) optimal allocation x ∈ Ψ(ρ) according to

Lemma 4.6.2. Let b = b1, . . . , bn be the vector of reported wi’s. We then charge each agent i the

following payment:16

pi(b) =
rρ

1− rρ

(∑
k 6=i

b
ρ

1−rρ
k

)∫ bi

b=0

b
rρ

1−rρ(
b

ρ
1−rρ +

∑
k 6=i b

ρ
1−rρ
k

)r+1
db (4.5)

This payment is chosen so that the derivative of agent i’s utility at bi = wi is 0. In particular, let

xi(b) denote agent i’s bundle under reports b. Then we will have
∂vi(xi(b))

∂bi
= rwi

∂xi(b)

∂bi
xi(b)r−1,

and
∂pi(b)

∂bi
= rbi

∂xi(b)

∂bi
xi(b)r−1, so the derivative of agent i’s overall utility will be

∂ui(b)

∂bi
= r(wi −

bi)
∂xi(b)

∂bi
xi(b)r−1. This will imply that it is optimal for agent i to truthfully report bi = wi.

Theorem 4.6.1. Assume m = 1, and that each vi is homogenous of degree r (with r publicly

known), concave, and differentiable. Then for all ρ ∈ (0, 1), there is a truthful mechanism which

outputs an allocation x ∈ Ψ(ρ).

Proof. Since VCG satisfies the claim for ρ = 1, assume ρ ∈ (0, 1). Let x(b) denote the allocation

outputted given reports b, and let xi(b) denote agent i’s bundle: formally, xi(b) =
bi

ρ
1−rρ∑

k∈N bk
ρ

1−rρ
.

Since m = 1, Lemma 4.6.1 implies that for all i ∈ N , there exists wi ∈ R≥0 such that vi(x) = wi ·xr

for all x ∈ R≥0. Then by Lemma 4.6.2, xi(b) ∈ Ψ(ρ), so it remains to prove truthfulness.

Since we assume that each agent’s valuation is not identically zero, we have wi > 0. Also, by

concavity and monotonicity of vi, we have r ∈ (0, 1]. Thus 0 < rρ < 1. Since we also have bi > 0,

all denominators in pi(b) are nonzero and thus pi(b) is well-defined.

Let vi(b) = vi(xi(b)) = wixi(b)r for brevity, and let ui(b) = vi(b) − pi(b) denote agent i’s

resulting utility under bids b. Note that xi(b), vi(b), pi(b), and ui(b) are all differentiable with

respect to bi. Also let α =
ρ

1− rρ
for brevity; then pi(b) = rα(

∑
k 6=i b

α
k )
∫ bi
b=0

brα

(bα +
∑
k 6=i b

α
k )r+1

db

and xi(b) =
bαi∑
k∈N bαk

.

16Although this integral does not have a simple closed form, it can be expressed via the hypergeometric function.
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To prove truthfulness, we need to show that wi ∈ arg maxbi∈R>0
ui(b), i.e., truthfully reporting

wi is an optimal strategy for agent i.17 Since ui(b) is differentiable with respect to bi, we have
∂ui(b)

∂bi
=

∂vi(b)

∂bi
− ∂pi(b)

∂bi
. The first term on the right hand side is

∂vi(b)

∂bi
= rwi

∂xi(b)

∂bi
xi(b)r−1

The second term is

∂pi(b)

∂bi
= rα

(∑
k 6=i

bαk

) brαi
(bαi +

∑
k 6=i b

α
k )r+1

= rα
(∑
k 6=i

bαk

) brαi
(
∑
k∈N b

α
k )r+1

= rα
(∑
k 6=i

bαk

) bαi
(
∑
k∈N b

α
k )2

( bαi∑
k∈N b

α
k

)r−1

= rα
(∑
k 6=i

bαk

) bαi
(
∑
k∈N b

α
k )2

xi(b)r−1

Conveniently, we have
∂

∂bi

( bαi∑
k∈N bαk

)
= α

(∑
k 6=i b

α
k

) bα−1
i

(
∑
k∈N bαk )2

. Thus

∂pi(b)

∂bi
= rbi

∂

∂bi

( bαi∑
k∈N b

α
k

)
xi(b)r−1

= rbi
∂xi(b)

∂bi
xi(b)r−1

Therefore
∂ui(b)

∂bi
= r(wi − bi)

∂xi(b)

∂bi
xi(b)r−1

Since ∂xi(b)
∂bi

> 0 and xi(b)r−1 > 0 for all bi, this implies

1. For all bi < wi,
∂ui(b)

∂bi
> 0.

2. For all bi > wi,
∂ui(b)

∂bi
> 0.

3. For bi = wi,
∂ui(b)

∂bi
= 0.

Therefore wi ∈ arg maxbi∈R>0
(in fact, wi is the unique maximizer). We conclude that the

mechanism is truthful.

From a technical standpoint, the harder task is proving that this mechanism is unique (up to

additive constants in the payment rule). We assume without loss of generality that the mechanism

17Note that ui(b) is not concave in bi, since pi(b) is not convex in bi. Thus the KKT conditions do not apply, so
we will have to use a different approach.
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asks each agent i to report wi, and let b = b1, . . . , bn be the vector of reported wi’s. We use the

standard notation of (b−i, b
′
i) to denote the vector where the ith entry is b′i, and the kth entry for

each k 6= i is bk.

The proof takes a real analysis approach, with Kirszbraun’s Theorem for Lipschitz extensions [111]

playing a central role. On a high level, the proof proceeds as follows: (1) we establish some basic

properties of the payment rule, (2) we show that the payment rule must be Lipschitz continuous not

including bi = 0, (3) there exists a Lipschitz extension p̂i including bi = 0 (Kirszbraun’s Theorem),

(4) since p̂i is Lipschitz, it is differentiable almost everywhere and is equal to the integral of its deriva-

tive, (5) since it has the same derivative (when defined) as the payment rule from Theorem 4.6.1,

the payment rules are equal (up to the constant of integration).

Theorem 4.6.2. Assume m = 1, and that each vi is homogenous of degree r (with r publicly

known), concave, and differentiable. Fix ρ ∈ (0, 1), and let Γ be a truthful mechanism which outputs

an allocation x ∈ Ψ(ρ). Then the allocation rule is the same as in Theorem 4.6.1, and the payment

rule pi(b) is the same up to an additive constant.

Proof. Part 1: Setup and basic properties. Since there is a unique optimal allocation (Lemma 4.6.2),

Γ must take b = (b1, . . . , bn) as honest and output the same allocation x(b).

It remains to consider the payment rule. Let pi(b) denote the payment rule from Theorem 4.4.1,

and let p̃i(b) denote the payment rule for Γ. Given reports b, define vi(b) as before, and let

ui(b) = vi(b)− p̃i(b) be agent i’s resulting utility under Γ. From the point of view of a given agent i,

the other agents’ reports b−i can be treated as a constant. Thus for brevity, write xi(b) = xi(b−i, b),

pi(b) = pi(b−i, b), and p̃i(b) = p̃i(b−i, b) for each i ∈ N .

Fix an i ∈ N . Since Γ is truthful, we must have wi ∈ arg maxbi∈R>0
ui(b). Then by definition of

ui(b), we have wi ∈ arg maxbi∈R>0

(
wixi(bi)

r − p̃i(bi)
)
. Since wi could be any element of R>0, and

Γ must be agnostic to wi, we must have b ∈ arg maxbi∈R>0

(
bxi(bi)

r − p̃i(bi)
)

for all b ∈ R>0.

We first claim that p̃i(b) is nondecreasing. Suppose the opposite: then there exists exists b > b′

such that p̃i(b) < p̃i(b
′). But this means that if wi = b′, reporting bi = wi is never an optimal

strategy, because the payment can be decreased by reporting bi = b, and xi(b) ≥ xi(b
′) (since xi(b)

is nondecreasing). Thus p̃i(b) is nondecreasing.

Part 2: p̃i is Lipschitz continuous. Fix an arbitrary bi > 0. Since bk > 0 for all k 6= i, it

can be seen from the definition of xi(b) that xi(b)
r is continuously differentiable on [0, bi]. Therefore

the maximum of
dxi(b)

r

db
is a Lipschitz constant for xi(b)

r, so xi(b)
r is Lipschitz continuous on [0, bi].

Let κ be this Lipschitz constant: then for all b, b′ ∈ [0, bi], |xi(b)r − xi(b′)r| ≤ κ|b− b′|.
We claim that p̃i is Lipschitz continuous on (0, bi] with constant biκ. Suppose the opposite: then

there exist b, b′ ∈ (0, bi] such that |p̃i(b) − p̃i(b′)| > biκ|b − b′|. Assume without loss of generality

that b > b′. Since p̃i and xi are both nondecreasing, we then have p̃i(b) − p̃i(b′) > biκ(b − b′) and

xi(b)
r − xi(b′)r ≤ κ(b− b′).

Since b ∈ arg maxbi∈R>0

(
bxi(bi)

r − p̃i(bi)
)
, we have bxi(b)

r − p̃i(b) ≥ bxi(b
′)r − p̃i(b′) and thus

b(xi(b)
r − xi(b′)r) ≥ p̃i(b)− p̃i(b′). Therefore

bκ(b− b′) ≥ b
(
xi(b)

r − xi(b′)r
)
≥ p̃i(b)− p̃i(b′) > biκ(b− b′)
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Therefore
bκ

biκ
> 1, which contradicts b ≤ bi. Therefore p̃i is Lipschitz continuous on (0, bi].

Part 3: Kirszbraun’s Theorem. Thus by Kirszbraun’s Theorem [111], p̃i has a Lipschitz

extension to [0, bi]: that is, there exists p̂i : [0, bi] → R≥0 such that p̂i is Lipschitz continuous on

[0, bi], and p̂i(b) = p̃i(b) for b ∈ (0, bi].

Part 4: p̂i is the integral of its derivative. Lipschitz continuity implies absolute continu-

ity [157], so p̂i is absolutely continuous on [0, bi]. Thus by the Fundamental Theorem of Lebesgue

Calculus [157], p̂i is differentiable almost everywhere on [0, bi], its derivative
dp̂i(b)

db
is integrable over

[0, bi], and

p̂i(bi)− p̂i(0) =

∫ bi

b=0

dp̂i(b)

db
db

Part 5: The derivatives of p̂i and pi match, so p̂i = pi + c. Consider a b > 0 at which

p̂i is differentiable. Then p̃i is also differentiable, so b ∈ arg maxbi∈R>0

(
bxi(bi)

r − p̃i(bi)
)

implies
dp̃i(b)

db
= b

d

db
(xi(b)

r) = rb
dxi(b)

db
xi(b)

r−1.18 We showed in the proof of Theorem 4.6.1 that
∂pi(b)

∂bi
=

rbi
∂xi(b)
∂bi

xi(b)r−1; equivalently,
dpi(b)

db
= rbdxi(b)

db xi(b)
r−1. Therefore for all b > 0 at which p̂i is

differentiable, we have
dp̂i(b)

db
=

dpi(b)

db
.

Since p̂i is differentiable almost everywhere, we have
dp̂i(b)

db
=

dpi(b)

db
almost everywhere. Thus

dpi(b)

db
is also integrable over [0, bi], and

∫ bi
b=0

dpi(b)

db
db =

∫ bi
b=0

dp̂i(b)

db
db [157]. Therefore

p̂i(bi) = p̂i(0) +

∫ bi

b=0

dpi(b)

db
db

= p̂i(0) + pi(bi)

where the second equality is from the definition of pi(b).

Therefore for all bi > 0, p̃i(bi) = p̂i(0) + pi(bi), and so p̃i(b) = p̂i(0) + pi(b) for all b. Since

this holds for all i ∈ N , p̃i(b) is exactly the payment rule from Theorem 4.6.1, up to the additive

constant of p̂i(0).

It is worth noting that this truthful payment rule is quite complex; in particular, it may be

hard to convince agents that it is actually in their best interest to be truthful. In contrast, the

Walrasian pricing rule from Theorem 4.4.1 is much simpler and more intuitive. That pricing rule is

not truthful, but perhaps formal truthfulness is not crucial if a practical iterative implementation is

possible. We do not claim that our algorithm from Section 4.5 is truly practical, but it could be a

step in the right direction.

18Note that the b in bxi(bi)
r is a constant from the point of view of the argmax, so it is treated as a constant by

the derivative. To be technically precise, we have ( d
dbi

bxi(bi)
r)|bi=b = rb

dxi(b)
db

xi(b)
r−1.
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4.7 Sybil attacks

In Sections 4.5 and 4.6, we discussed two alternative approaches to implementation: an iterative

query-based algorithm, and a truthful mechanism. However, there is an additional crucial issue

which any practical implementation must address: since our pricing rule p(xi) = (
∑
j∈M qjxij)

1/ρ is

strictly convex for ρ < 1, agents have an incentive to create fake identities. In particular, an agent

can decrease her payment while receiving the same bundle by splitting the payment over multiple

fake identities.19 This is known as a Sybil attack. The truthful payment rule from Section 4.6 is

not strictly convex everywhere, but it is strictly convex on some intervals, and thus has the same

vulnerability.

Model of Sybil attacks. We model this as follows. Let κ denote the cost of creating a new

identity. The cost could reflect inconvenience, risk of getting caught, or other factors, and would

depend on the nature of the system. Let ηi be the multiplicity of agent i, i.e., the number of identities

agent i controls in the system. This includes both fake identities and the agent’s single real identity,

so we assume that ηi ∈ N>0. For convex p, multiplicity ηi, and a desired bundle for purchase, it is

always optimal for agent i to split the purchase evenly across her identities.20 Thus we can assume

that each identity purchases the same bundle xi, and we define agent i’s utility as

ui(xi, ηi) = vi(ηixi)− ηip(xi)− ηiκ

We do not claim that this perfectly models the reality of Sybil attacks; for example, the identity

creation cost is arguably sublinear (one someone has created a single fake identity, creating more

might become easier). Our goal here is simply to show formally that at least in some cases, CES

welfare maximization cannot be robust to Sybil attacks in general.

Walrasian equilibrium. We focus on a Walrasian model of Sybil attacks; the analogous analysis

for truthful mechanisms is left as an open question. We define each agent’s Sybil demand set by

Di(p) = arg max
xi∈Rm≥0

,ηi∈N>0

ui(xi, ηi)

Note that we require ηi ∈ N>0. We define a Sybil Walrasian equilibrium (SWE) to be an allocation

x, payment rule p, and vector of multiplicities η = η1, . . . , ηn such that

1. Each agent receive a bundle in her demand set: (xi, ηi) ∈ Di(p) for all i ∈ N .

2. The market clears: for all j ∈ M ,
∑
i∈N xij ≤ 1. Furthermore, for any j ∈ M with nonzero

cost21,
∑
i∈N xij = 1.

19Note that for linear prices there is no such incentive.
20This is essentially a multidimensional version of Jensen’s inequality; see, e.g., [130].
21Recall that good j has “nonzero cost” in our pricing rule if qj > 0.
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In this section, we will focus on the case of homogeneity degree r = 1. The following lemma

states that for any pricing rule, a rational agent either creates no fake identities (i.e, ηi = 1), or

creates an unbounded number (and consequently the demand set is empty).

Lemma 4.7.1. Assume each vi is concave, differentiable, and homogeneous of degree 1. Let ρ ∈
(0, 1], define p as in Theorem 4.4.1, and let x ∈ Ψ(ρ). Then we have

Di(p) =

(xi, 1) if vi(xi)(1− ρ) ≤ κ

∅ otherwise

where xi is agent i’s bundle in x.

Proof. When vi is homogeneous of degree 1, for any bundle yi, we have ui(yi, ηi) = ηivi(yi) −
ηip(yi) − ηiκ = ηi

(
vi(yi) − p(yi) − κ

)
. Thus given a choice of ηi, yi must be chosen to maximize

vi(yi) − p(yi) − κ. Let x ∈ Ψ(ρ): then by Theorem 4.4.1 yi optimizes vi(yi) − p(yi) (and thus

vi(yi)− p(yi)− κ) if and only if yi = xi. Therefore the demand set is equal to

Di(p) =
(
xi, arg max

ηi∈N>0

ηi
(
vi(xi)− p(xi)− κ

))
That is, the demanded bundle must always be xi, and ηi is optimized accordingly.

By Corollary 4.4.1.1, p(xi) = ρvi(xi), so vi(xi)− p(xi)−κ = vi(xi)(1−ρ)−κ. Thus if vi(xi)(1−
ρ) ≤ κ, then 1 is an optimal choice for ηi, so (xi, 1) ∈ Di(p). However, if vi(xi)(1− ρ) > κ, there is

no optimal choice for ηi: specifically, ηi goes to infinity. Thus if vi(xi)(1− ρ) > κ, Di(p) = ∅.

This immediately implies that if x ∈ Ψ(ρ) satisfies vi(xi)(1 − ρ) ≤ κ for all i ∈ N , the convex

pricing rule from Theorem 4.4.1 is naturally robust to Sybil attacks.

Theorem 4.7.1. Assume each vi is concave, differentiable, and homogeneous of degree 1. Let

x ∈ Ψ(ρ) for ρ ∈ (0, 1], and define p as in Theorem 4.4.1. Then if vi(xi)(1 − ρ) ≤ κ for all i ∈ N ,

(x, p,1) is a SWE.

Proof. By Lemma 4.7.1, we have (xi, 1) ∈ Di(p) for all i ∈ N in this case. Theorem 4.4.1 implies

that the market clearing condition is met, so (x, p,1) is a SWE.

In other words, if the identity creation cost is small, ρ is close to 1, and/or agents valuations are

not too large, we need not worry about Sybil attacks. As discussed in Section 4.2, this suggests one

possible way for a social planner to choose a value of ρ: estimate κ and the magnitude of valuations,

and choose ρ to be as small as possible without incentivizing Sybil attacks.

On the other hand, if vi(xi)(1 − ρ) > κ, how bad are the consequences? Theorem 4.7.2 states

that an agent’s valuation at equilibrium has a hard cap at
κ

1− ρ
. This provides a hard maximum

on the CES welfare in any SWE with p thus defined: in particular, the CES welfare is at most(∑
i∈N

(
κ

1−ρ
)ρ)1/ρ

= n1/ρ κ
1−ρ . In general, each vi(xi) (and thus the CES welfare) can be arbitrarily

large, so Theorem 4.7.2 implies an unbounded ratio between the optimal CES welfare and that of

any SWE with this p.
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Theorem 4.7.2. Assume each vi is concave, differentiable, and homogeneous of degree 1. Let

ρ ∈ (0, 1], and define p as in Theorem 4.4.1. Then for any allocation x and multiplicities η such

that (x, p,η) is a SWE, we have

vi(xi) ≤
κ

1− ρ

Proof. Suppose (x, p,η) is a SWE for some allocation x and multiplicities η: then each (xi, ηi) ∈
Di(p) for all i ∈ N ; Thus Di(p) 6= ∅, so Lemma 4.7.1 implies that vi(xi)(1−ρ) ≤ κ, and consequently,

vi(xi) ≤ κ
1−ρ .

The next natural question is, can we circumvent this by using a different pricing rule? Theo-

rem 4.7.3 answers this in the negative. The counterexample uses an instance with a single good;

recall that xi denotes a scalar in this case.

Theorem 4.7.3. Let m = 1, v1(x1) = wx1, and vi(xi) = xi for all i 6= 1. Let (x, p,η) be any SWE.

Then for all i 6= 1,

vi(xi) ≤
κ

w − 1

Proof. Let (x, p,η) be any SWE. Fix an arbitrary i ∈ N . As in Lemma 4.7.1, we have ui(xi, ηi) =

ηi(vi(xi)− p(xi)− κ). Since (xi, ηi) ∈ Di(p), we must have ηi ∈ arg maxη′i∈N>0
ηi(vi(xi)− p(xi)− κ)

(note that we are not assuming anything about the bundle xi). Since arg maxη′i∈N>0
η′i(vi(xi) −

p(xi)− κ) cannot be the empty set, we must have vi(xi) ≤ p(xi) + κ and ηi = 1.

Focusing on agent 1, we further claim that v1(xi) ≤ p(xi) + κ for any i 6= 1. Suppose not: then

agent 1 could purchase xi and set η1 = ∞ to increase her utility. Thus v1(xi) ≤ p(xi) + κ for each

i 6= 1. Now looking at the optimization for i 6= 1, we have vi(xi) ≥ p(xi). Combining this with

v1(xi) ≤ p(xi) + κ, we get v1(xi) ≤ vi(xi) + κ.

Plugging in our definitions of v1 and vi 6=1, we get wxi ≤ xi + κ, so xi(w − 1) ≤ κ. Substituting

back in the definition of vi, we get vi(xi) ≤
κ

w − 1
for all i 6= 1, as required.

Although the bound in Theorem 4.7.3 is different from that in Theorem 4.7.2, the implication

is the same: this is a hard maximum on the value obtained by any agent other than agent 1. As κ

goes to zero, the fraction of the good agent 1 receives approaches 1, so the outcome approaches the

maximum utilitarian welfare outcome (where agent 1 receives the entirety of the good). Therefore

by Theorem 4.8.1, the CES welfare at any Sybil Walrasian equilibrium (for any pricing rule) can be

arbitrarily bad in comparison to the optimal CES welfare. Thus in general, when Sybil attacks are

possible, it is impossible to implement any bounded approximation of CES welfare maximization in

Walrasian equilibrium.

4.8 Negative results

Even when Sybil attacks are not possible, there are limitations to implementation in WE. This

section presents several relevant counterexamples.
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4.8.1 Linear pricing poorly approximates CES welfare for ρ 6= 1

Recall that for an allocation x, Φ(ρ,x) denotes the CES welfare of x. In contrast, Ψ(ρ) denotes the

set of allocations with optimal CES welfare with respect to ρ.

Our first negative result relates to linear pricing. In particular, can linear pricing guarantee a

reasonable approximation of CES welfare? We show that the answer is no, justifying the need for

nonlinear pricing. In particular, for any ρ ∈ (0, 1), the gap between the CES welfare of any linear

pricing equilibrium and the optimal CES welfare can be arbitrarily large.

Note that as ρ goes to zero, 1
ρ − 1 goes to infinity, so the denominator of the bound (and thus

the gap in CES welfare) in the following theorem can indeed be arbitrarily large.

Theorem 4.8.1. Let m = 1, ρ ∈ (0, 1], v1(x) = (1 + ε)x for some ε > 0, and vi(x) = x for all

i 6= 1. Suppose (x, p) is a WE where p is linear. Then

Φ(ρ,x)

maxy Φ(ρ,y)
≤ 1 + ε

n
1
ρ−1

Proof. By the First Welfare Theorem, x must maximize utilitarian (i.e., ρ = 1) welfare. Thus by

Lemma 4.6.2, x must give the entire good to agent 1: x1 = 1 and xi = 0 for i 6= 1. Thus the CES

welfare of x with respect to ρ is

Φ(ρ,x) =
(∑
i∈N

vi(xi)
ρ
)1/ρ

=
(
(1 + ε)ρ

)1/ρ
In contrast, consider the allocation y such that yi = 1/n for all i ∈ N :

Φ(ρ,y) =
(∑
i∈N

vi(1/n)ρ
)1/ρ

≥
(∑
i∈N

(1/n)ρ
)1/ρ

=
(
n(1/n)1/ρ

)1/ρ

= n
1
ρ−1

Thus maxy Φ(ρ,y) ≥ n
1
ρ−1, as required.

4.8.2 Theorem 4.4.1 does not extend to nonuniform homogeneity degrees

In this section, we show that for all ρ ∈ (0, 1), Theorem 4.4.1 does not extend to the case where

different vi’s have different homogeneity degrees. This shows that our result is tight in the sense

that it is necessary to require the same homogeneity degree.

We begin with the following lemma, which is a standard property of strictly concave and differ-

entiable functions: it essentially states that any such function is bounded above by any tangent line.

This lemma is sometimes called the “Rooftop Theorem”.

Lemma 4.8.1. Let f : R → R be strictly concave and differentiable. Then for all a, b ∈ R where

a 6= b, f(a) < f(b) + f ′(b)(a− b), where f ′ denotes the derivative of f .

The next lemma is also quite standard; we provide a proof for completeness.
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Lemma 4.8.2. Let f : R → R be strictly concave and differentiable, and let x, a1, . . . , ak be non-

negative reals such that
∑k
i=1 ai = 0. Then

∑k
i=1 f(x+ ai) < kf(x).

Proof. The lemma follows from Lemma 4.8.1 and arithmetic:

k∑
i=1

f(x+ ai) <

k∑
i=1

(f(x) + f ′(x)(x+ ai − x))

=

k∑
i=1

f(x) + f ′(x)

k∑
i=1

ai

=

k∑
i=1

f(x) + f ′(x) · 0

= kf(x)

We are now ready to present our counterexample.

Theorem 4.8.2. Let n = 2 and m = 1, and for x ∈ R≥0, let v1(x) = x and v2(x) =
√

2x. Then for

all ρ ∈ (0, 1), there exists no allocation x ∈ Ψ(ρ) and pricing rule p : R≥0 → R≥0 such that (x, p) is

a WE.

Proof. Suppose for sake of contradiction that such x, p do exist. We first claim that x1 > x2.

Suppose the opposite: then x2 ≥ 1/2 ≥ x1. Thus v2(x2) ≥ 1 > 1/2 ≥ v1(x1). We also have
∂v2(x2)

∂x2
=

1
√

2x2
≤ 1 =

∂v1(x1)

∂x1
. Thus v2(x2) > v1(x2) and

∂v2(x2)

∂x2
≤ ∂v1(x1)

∂x1
. Since ρ < 1, ρ− 1 < 0,

so we have v2(x2)ρ−1 ∂v2(x2)

∂x2
< v1(x1)ρ−1 ∂v1(x1)

∂x2
. But this contradicts x ∈ Ψ(ρ), so we have x1 > x2

as claimed.22

Since (x, p) is a WE, we must have xi ∈ Di(p) for both agents i. Thus for any x 6= xi, vi(xi)−
p(xi) ≥ vi(x)− p(x). Therefore

v1(x1)− p(x1) ≥ v1(x2)− p(x2) and v2(x2)− p(x2) ≥ v2(x1)− p(x1)

v1(x1) + v2(x2)− p(x1)− p(x2) ≥ v1(x2) + v2(x1)− p(x1)− p(x2)

v1(x1) + v2(x2) ≥ v1(x2) + v2(x1)

v1(x1)− v1(x2) ≥ v2(x1)− v2(x2)

Since x1 > 1/2 > x2 and x1 + x2 = 1, let x1 = 1/2 + ε and x2 = 1/2 − ε. Then we have

v1(x1)− v1(x2) = 2ε. For v2(x1)− v2(x2), we have

v2(x1)− v2(x2) =
√

1 + 2ε−
√

1− 2ε

=
(
√

1 + 2ε−
√

1− 2ε)(
√

1 + 2ε−
√

1− 2ε)√
1 + 2ε+

√
1− 2ε

22This immediately implies
∂v2(x2)
∂x2

< 1 =
∂v1(x1)
∂x1

, which, in combination with x1 > x2, rules out convex p.

However, we still need to rule out non-convex p.
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=
(1 + 2ε)− (1− 2ε)√

1 + 2ε+
√

1− 2ε

=
4ε√

1 + 2ε+
√

1− 2ε

Applying Lemma 4.8.2 with f(x) =
√
x, x = 1, k = 2, and (a1, a2) = (2ε,−2ε), we get

√
1 + 2ε +√

1− 2ε < 2. Thus v2(x1) − v2(x2) > 4ε/2 = 2ε = v1(x1) − v1(x2). However, this contradicts

v1(x1)− v1(x2) ≥ v2(x1)− v2(x2), as we showed above. We conclude that there is no x ∈ Ψ(ρ) and

pricing rule p such that (x, p) is a WE.

4.8.3 CES welfare maximization for ρ ≤ 0

In this section, we show that there is no pricing rule supporting CES welfare maximization for any

ρ < 0. For ρ = 0 (i.e., Nash welfare), the situation is slightly different. We do show, however, that

Nash welfare maximization cannot be supported by a differentiable pricing rule.

Theorem 4.8.3. Consider the instance with n = 2, m = 1, v1(x) = x and v2(x) = 2x. Then for

every ρ < 0, there is no pricing rule p and allocation x ∈ Ψ(ρ) such that (x, p) is a WE.

Proof. For any ρ < 0 and any x ∈ Ψ(ρ), we must have x1 > x2. Assume (x, p) is a WE for some

pricing rule p: then x1 ∈ D1(p), so v1(x1)− p(x1) ≥ v1(x2)− p(x2). Thus p(x1) ≤ p(x2) + v1(x1)−
v2(x2) = p(x2) + x2 − x1. Therefore

v2(x1)− p(x1) ≥ 2x1 − (p(x2) + x2 − x1)

= 3x1 − x2 − p(x2)

> 2x1 − p(x2)

> 2x2 − p(x2)

= v2(x2)− p(x2)

Thus agent 2 would rather purchase x1 than x2, so x2 6∈ D2(p). Therefore (x, p) is not a WE.

For ρ = 0, the situation is different. Recall that Fisher market equilibrium always maximizes

Nash welfare, and we can simulate Fisher market budgets by setting

p(xi) =

0 if
∑
j∈M qjxij ≤ 1

∞ otherwise

where q1 . . . qm are the optimal Lagrange multipliers in the convex program for maximizing Nash

welfare. Gale and Eisenberg’s famous result implies that for such a pricing rule, a WE always

exists, and all WE maximize Nash welfare [72, 73]. Note that for
∑
j∈M qjxij > 1, p(xi) = ∞ can

be implemented by setting
∂p(xi)

∂xij
to be at least maxi∈N maxxi∈[0,1]m

∂vi(xi)

∂xij
. This ensures that no

agent purchases a bundle xi such that
∑
j∈M qjxij > 1.
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The above pricing rule is somewhat artificial, however. One natural question is whether Nash

welfare maximization can be implemented with a differentiable pricing rule. We next show that the

answer is no.

Theorem 4.8.4. Consider the instance with n = 2, m = 1, v1(x) = x and v2(x) = 2x. Then there

is no allocation x maximizing Nash welfare and differentiable pricing rule p such that (x, p) is a WE.

Proof. Suppose the opposite: that such x, p exist. The unique x maximizing Nash welfare must

have x1 = x2 = 1/2. Since p, v1, and v2 are all differentiable, we have xi ∈ Di(p) if and only if
dp(xi)

dxi
=

dvi(xi)

dxi
. Since x1 = x2, we have

dp(x1)

dx1
=

dp(x2)

dx2
. Thus implies

dv1(x1)

dx1
=

dv2(x2)

dx2
, which is

a contradiction. We conclude that no such x, p exist.

4.9 Connections to Fisher markets

The focus of this chapter is on markets for quasilinear utilities, where agents can spend as much

money as they want, and the amount spent is incorporated into their resulting utility. The other

predominant market model assumes each agent i has a finite budget Bi of money to spend, and has

no value for leftover money (in general, this implies that each agent i spends exactly Bi). This is

called the Fisher market model.23 In this section, we explore connections between our results and

the Fisher market model.

In the Fisher market model, each agent’s utility ui(xi) is simply vi(xi). For pricing rule p, the

Fisher market demand set is given by

DF
i (p) = arg max

xi∈Rm≥0
: p(xi)≤Bi

vi(xi)

We will reserve the notation Di(p) for the demand set in the quasilinear case, i.e., Di(p) =

arg maxxi∈Rm≥0
(vi(xi)− p(xi)).

For an allocation x, agent budgets B = (B1, . . . , Bn), and a pricing rule p, (x,B, p) is a Fisher

market Walrasian equilibrium if (1) xi ∈ DF
i (p) for all i ∈ N , and (2)

∑
i∈N xij ≤ 1 for all

j ∈ M , and if good j has nonzero cost,
∑
i∈N xij = 1.24 These are the same two conditions for

Walrasian equilibrium in quasilinear markets: the only change is the definition of the demand set.

To distinguish, we will use the terms “Fisher WE” and “quasilinear WE”.

4.9.1 CES welfare maximization in Fisher markets

In the quasilinear model, agents can express not only their relative values between goods, but also

the absolute scale of their valuation (i.e., the “intensity” of their preferences) by choosing how much

money to spend. In contrast, agents in the Fisher market model spend exactly their budget, and

so have no way to express the absolute scale of their valuation. This should make us pessimistic

23There are also more general versions of this model that allow each agent’s initial endowment to be goods instead
of money (“exchange economies”) and/or allow production (“Arrow-Debreu markets”).

24Recall that good j has nonzero cost for j if there is a bundle xi such that xi` = 0 for all ` 6= j, but p(xi) > 0.
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about the possibility of CES welfare maximization in the Fisher market model in general. Indeed,

consider a single good and two agents with valuations v1(x) = x, v2(x) = 2x. For any ρ > 0, any

optimal allocation x ∈ Ψ(ρ) has x2 > x1. But if B1 = B2, any Fisher market Walrasian equilibrium

will always have x1 = x2, since both agents simply spend their entire budget on the single good.

However, in general we can convert a quasilinear WE to a Fisher WE if the agents’ budgets are

sized appropriately. Specifically, we need agent i’s budget to be exactly the amount she pays in the

quasilinear WE:

Theorem 4.9.1. Suppose (x, p) is a quasilinear WE, and let Bi = p(xi). Then (x,B, p) is a Fisher

WE.

Proof. For all i ∈ N , xi is affordable to agent i under p by definition of Bi. Suppose there were

another bundle yi such that p(yi) ≤ Bi but vi(yi) > vi(xi). That would contradict xi ∈ Di(p)

for the quasilinear case, since ui(yi) = vi(yi) − p(yi) > vi(xi) − p(yi) ≥ vi(xi) − p(xi) = ui(xi).

Therefore xi ∈ DF
i (p) for all i ∈ N . Furthermore, the market clearing conditions for Fisher WE and

quasilinear WE are identical. We conclude that (x,B, p) is a Fisher WE.

Combining the above result with Theorem 4.4.1 gives us the following corollary for CES welfare

maximization:

Corollary 4.9.1.1. Assume each vi is homogeneous of degree r, concave, and differentiable. Let

ρ ∈ (0, 1], and p(xi) = ρr
ρ−1
ρ (
∑
j∈M qjxij)

1/ρ, where q1, . . . , qm are optimal Lagrange multipliers for

Program 4.1. For x ∈ Ψ(ρ), let Bi = p(xi) for all i ∈ N , Then (x,B, p) is a Fisher WE.

Perhaps the more interesting connection relates to the welfare function being optimized. In the

case of linear pricing, the Fisher market Walrasian equilibria are exactly the budget-weighted maxi-

mum Nash welfare allocations.25 One natural question is whether the Fisher market equilibria from

Theorem 4.9.1 also optimize a budget-weighted CES welfare function. We answer this in the affir-

mative. Recall that we define ΦB(ρ,x) =
(∑

i∈N Bivi(xi)
ρ
)1/ρ

, and ΨB(ρ) = arg maxx ΦB(ρ,x).

Lemma 4.9.1. Assume each vi is concave and differentiable. Let x′ be any allocation, let ai = vi(x
′
i)

for each i ∈ N , and let ρ ∈ (0, 1]. Then x′ ∈ Ψ(ρ) if and only if x′ ∈ Ψa(ρ− 1).

Proof. When ρ = 1, ρ − 1 = 0, so Program 4.1 does not apply, and we must handle this case

separately. We first consider ρ 6= 1. The Lagrangian for Program 4.1 for Ψa(ρ − 1) is L(x,q) =
1
ρ−1

∑
i∈N aivi(xi)

ρ−1 −
∑
j∈M qj(

∑
i∈N xij − 1). The KKT conditions imply that x ∈ Ψa(ρ− 1) if

and only if there exist Lagrange multipliers q1, . . . , qm such that:

1. Stationarity:
∂L(x,q)

∂xij
= aivi(xi)

ρ−2 ∂vi(xi)

∂xij
≤ 0 for all i, j.26 Furthermore, if xij > 0, the

inequality holds with equality.

2. Complementary slackness: for all j ∈M , either
∑
i∈N xij = 1, or qj = 0.

25Recall that Nash welfare corresponds to ρ = 0, and the budget-weighted Nash welfare of an allocation x is∏
i∈N vi(xi)

Bi .
26Note that since x′ is a fixed allocation, ai is just some constant, so the differentiation does not affect it.
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For Program 4.1 for Ψ(ρ), as before we have L′(x,q) = 1
ρ

∑
i∈N vi(xi)

ρ−
∑
j∈M qj(

∑
i∈N xij−1).

Thus the KKT conditions imply that x ∈ Ψ(ρ) if and only if there exist q′1, . . . , q
′
m ∈ R≥0 such that

(1) vi(xi)
ρ−1 ∂vi(xi)

∂xij
≤ qj for all i, j, and when xij > 0, the inequality holds with equality, and (2)

for all j ∈M , either
∑
i∈N xij = 1, or qj = 0. Note that if qj = q′j for all j ∈M , the complementary

slackness conditions become equivalent.

Next, for x = x′ we have

vi(x
′
i)
ρ−1 ∂vi(x

′
i)

∂x′ij
= vi(x

′
i)vi(x

′
i)
ρ−2 ∂vi(x

′
i)

∂x′ij
= aivi(x

′
i)
ρ−2 ∂vi(x

′
i)

∂x′ij

Therefore for given qj , we have qj ≥ vi(x
′
i)
ρ−1 ∂vi(x

′
i)

∂x′ij
if and only if qj ≥ aivi(x

′
i)
ρ−2 ∂vi(x

′
i)

∂x′ij
, and

qj = vi(x
′
i)
ρ−1 ∂vi(x

′
i)

∂x′ij
if and only if qj ≥ aivi(x′i)ρ−2 ∂vi(x

′
i)

∂x′ij
.

Now suppose x′ ∈ Ψ(ρ). Then there exist q1, . . . , qm ∈ R≥0 that satisfy both stationarity

and complementary slackness. Then as we showed above, x′ and q1, . . . , qm satisfy stationarity

for Ψa(ρ − 1). Furthermore, the complementary slackness conditions are equivalent, so we have

x′ ∈ Ψa(ρ− 1).

Similarly, suppose x′ ∈ Ψa(ρ − 1). Then there exist q1, . . . , qm satisfying stationarity and com-

plementary slackness, so the same q1, . . . , qm along with x′ satisfy the KKT conditions for Ψ(ρ).

Therefore Ψ(ρ), and we conclude that x′ ∈ Ψ(ρ) if and only if x′ ∈ Ψa(ρ− 1) for ρ 6= 1.

All of the above was for ρ 6= 1; it remains to handle the case of ρ = 1. In this case, we can use

the same KKT conditions for Ψ(ρ), but must use a different convex program for Ψa(ρ−1). Consider

the following convex program for maximizing Nash welfare (i.e., CES welfare for ρ = 0):

max
x∈Rn×m≥0

∑
i∈N

ai log vi(xi) (4.6)

s.t.
∑
i∈N

xij ≤ 1 ∀j ∈M

This is known as the Eisenberg-Gale program [72, 73]. In this case, the stationarity condition

requires that
∂

∂xij
ai log vi(xi) = aivi(xi)

−1 ∂vi(xi)

∂xij
≤ qj for all i, j, and when xij > 0, the inequality

holds with equality. Since ρ = 1 here, we have ρ − 2 = −1. Thus the stationarity condition for

Ψa(ρ − 1) requires that avi(xi)
ρ−2 ∂vi(xi)

∂xij
≤ qj for all i, j (and if xij > 0, this holds with equality).

This is exactly what we had above, and since we are using the same KKT conditions for Ψ(ρ), this

case reduces to the case for ρ 6= 1. Therefore for ρ = 1, x′ ∈ Ψ(ρ) if and only if x′ ∈ Ψa(ρ− 1).

Combining Theorem 4.9.1 and Lemma 4.9.1, we get:

Theorem 4.9.2. Assume each vi is homogeneous of degree r, concave, and differentiable, let ρ ∈
(0, 1], let q1, . . . , qm ∈ R≥0, and let p(xi) = ρ

(∑
j∈M qjxij

)1/ρ
. Given x ∈ Ψ(ρ), let Bi = p(xi).

Then all of the following hold:

1. (x, p) is a quasilinear WE.
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2. (x,B, p) is a Fisher WE.

3. x ∈ ΨB(ρ− 1)

Proof. The first and second conditions hold by Theorems 4.4.1 and 4.9.1, respectively. Then Corol-

lary 4.4.1.1 implies that p(xi) = rρvi(xi). Let ai = vi(xi) =
Bi

rρ
. Thus by Lemma 4.9.1, we have

x ∈ Ψa(ρ− 1). Since scaling all agents’ multipliers by the same factor does not affect Ψa(ρ− 1), we

have x ∈ Ψrρa(ρ− 1) = ΨB(ρ− 1), as required.

It is worth noting that the special case of Theorem 4.9.1 for ρ = 1 and Leontief utilities with

wij ∈ {0, 1}27 is implied by the work of Kelly et al. [110].

4.10 CES welfare maximization for Leontief valuations

We say that vi is Leontief if there exist weights w1, . . . , wm ∈ R≥0 such that

vi(xi) = min
j: wij 6=0

xij
wij

Leontief valuations are not differentiable, and so Theorem 4.4.1 does not apply. In this section, we

handle Leontief valuations as a special case. Although there are many non-differentiable valuations

we could consider, Chapters 2 and 3 focused on Leontief valuations, so we find it worthwhile to show

that our result does indeed extend to this case.

Recall Program 4.1:

max
x∈Rn×m≥0

1

ρ

∑
i∈N

vi(xi)
ρ

s.t.
∑
i∈N

xij ≤ 1 ∀j ∈M

We will work with a specialized version of this for Leontief utilities:

max
x∈Rn×m≥0

,α∈Rm≥0

1

ρ

∑
i∈N

αρi (4.7)

s.t. wijαi ≤ xij ∀i ∈ N, j ∈M∑
i∈N

xij ≤ 1 ∀j ∈M

where we use α to denote the vector (α1, . . . , αn) ∈ Rn≥0.

Also recall each agent’s demand set Di(p) = arg maxxi∈Rm≥0

(
vi(xi) − p(xi)

)
. Similarly to Pro-

gram 4.7, we consider the following equivalent (specialized) convex program for agent i’s demand

27This is also known as the bandwidth allocation setting, where each good represents a link in a network, and agent
i has wij = 1 for every link j on a fixed path (and wij = 0 otherwise).
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set:

max
xi∈Rm≥0

,αi∈R≥0

(
αi − p(xi)

)
(4.8)

s.t. wijαi ≤ xij ∀j ∈M

Theorem 4.10.1. Assume each vi is Leontief with weights wi1, . . . , wim. Then for any ρ ∈ (0, 1]

and any allocation x, we have x ∈ Ψ(ρ) if and only if there exist q1, . . . , qm ∈ R≥0 such that for

the pricing rule p(xi) = ρ(
∑
j∈M qjxij)

1/ρ, (x, p) is a WE. Furthermore, q1, . . . , qm are optimal

Lagrange multipliers (for the
∑
i∈N xij ≤ 1 constraints) for Program 4.7.

Proof. We first claim that in an optimal solution x,α to either Program 4.7 or Program 4.8, we

have vi(xi) = αi for all i ∈ N : that is, that these programs are doing what we want them to. To

see this, note that αi ≤ xij/wij for all j with wij 6= 0, so αi ≤ vi(xi). Furthermore, at least one

constraint involving αi must be tight: otherwise, we could increase αi and thus the objective value.

In particular, we must have αi = minj: wij 6=0
xij
wij

= vi(xi). Thus Program 4.8 is indeed maximizing

vi(xi)−p(xi), so xi ∈ Di(p) if and only if (xi, αi) is optimal for Program 4.8 (for some αi). Similarly,

Program 4.7 is indeed maximizing 1
ρ

∑
i∈N vi(xi)

ρ subject to
∑
i∈N xij ≤ 1 for all j ∈M , so (x,α)

is optimal for Program 4.7 if and only if x is optimal for Program 4.1. Therefore x ∈ Ψ(ρ) if and

only if (x,α) is optimal for Program 4.7 (for some α).

Next, we write the Lagrangian of Program 4.7:28

L(x,α,q,λ) =
1

ρ

∑
i∈N

αρi −
∑
i∈N

∑
j∈M

λij(wijαi − xij)−
∑
j∈M

qj

(∑
i∈N

xij − 1
)

We have strong duality by Slater’s condition, so the KKT conditions are both necessary and sufficient

for optimality. That is, (x,α) is optimal if and only if there exist q ∈ Rm≥0, λ ∈ Rm×n≥0 such that all

of the following hold:29

1. Stationarity for x:
∂L(x,α,q,λ)

∂xij
≤ 0 for all i, j. Furthermore, if xij > 0, the inequality holds

with equality.

2. Stationarity for α:
∂L(x,α,q,λ)

∂αi
≤ 0 for all i ∈ N . Furthermore, if αi > 0, the inequality holds

with equality.

3. Complementary slackness for q: for all j ∈M , either
∑
i∈N xij = 1, or qj = 0.

4. Complementary slackness for λ: for all i ∈ N , j ∈M , either wijαi = xij or λij = 0.

Similarly, let L′i denote the Lagrangian of Program 4.8 for agent i:

L′i(xi, αi, λi) = αi − p(xi)−
∑
j∈M

λij(wijαi − xij)

28As in the proof of Theorem 4.4.1, we omit the x ∈ Rm×n≥0 constraint from the Lagrangian incorporate it into the

KKT conditions instead.
29As in the proof of Theorem 4.4.1, primal and dual feasibility are trivially satisfied.
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where λi = (λi1, . . . , λim) ∈ Rm≥0. We again have strong duality, so the KKT conditions are again

necessary and sufficient. Let L′i(xi, αi, λi) denote the Lagrangian of this program; then (xi, αi) is

optimal for Program 4.8 if and only if all of the following hold:

1. Stationarity for xi:
∂L′i(xi, αi, λi)

∂xij
≤ 0 for all j ∈ M . If xij > 0, the inequality holds with

equality.

2. Stationarity for αi:
∂L′i(xi, αi, λi)

∂αi
≤ 0. If αi > 0, the inequality holds with equality.

3. Complementary slackness for λi: for all i ∈ N , j ∈M , either wijαi = xij or λij = 0.

We will claim that (x,α,q,λ) is optimal for Program 4.7 if and only if for all i ∈ N , (xi, αi, α
1−ρ
i λi)

is optimal for Program 4.8. Essentially, we show that if complementary slackness holds (for either

program), the stationarity conditions are equivalent. To begin, we can explicitly compute the rele-

vant partial derivatives for given x,α,q,λ, with p(xi) = ρ(
∑
j∈M qjxij)

1/ρ:

∂L(x,α,q,λ)

∂xij
= λij − qj

∂L(x,α,q,λ)

∂αi
= αρ−1

i −
∑
j∈M

λijwij

∂L′i(xi, αi, λ
′
i)

∂xij
= λ′ij − qj

(∑
`∈M

q`xi`

) 1−ρ
ρ

∂L′i(xi, αi, λ
′
i)

∂αi
= 1−

∑
j∈M

λ′ijwij

Part 1: ( =⇒ ) Suppose that x ∈ Ψ(ρ). Then there exist α,q,λ such that the KKT conditions

for Program 4.7 are satisfied for (x,α,q,λ). We first claim that αi > 0 for all i ∈ N . Suppose not:

stationarity implies that αρ−1
i ≤

∑
j∈M λijwij , but since ρ− 1 < 0, the left hand side is not defined

for αi = 0. Thus αi > 0.

Therefore by stationarity for αi, we have αρ−1
i =

∑
j∈M λijwij . Let λ′ij = α1−ρ

i λij for all i, j30.

Then αρ−1
i =

∑
j∈M λijwij is equivalent to 1 =

∑
j∈M λ′ijwij , and thus

∂L′i(xi, αi, λ
′
i)

∂αi
= 0 for all

i ∈ N . Thus for all i ∈ N , (xi, αi, λ
′
i) satisfies stationarity for αi for Program 4.8.

We now turn to the xij variables. Stationarity for xij in Program 4.7 implies that λij = qj

whenever xij > 0. Furthermore, complementary slackness for λij implies that if λij > 0, wijαi = xij .

Thus whenever qj > 0 and xij > 0, wijαi = xij and λij = qj . Therefore for all i, j,

∂L′i(xi, αi, λ
′
i)

∂xij
= λ′ij − qj

( ∑
`:q`,xi`>0

q`xi`

) 1−ρ
ρ

= λ′ij − qj
(∑
`∈M

λi`wi`αi

) 1−ρ
ρ

30Note that this is not defining λ′ij to be a function of αi. This is defining λ′ij based on a fixed value of αi: in

particular, the value from (x,α,q,λ), which we assumed to be optimal for Program 4.7. Consequently, the derivatives
in the KKT conditions treat λ′ij as a constant.
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= λ′ij − qj
(
αi
∑
`∈M

λi`wi`

) 1−ρ
ρ

= λ′ij − qj(αiα
ρ−1
i )

1−ρ
ρ

= α1−ρ
i λij − qjα1−ρ

i

= α1−ρ
i

∂L(x,α,q,λ)

∂xij

We have
∂L(x,α,q,λ)

∂xij
≤ 0 for all i, j by stationarity (and the inequality holds with equality when

xij > 0), so
∂L′i(xi,αi,λ

′
i)

∂xij
≤ 0 for all j ∈ M (and the inequality holds with equality when xij > 0).

Thus for each i ∈ N , (xi, αi, λ
′
i) satisfies stationarity for Program 4.8 for xij for all j ∈M .

As mentioned above, we have wijαi = xij whenever λij > 0. Since λ′ij > 0 if and only if λij > 0,

we have wijαi = xij whenever λ′ij > 0. Thus for each i ∈ N , (xi, αi, λ
′
i) satisfies complementary

slackness for Program 4.8. Therefore (xi, αi, λ
′
i) satisfies the KKT conditions, and thus is optimal

for Program 4.8. Therefore xi ∈ Di(p) for all i ∈ N . The complementary slackness condition for q

is identical to the market clearing condition, so we conclude that (x, p) is a WE.

Part 2: ( ⇐= ) Suppose that (x, p) is a WE, where p(xi) = ρ(
∑
j∈M qjxij)

1/ρ for constants

q1, . . . , qm ∈ R≥0. Then xi ∈ Di(p) for all i ∈ N , so there exists α,λ′ such that (xi, αi, λ
′
i) is optimal

for Program 4.8 for all i ∈ N .

Thus by stationarity, we have
∂L′i(xi,αi,λ

′
i)

∂αi
≤ 0 and

∂L′i(xi,αi,λ
′
i)

∂xij
≤ 0 for all i, j (and if αi > 0

and xij > 0, the inequalities hold with equality). Using the definition of p, we have
∂L′i(xi,αi,λ

′
i)

∂xij
=

λ′ij − qj
(
p(xi)/ρ

)1−ρ
. Thus 1 ≤

∑
j∈M λ′ijwij and λ′ij ≤ qj

(
p(xi)/ρ

)1−ρ
.

We first claim that αi > 0 for all i ∈ N . For each agent i, there must exist j ∈ M such that

λ′ij > 0 and wij > 0: otherwise 1 ≤
∑
j∈M λ′ijwij would be impossible. Consider any such j: then

0 < λ′ij ≤ qj
(
p(xi)/ρ

)1−ρ
, so we must have p(xi) > 0. Suppose αi = 0: then the optimal objective

value of Program 4.8 is αi− p(xi) < 0. But setting xij = 0 for all j ∈M achieves an objective value

of 0, so αi − p(xi) < 0 cannot be optimal. This is a contradiction, and so αi > 0 for all i ∈ N .

Returning to the stationarity conditions, we then have 1 =
∑
j∈M λ′ijwij . Complementary

slackness implies that wijαi = xij whenever λ′ij > 0, so we get

αi =
∑
j∈M

λ′ijwijαi

αi =
∑

j:λ′ij>0

λ′ijwijαi

αi =
∑
j∈M

λ′ijxij

Combining this with λ′ij = qj
(
p(xi)/ρ

)1−ρ
whenever xij > 0 gives us

αi =
∑

j:xij>0

λ′ijxij
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=
∑
j∈M

qjxij
(
p(xi)/ρ

)1−ρ
=
(
p(xi)/ρ

)1−ρ ∑
j∈M

qjxij

=
(
p(xi)/ρ

)1−ρ(
p(xi)/ρ

)ρ
= p(xi)/ρ

Now let λij = αρ−1
i λ′ij for all i, j. We claim that (x,α,q,λ) satisfies the KKT conditions for

Program 4.7. For each (i, j) pair, we have

∂L(x,α,q,λ)

∂αi
= αρ−1

i −
∑
j∈M

λijwij = αρ−1
i

(
1−

∑
j∈M

λ′ijwij

)
= αρ−1

i

∂L′i(xi, αi, λ
′
i)

∂αi

Since αi > 0, stationarity for Program 4.8 implies that
∂L′i(xi,αi,λ

′
i)

∂αi
= 0, so we have ∂L(x,α,q,λ)

∂αi
= 0.

Next, we have

∂L(x,α,q,λ)

∂xij
= λij − qj

= αρ−1
i λ′ij − qj

= αρ−1
i (λ′ij − qjα

1−ρ
i )

= αρ−1
i

(
λ′ij − qj

(
p(xi)/ρ

)1−ρ)
= αρ−1

i

∂L′i(xi, αi, λ
′
i)

∂xij

Stationarity for Program 4.8 implies that
∂L′i(xi,αi,λ

′
i)

∂xij
≤ 0 for all i, j (and when xij > 0, this holds

with equality), so we have ∂L(x,α,q,λ)
∂xij

for all i, j (and when xij > 0, this holds with equality). Thus

we have shown that (x,α,q,λ) satisfies stationarity for Program 4.7. As before, the market clearing

condition is equivalent to complementary slackness for q. By complementary slackness for λ′ (for

Program 4.8), we have wijαi = xij whenever λ′ij > 0. By definition, λ′ij > 0 if and only if λij > 0,

so this implies the required complementary slackness for λ (for Program 4.7). Therefore (x,α,q,λ)

satisfies the KKT conditions for Program 4.7, and thus is optimal for that program. We conclude

that x ∈ Ψ(ρ).

4.11 The First Welfare Theorem and linear pricing

Recall our main result:

Theorem 4.4.1. Assume each vi is homogeneous of degree r, concave, and differentiable. For any

ρ ∈ (0, 1] and any allocation x, we have x ∈ Ψ(ρ) if and only if there exist q1, . . . , qm ∈ R≥0 such
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that for the pricing rule

p(xi) = ρr
ρ−1
ρ

( ∑
j∈M

qjxij

)1/ρ

,

(x, p) is a WE. Furthermore, q1, . . . , qm are optimal Lagrange multipliers for Program 4.1.

For this class of valuations, Theorem 4.4.1 for ρ = 1 implies the First Welfare Theorem: p

becomes a linear pricing rule, and CES welfare for ρ = 1 is just utilitarian welfare. In particular,

Theorem 4.4.1 implies both the existence of a WE, and that every WE maximizes utilitarian welfare.

Typically, the “the First Welfare Theorem” refers to just half of this: that every WE maximizes

utilitarian welfare. The reason is that WE are not always guaranteed to exist: for divisible goods,

generally at least concavity or quasi-concavity of valuations is necessary. On the other hand, very few

assumptions are needed to show that linear pricing equilibria always maximize utilitarian welfare;

for example, divisibility of goods is not needed. We provide a proof of this below.

Theorem 4.11.1 (The First Welfare Theorem). Let Xi ⊂ Rm denote the set of feasible bundles

for agent i (not necessarily convex, and not necessarily the same for all agents). Let Di(p) =

arg maxxi∈Xi(vi(xi)−p(xi)) and assume p is linear. Then if (x, p) is a WE, x maximizes utilitarian

welfare.

Proof. Since p is linear, there exist q1, . . . , qm such that p(yi) =
∑
j∈M qjyij for any bundle yi.

Consider an arbitrary feasible allocation y. Since (x, p) is a WE, we have xi ∈ Di(p), so vi(xi) −
p(xi) ≥ vi(yi)− p(yi). Therefore

vi(xi)−
∑
j∈M

qjxij ≥ vi(yi)−
∑
j∈M

qjyij∑
i∈N

vi(xi)−
∑
i∈N

∑
j∈M

qjxij ≥
∑
i∈N

vi(yi)−
∑
i∈N

∑
j∈M

qjxij∑
i∈N

vi(xi)−
∑
j∈M

qj
∑
i∈N

xij ≥
∑
i∈N

vi(yi)−
∑
j∈M

qj
∑
i∈N

xij

Furthermore,
∑
i∈N xij = 1 for all j ∈M with qj > 0. Also, since y is a valid allocation,

∑
i∈N yij ≤

1 for all j ∈M . Therefore∑
i∈N

vi(xi)−
∑
j∈M

qj
∑
i∈N

xij ≥
∑
i∈N

vi(yi)−
∑
j∈M

qj
∑
i∈N

xij∑
i∈N

vi(xi)−
∑
j∈M

qj ≥
∑
i∈N

vi(yi)−
∑
j∈M

qj∑
i∈N

vi(xi) ≥
∑
i∈N

vi(yi)

Thus the utilitarian welfare of x is at least as high as that of any other allocation. We conclude that

x maximizes utilitarian welfare.

Note that no assumptions at all were made on the nature of the valuations: all we needed was

xi ∈ arg maxyi∈Xi(vi(yi) − p(yi)), and
∑
j∈M xij = 1 whenever qj > 0. The most natural cases
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are Xi = Rm≥0 (divisible goods) and Xi = {0, 1}m (indivisible goods), but the result does hold more

broadly.

4.12 Omitted proofs

Theorem 4.4.2 (Euler’s Theorem for homogeneous functions). Let f : Rm≥0 → R be differentiable

and homogenous of degree r. Then for any b = (b1, . . . bm) ∈ Rm≥0,
∑m
j=1 bj

∂f(b)

∂bj
= rf(b).

Proof. Fix an arbitrary b ∈ Rm≥0 and let g(λ) = f(λb). Since f is differentiable, so is g, and

its derivative is given by the multidimensional chain rule: dg(λ)
dλ =

∑m
j=1 bj

∂f(λb)
∂bj

. Since f is

homogeneous of degree r, we have f(λb) = λrf(b) for all λ ≥ 0. Thus g(λ) = λrf(b) for all

λ ≥ 0, so we can differentiable both sides of this equation to get
∑m
j=1 bj

∂f(λb)
∂bj

= rλr−1f(b). This

holds for all λ ≥ 0, so setting λ = 1 completes the proof.

Lemma 4.6.1. Let f : R≥0 → R≥0 be differentiable and homogeneous of degree r. Then there exists

c ∈ R≥0 such that f(x) = cxr.

Proof. By Euler’s Theorem (Theorem 4.4.2), we have x
df(x)

dx
= rf(x) for all x ∈ R≥0. Let y = f(x).

We can solve this differential equation explicitly:

1

y
· dy

dx
=
r

x∫
1

y
· dy

dx
dx =

∫
r

x
dx∫

1

y
dy = r

∫
1

x
dx

ln y = r lnx+ ln c

where c (and thus ln c) is some constant. Therefore

ey = er ln x+ln c

y = cxr

Thus f(x) = cxr, as required.

Lemma 4.6.2. Let m = 1 and vi(xi) = wix
r
i for all i ∈ N where r ∈ (0, 1]. Then ρ ∈ (0, 1] and

rρ 6= 1, x ∈ Ψ(ρ) if and only if

xi =
wi

ρ
1−rρ∑

k∈N wk
ρ

1−rρ

If x ∈ Ψ(ρ) and r = ρ = 1, then whenever xi > 0, wi = maxk∈N wk.

Proof. As in Section 4.4, strong duality for Program 4.1 implies that any optimal x must satisfy

the KKT conditions. Thus x ∈ Ψ(ρ) if and only if there exists q ∈ R≥0 such that (1) stationarity
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holds:
∂vi(xi)

∂xi
vi(xi)

ρ−1 ≤ q for all i ∈ N , and if xi > 0, the inequality holds with equality, and (2)

complementary slackness holds: either
∑
i∈N xi = 1, or q = 0.

Since we assume that wi > 0 for all i ∈ N , any allocation with
∑
i∈N xi < 1 is not Pareto

optimal, and thus cannot be optimal for Program 4.1. In other words, we must have q > 0. Thus

complementary slackness simply requires that
∑
i∈N xi = 1, and we can focus on stationarity.

We first handle ρ = 1. In this case,
∂vi(xi)

∂xi
vi(xi)

ρ−1 =
∂vi(xi)

∂xi
= wi. Thus if x ∈ Ψ(ρ) we must

have wi ≤ q, and if xi > 0, then wi = q. This implies that q = maxk∈N wk. Thus if xi > 0, then

wi = maxk∈N wk, as required.

For the rest of the proof, we assume rρ 6= 1. Since r, ρ ∈ (0, 1], we have 0 < rρ < 1. By the

definition of vi, for an arbitrary allocation x and i ∈ N we have

∂vi(xi)

∂xi
vi(xi)

ρ−1 = (wirx
r−1
i )(wρ−1

i x
r(ρ−1)
i ) = rwρi x

rρ−1
i

Thus q ≥ rwρi x
rρ−1
i . Since rρ < 1, if xi = 0, then xrρ−1

i is undefined. Therefore stationarity is

satisfied if and only if q = rwρi x
rρ−1
i for all i ∈ N , which is equivalent to

xi = (q/r)
1

rρ−1w
ρ

1−rρ
i (4.9)

Furthermore, if x satisfies Equation 4.9 for all i ∈ N , then
∑
i∈N xi = 1 is equivalent to

∑
i∈N

(q/r)
1

rρ−1w
ρ

1−rρ
i = 1

(q/r)
1

rρ−1 =
(∑
i∈N

wi
ρ

1−rρ

)−1

Therefore x satisfies stationarity and complementary slackness (and thus satisfies x ∈ Ψ(ρ)) if and

only if

xi =
wi

ρ
1−rρ∑

k∈N wk
ρ

1−rρ

as required.

4.13 Conclusion

In this chapter, we studied a simple family of convex pricing rules, motivated by the widespread use

of convex pricing in the real world, especially for water. We proved that these pricing rules implement

CES welfare maximization in Walrasian equilibrium, providing a formal quantitative interpretation

of the frequent informal claim that convex pricing promotes equality. Furthermore, by tweaking the

exponent of the pricing rule, the social planner can precisely control the tradeoff between equality

and efficiency. This result also shows that convex pricing is not necessarily economically inefficient,

as often claimed; it simply maximizes a different welfare function than the traditional utilitarian
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one.

Improved implementation is perhaps the most important of the future directions we propose. One

concrete possibility is a tâtonnement : an iterative algorithm where on each step, each agent reports

her demand for the current pricing rule, and the pricing rule is adjusted accordingly. Demand queries

are arguably easier for agents to answer than valuation gradient queries. Some implementation

questions – in particular, how to deal with Sybil attacks – would likely need to be handled on a

case-by-case basis.

Aside from the implementation itself, there is the additional challenge of convincing market

designers to consider using this type of convex pricing. Equality is generally thought to be desirable,

but sellers may be concerned that this will decrease their revenue. In future work, we hope to show

that our pricing rule guarantees a good approximation of the optimal revenue for sellers.

Another possible direction would be CES welfare maximization for indivisible goods. The anal-

ogous pricing rule would be p(S) = (
∑
j∈S qj)

1/ρ, where S is a set of indivisible goods. It seems

like very different theoretical techniques would be needed in this setting (along with perhaps a gross

substitutes assumption), but we suspect that the same intuition of convex pricing improving equality

would hold.
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Part II

Axiomatic Private Resource

Allocation
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Chapter 5

A new fairness axiom:

envy-freeness up to any good

(EFX)

We now move on to axiomatic objectives for private resource allocation. This field is often referred

to as “fair division”, since the axioms are typically motivated by fairness in some way (the discussion

in Section 1.1 is relevant). Perhaps the most pervasive fairness axiom is envy-freeness, which states

that no agent should prefer another agent’s bundle to her own. In this chapter (in fact, in all of

Part II), we focus on indivisible goods, where envy-free allocations do not always exist: consider two

agents a single good.

This motivates the study of relaxed versions of envy-freeness. We study the envy-freeness up

to any good (EFX) property, which states that no player prefers the bundle of another player

following the removal of any single good. First, we use the leximin solution to show existence of EFX

allocations in several contexts, sometimes in conjunction with Pareto optimality. For two players

with valuations obeying a mild assumption, one of these results provides stronger guarantees than

the currently deployed algorithm on Spliddit, a popular fair division website. Unfortunately, finding

the leximin solution can require exponential time. We show that this is necessary by proving an

exponential lower bound on the number of value queries needed to identify an EFX allocation, even

for two players with identical valuations. We consider both additive and more general valuations,

and our work suggests that there is a rich landscape of problems to explore in the fair division of

indivisible goods with different classes of player valuations.

These constitute the first formal results regarding EFX, an axiom which has enjoyed substantial

attention since (e.g., [3, 39, 45, 46, 92]).
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5.1 Introduction

Fair division has a long history, with the earliest known mechanism for solving the problem dating

back to the Bible. No, not war; the cut-and-choose protocol. When Abraham and Lot first arrive in

the land of Canaan, Abraham suggests that they divide the land between them. Abraham partitions

the land into two parts and lets Lot choose which part he would like to keep.

What makes this procedure “fair”? By dividing the land into two pieces he values equally,

Abraham can ensure that he will not envy Lot’s piece, regardless of which piece Lot takes. Since

Lot presumably chooses his favorite piece, he will not envy Abraham. This means that the cut-and-

choose protocol guarantees an envy-free allocation, meaning that each player likes their allocation

at least as much as any other player’s allocation.

The cut-and-choose protocol is defined for two players and divisible goods, meaning that each

good can be divided into arbitrarily small pieces. In this chapter, we consider the setting of indivisible

goods, meaning that the resource in question is a set of discrete goods, each of which must be wholly

allocated to a single player. Unfortunately, envy-freeness cannot be guaranteed in this setting. We

see this even with two players and a single good: one player must receive the good, and the other

will surely be envious.

Consequently, other notions of fairness are needed. Budish [35] introduced the concept of envy-

freeness up to one good (EF1). In an EF1 allocation, player i may envy player j, but the envy

could be eliminated by removing a single good from player j’s allocation. The good is not actually

removed; this is a thought experiment used in the definition of envy-freeness up to one good. An

EF1 allocation always exists, and can be computed in polynomial time [119].1

Caragiannis et al. [40] proposed another fairness criterion, one which is strictly stronger than

EF1, but strictly weaker than full envy-freeness. An allocation is envy-free up to any good (EFX)

if for any i, j where player i envies player j, removing any good from j’s allocation would eliminate

i’s envy. Do EFX allocations always exist? This chapter takes the first steps toward answering this

question.

5.1.1 Applications

The non-profit website Spliddit (www.spliddit.org) is one of the most promising applications of

fair division theory [98]. Spliddit implements mechanisms for several fair division problems: rent

division [84], taxi fare division, credit assignment (i.e., for a group project or academic paper) [50],

task distribution [140, 37], and distribution of indivisible goods. These mechanisms are available for

public use at no cost: users can simply log in, define what is to be divided, and enter their valuations.

Since the site’s launch in November 2014, there have been over 60,000 users [40]. The company Fair

Outcomes, Inc. (http://www.fairoutcomes.com) offers fair division services in a similar vein.

Another compelling fair division application is allocating courses among students. Students have

preferences regarding which courses they would like to take, but each course has a limited capacity.

1The algorithm of [119] was originally published in 2004 with a different property in mind, as the EF1 property
was not proposed until 2011 by [35].
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The Wharton School at the University of Pennsylvania now uses a theoretically-grounded mechanism

titled Course Match to fairly allocate courses among MBA students, which has led to demonstrably

higher satisfaction and perceived fairness among students [35, 36].

A major selling point of these services is that their solutions are guaranteed to satisfy certain

fairness properties. For example, in the case of distribution of indivisible goods on Spliddit, users

know that the solution will be envy-free up to one good and Pareto optimal [40]. Our hope is

that further work in the area of fair division of indivisible goods will allow user-facing services like

Spliddit, Fair Outcomes, Inc., and Course Match to offer users even stronger fairness guarantees.

5.1.2 Prior work

A detailed survey of the fair division literature is outside the scope of this chapter, and we discuss

only the works most closely related to ours. See e.g., [27, 128, 28] for further background.

Lipton et al. [119] gave an algorithm whose solution is guaranteed to be EF1 for general valu-

ations. By a valuation, we mean a function specifying a player’s value for each bundle she might

receive. By general, we mean that the only assumptions imposed on valuation functions are normal-

ization (the value of the empty set is 0), and monotonicity (adding goods to a bundle cannot make

it worse).

Their algorithm allocates the goods in rounds and ensures that the partial allocation at the end

of each round is EF1. At the beginning of each round, an unenvied player is identified; if no such

player exists, there must be a cycle of envy, and bundles can be swapped along such cycles until no

cycles of envy remain. An arbitrary good is then given to this unenvied player. This player may

become envied after receiving this good, but the envy could be eliminated by removing the good

she just received (since she was unenvied prior to receiving that good). This ensures that whenever

player i envies player j, the envy could be eliminated by removing the most recent good given to

player j, so the resulting allocation is EF1.

Caragiannis et al. [40] studied the case where valuations are additive, meaning that each player’s

value for a set of goods is the sum of her values for the individual goods. They showed that

the allocation maximizing the product of players’ utilities (the maximum Nash welfare solution) is

guaranteed to be both EF1 and Pareto optimal, assuming valuations are additive. In contrast, the

algorithm of Lipton et al. [119] does not guarantee a Pareto optimal allocation.2

Caragiannis et al. [40] also proposed the fairness criterion of envy-freeness up to any good, and

left the possible existence of EFX allocations as an open problem. We are not aware of any results

regarding EFX allocations prior to this work.

However, there has been substantial follow-up work on this topic. Perhaps the largest break-

through was that of [45], who showed that EFX allocations are guaranteed to exist for three agents

with additive valuations.

2Suppose there are two players with additive valuations v1, v2 over three goods, a, b, c, where v1({a}) = 3, v1({b}) =
2, v1({c}) = 4 and v2({a}) = 4, v2({b}) = 3, v2({c}) = 2. The algorithm of Lipton et al. [119] could first allocate a to
player 1, then b to player 2, and finally c also to player 2. The resulting allocation is EF1, but giving {c} to player 1
and {a, b} to player 2 would be better for both players.
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n = 2, add n = 2, gen n ≥ 2, gen + id n > 2, add n > 2, gen

1
2 EFX 3 (Thm. 5.4.3) 3 (Thm. 5.4.3) 3 (Thm. 5.4.2) 3 (Thm. 5.6.1) ?

EFX 3 (Thm. 5.4.3) 3 (Thm. 5.4.3) 3 (Thm. 5.4.2) ? ?

EFX + PO (nmu) 3 (Thm. 5.5.5) 7 (Thm. 5.5.6) 3 (Thm. 5.5.4) ? 7 (Thm. 5.5.6)

Table 5.1: A summary of our existence results. Here n is the number of players. “add”, “gen”, “id”, and
“nmu” refer to additive valuations, general valuations, identical valuations, and nonzero marginal utility,
respectively. “3” indicates that the type of allocation specified by the row is guaranteed to exist in the
setting specified by the column, while “7” indicates that we give a counterexample, and “?” indicates an
open question.

We briefly describe several other models for fair division of indivisible goods. Brams et al. [25]

and Aziz et al. [10] assumed that players express only an ordinal ranking over the goods, as opposed

to exact values. Certain tasks become easier in this domain, but important information is arguably

lost by only considering rankings. Randomized allocations have also been considered (e.g., [18, 37]),

but this is not suitable for the applications we are most interested in, where the outcome is only

used once. Dickerson et al. [62] took a probabilistic approach, and showed that envy-free allocations

are likely to exist when the number of goods is at least a logarithmic factor larger than the number

of players. While illuminating, this does not directly bear on our goal: determining when fair

allocations are guaranteed to exist, and how they can be computed.

5.1.3 Our contributions

We consider the EFX property in a variety of contexts; our main existence results are given in

Table 5.1.

Exponential query complexity lower bound

Section 5.3 presents our most technically involved result: an exponential lower bound on the number

of value queries required by a deterministic algorithm to find an EFX allocation. This is done via a

reduction from local search on a class of graphs known as the Odd graphs, for which we prove an

exponential lower bound. In combination with results due to Dinh and Russell [63] and Valencia-

Pabon and Vera [168], this yields an analogous exponential lower bound for randomized algorithms.

Dobzinski et al. [64] also use a local search reduction to prove a lower bound on the number of

value queries required to find a certain type of equilibrium in a simultaneous second price auction,

for bidders with XOS (i.e., fractionally subadditive) valuations. We hope that this lower bound

technique will be useful in other contexts as well.

Our lower bound holds even for two players with identical submodular valuations. In stark

contrast, the algorithm of Lipton et al. [119] finds an EF1 allocation in polynomial time for general

and possibly distinct valuations, and for any number of players. This suggests that EFX is indeed

a significantly stronger fairness guarantee than EF1, and deserves further study.
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Positive EFX results

Many of our positive results rely on the leximin solution. The leximin (a portmanteau of “lexi-

cographic” and “maximin”) solution selects the allocation which maximizes the minimum utility;

then, if there are multiple allocations which achieve that minimum utility, it chooses among those

the allocation which maximizes the second minimum utility, and so on. The leximin solution was

developed as a metric of fairness in and of itself [149, 161, 160], and has been used before in fair

division, though typically for randomized allocations (e.g. [18]).

In Section 5.4, we show that when players have general but identical valuations, a modification

of the leximin solution is EFX. By identical valuations, we mean that all players have the same

valuation. This result also yields a cut-and-choose-based protocol for two players with general and

possibly distinct valuations that is guaranteed to produce an EFX allocation. This is consistent

with our exponential lower bound, as it is well known that finding the leximin solution can require

exponential time for general valuations (e.g. [66]).3

After a long line of follow-up work, it was recently shown

These positive results contrast with the state-of-the-art for possibly distinct valuations and three

or more players, where even for additive valuations, the guaranteed existence of an EFX allocation

remains an open question (“despite significant effort,” according to [40]).

EFX and Pareto optimality

In Section 5.5, we consider Pareto optimality. In economics, an outcome is Pareto optimal (PO) if

there is no way to make one player better off without making another player worse off. We show

that even in simple cases, it is possible that no EFX allocation is also PO. However, these cases rely

on a player having zero value for a good being added to her bundle.

We propose the assumption that adding a good to a player’s bundle strictly improves the player’s

value for that bundle, and refer to this as “nonzero marginal utility”. We view this as quite a weak

assumption: especially in real-world settings, one might expect a player to always prefer to have a

good than not.

Under this assumption, we show that for two players with additive valuations, the leximin solution

is both EFX and PO.4 We also show that for any number of players with general but identical

valuations, the leximin solution is EFX and PO. Finally, we give a counterexample where for two

players with distinct general valuations, no EFX allocation is PO (even assuming nonzero marginal

utility).

Comparison to Spliddit in the two player case

Perhaps of most practical importance is our result that for two players with additive valuations

and nonzero marginal utility, the leximin solution is both EFX and PO. This provides stronger

3We mention that Section 5.8 shows that for two players with additive valuations, an EFX allocation can be
computed in polynomial time by a different method.

4When discussing the leximin solution for players with different valuations, we assume that each player’s value for
the entire set of goods is the same: were this not true, we could simply rescale the valuations as needed and use the
leximin solution over the rescaled valuations.
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a b c
player 1 5 3 1
player 2 5 1 3

Figure 5.1: An instance where our algorithm provides stronger guarantees than the algorithm currently
deployed on Spliddit. Here two players have additive valuations over three goods, a, b, and c. By symmetry,
assume a is given to player 1. Spliddit selects the maximum Nash welfare solution, which gives {a, b} to
player 1 and {c} to player 2. This is EF1 and PO, but not EFX, since player 2 would still envy player 1
after the removal of b. Our algorithm returns the unique (up to symmetry) EFX and PO allocation, which
gives {a} to player 1 and {b, c} to player 2.

guarantees than the currently deployed algorithm on Spliddit, which selects the maximum Nash

welfare solution, and only guarantees an allocation which is EF1 and PO.5

This manifests even in simple examples, such as the instance given by Figure 5.1. By symmetry,

assume that player 1 receives good a. The maximum Nash welfare solution selects the allocation

which maximizes the product of utilities: in this case, that would give player 1 a and b, and player

2 only c. This allocation is EF1, because player 2 would not envy player 1 if good a were removed

from player 1’s bundle. However, the allocation is not EFX, because player 2 would envy player 1

even if good b were removed from player 1’s bundle.

In contrast, our algorithm returns the unique (up to symmetry) EFX and PO allocation, which

gives a to player 1 and b and c to player 2. We suggest that this is also the more intuitively fair

allocation. Furthermore, the assumption of nonzero marginal utility seems especially reasonable in

the case of two players with additive valuations: if a player is truly indifferent to some good, one

could imagine simply giving that good to the other player and excluding it from the fair division

process entirely.6 We do note that Spliddit’s current algorithm does not require the assumption of

nonzero marginal utility, however. Neither approach has a clear advantage in terms of computational

efficiency: both the leximin solution and maximum Nash welfare solution are NP-hard to compute,

even for two players with additive valuations.7

Finally, in Section 5.6 we propose an approximate version of EFX, and show that a 1
2 -EFX

allocation always exists when players have subadditive (possibly distinct) valuations.

More broadly, our results span additive, submodular, subadditive, and general valuations, and

identify separations between these classes from a fair division perspective. For example, we show

that assuming nonzero marginal utility and two players with additive valuations, an allocation which

is both EFX and PO is guaranteed to exist, while there is a counterexample for two players with

general valuations. Such valuation classes have already played a central role in the development of

algorithmic mechanism design over the past 15 years (e.g. [117]), and they may well prove equally

important in the fair division of indivisible goods.

5Spliddit only considers additive valuations. This is because each user need only report m values to specify an
entire additive valuation; in contrast, an exponential number of values can be required to specify a general valuation.

6A vindictive player might object to this: she may be unhappy with the other player receiving a good “for free”,
even if she has zero value for the good herself. We argue that this constitutes having nonzero value for the good, and
that a player has zero value for a good only if she is truly indifferent.

7For two players with identical additive valuations, the leximin solution gives each player half the total value if
and only if the valuation is a “yes” instance of the partition problem. The reduction is less obvious for maximum
Nash welfare; see e.g. [148].
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5.2 Model

Although we use the same general resource allocation framework (defined in Section 1.2), e.g., we

have the same set of agents N = {1, . . . , n} and set of goods M with m = |M |. However, we deviate

from Part I in several respects: most crucially, we assume that goods are indivisible, meaning that

any feasible allocation x must have xij ∈ {0, 1}. For simplicity, we denote each agent’s bundle as a

set Ai = {j ∈M : xij = 1}. We refer to an allocation as partial if only a subset S ⊂M of the goods

are allocated. When “partial” is omitted, it means that all goods have been allocated.

Each player i has a value for each subset of M , specified as a valuation function8 vi : 2M → R≥0.

Throughout the chapter, we assume normalization, meaning that vi(∅) = 0, and monotonicity

(a.k.a. “free disposal”), meaning that vi(S) ≤ vi(T ) whenever S ⊆ T . When we refer to “general

valuations,” we mean the set of all valuations that satisfy these two properties.

A special type of valuation is an additive valuation, where vi(S) =
∑
g∈S vi({g}) for every

S ⊆ M . Thus m parameters (one for each good) implicitly specify the 2m values of the valuation.

The majority of the literature on computational fair division, with both divisible and indivisible

goods, focuses on additive valuations. There are also many interesting subclasses of valuations that

generalize additive valuations. For example, our main lower bound result (Theorem 5.3.3) holds for

submodular valuations, which are valuation functions v that satisfy “diminishing returns”:

v(S ∪ {x})− v(S) ≥ v(T ∪ {x})− v(T )

for every S ⊆ T and x /∈ T . One of our positive results, Theorem 5.6.1, will hold for subadditive

valuations. A valuation v is subadditive if

v(S) + v(T ) ≥ v(S ∪ T )

Every additive valuation is submodular, and every submodular valuation is subadditive.

Our objective is to find a “fair” allocation. Many different notions of fairness have been studied,

with envy-freeness being one of the most prominent (see e.g., [27, 128, 28] for further background).

Definition 5.2.1. An allocation A is envy-free if for all i and j,

vi(Ai) ≥ vi(Aj).

We say that i envies j if vi(Ai) < vi(Aj). Unfortunately, an envy-free allocation does not always

exist in the context of indivisible goods. This is clear even with two players and one good: the player

who does not receive the good will envy the other, assuming they both have nonzero value for the

good. Furthermore, determining whether an envy-free allocation exists is NP-complete [21]: with

two players and identical additive valuations, this is the partition problem.

8Since there are no monetary payments in this model, the utility function is equal to the valuation function, so
we just use “valuation function”. This is contrast to the quasilinear utility model, where the utility is the valuation
minus the payment.
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Consequently, a relaxed version of envy-freeness has been studied, called envy-freeness up to one

good [35, 40].

Definition 5.2.2. An allocation A is envy-free up to one good (EF1) if for all i, j where i envies

j,9

∃ g ∈ Aj such that vi(Ai) ≥ vi(Aj\{g}).

That is, i may envy j, but there is a good in j’s bundle such that if it were removed, i would no

longer envy j. An EF1 allocation always exists, and can be computed in polynomial time, even for

general valuations [119].

Furthermore, Caragiannis et al. [40] showed that for additive valuations, an allocation which

is both EF1 and Pareto optimal always exists; in particular, the maximum Nash welfare solution

[129, 108, 148] is guaranteed to satisfy both properties. Caragiannis et al. [40] also proposed a new

fairness notion, one which is strictly weaker than envy-freeness, but strictly stronger than EF1.

Definition 5.2.3. An allocation A is envy-free up to any good (EFX) if, for all i, j,

∀g ∈ Aj , vi(Ai) ≥ vi(Aj\{g}).

In words, EFX demands that removing any good from j’s bundle would guarantee that i does

not envy j. Next, we define the standard notion of Pareto optimality.

Definition 5.2.4. An allocation A is Pareto optimal if there is no other allocation B where

∀i ∈ [n], vi(Bi) ≥ vi(Ai), and

∃j ∈ [n], vj(Bj) > vj(Aj)

Finally, we define an approximate version of EFX. In Section 5.6, we will give an algorithm which

produces a 1
2 -EFX allocation for any number of players with subadditive valuations.

Definition 5.2.5. An allocation A is c-EFX if for all i, j,

∀g ∈ Aj , vi(Ai) ≥ c · vi(Aj\{g})

where 0 ≤ c ≤ 1.

5.3 Query complexity lower bound

We begin with our most technically involved result: an exponential lower bound on the number of

value queries required by any deterministic algorithm to compute an EFX allocation. Our lower

9The “where i envies j” clause is necessary, or the condition would technically fail when Aj = ∅. This is not an
issue for the definition of EFX, however.
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bound will hold even for two players, and even if their valuations are restricted to be identical and

submodular.10

In Section 5.3.1, we introduce the local search problem that we will reduce from. In Section 5.3.2,

we prove that finding an EFX allocation is at least as hard as solving local search on a particular class

of graphs. In Section 5.3.3, we show that any deterministic algorithm which finds a local maximum

on this class of graphs requires an exponential number of queries. This will imply that the problem

of finding an EFX allocation has exponential query complexity as well. Finally, in Section 5.3.4, we

extend this lower bound to randomized algorithms.

5.3.1 Local search

The Local Search problem takes as input an undirected graph G = (V,E) and an oracle function

f : V → R. The goal is to find a local maximum a ∈ V , where f(a) ≥ f(b) for all (a, b) ∈ E. Since

there exists a global maximum, there must exist at least one local maximum. We are interested

in the number of queries required to find a local maximum, where a query to a ∈ V returns f(a).

Queries are the only method by which an algorithm can discover information about f (i.e., it is given

as a “black box”). All other operations are free in this model—we count only the number of queries.

Queries can be adaptive, with an algorithm’s choice of which vertex to query next depending on the

results of previous queries.

For a graph G, the deterministic query complexity of Local Search on G is the minimum

number of queries required by any deterministic algorithm to solve Local Search on G (for a worst-

case choice of f). Formally, let D[LS(G)] be the deterministic query complexity of Local Search

on G. Then D[LS(G)] = min
Γ

max
f

TLS(G, f,Γ), where the minimizer ranges over all deterministic

algorithms Γ, the maximizer ranges over all functions f : V → R, and TLS(G, f,Γ) is the number of

queries used by the algorithm Γ to find a local maximum of f on G.

The difficulty of local search depends on the graph G. The Kneser graph K(n, k) is the graph

whose vertices are the size k subsets of [n], where two vertices are adjacent if and only if their

corresponding subsets are disjoint. The star of our lower bound argument is the Odd graph, K(2k+

1, k). The most famous Odd graph is the Petersen graph (Figure 5.2).

5.3.2 Local search on K(2k + 1, k) reduces to finding an EFX allocation

The EFX Allocation problem takes as input the set of players N = [n], the set of goods M = [m],

and a list of valuations (v1, v2, . . . , vn). In general, the goal is to find an EFX allocation, or determine

that none exists. The only method by which an algorithm can discover information about the vi’s

is through value queries, where upon querying the valuation vi at the set S, the algorithm learns

vi(S). Our lower bound applies even for a version of the problem that we will show to be total

(Theorem 5.4.2), meaning that an EFX allocation is guaranteed to exist.

Consider the special case of the EFX Allocation problem where all valuations are identical.

We will show in Section 5.4 that an EFX allocation is guaranteed to exist in this setting. We

10There is of course no hope for an exponential lower bound for additive valuations, since m value queries suffice
to reconstruct an entire additive valuation.
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can define the deterministic query complexity D[EFXid(n,m)] as the minimum number of queries

required to find an EFX allocation for a set of players N = [n] and a set of goods M = [m],

given a single valuation v where an EFX allocation is known to exist. Formally, D[EFXid(n,m)] =

min
Γ

max
v

TEFX(N,M, v,Γ), where TEFX(N,M, v,Γ) denotes the number of queries required by the

algorithm Γ to find an EFX allocation for players N with valuation v over goods M . Since this is

a special case of the general EFX Allocation problem, the deterministic query complexity of the

general EFX allocation problem is at least D[EFXid(n,m)].

We now state and prove our main result of Section 5.3.2. We will use M = [2k + 1] for some

integer k.

Theorem 5.3.1. The deterministic query complexity of the EFX Allocation problem satisfies

D[EFXid(2, 2k + 1)] ≥ D[LS(K(2k + 1, k))],

even for two players with identical submodular valuations.

Proof. Let T = D[EFXid(2, 2k+1)]; then there exists an algorithm Γ for finding an EFX allocation

which uses at most T queries, regardless of v. We will construct an algorithm Γ′ for Local Search

which also uses at most T queries, regardless of f . Formally, max
v

TEFX({1, 2},M, v,Γ) = T , and

we will construct Γ′ such that max
f

TLS(K(2k + 1, k), f,Γ′) ≤ T .

Define the algorithm Γ′ on input (K(2k + 1, k), f) as follows. For each S ⊆ [2k + 1], define v(S)

as

v(S) =


2|S| if |S| < k

2k − 1

1 + e(f(S))
if |S| = k

2k if |S| > k.

Then run Γ on ({1, 2}, [2k+1], v) to obtain an EFX allocation (A1, A2), and return A1 if |A1| < |A2|
and A2 otherwise. We will show that the returned set corresponds to a local maximum in K(2k+1, k)

(see Figure 5.2).

For brevity, define

δ(S) = − 1

1 + ef(S)
.

We note that −1 < δ(S) < 0 for all S, and that δ(S) is strictly increasing with f(S). Any other

function satisfying these properties would work as well.

We first argue that any EFX allocation returned by Γ must give one player exactly k goods.

Suppose that this were not the case. Then one player must receive fewer than k goods; without loss

of generality, assume |A2| < k, and thus |A1| > k + 1. Therefore v(A2) ≤ 2k − 2 and v(A1) = 2k.

For an arbitrary g ∈ A1, we have |A1\{g}| > k. Therefore there exists a g ∈ A1 such that

v(A1\{g}) = 2k > v(A2), so the allocation cannot be EFX. Thus any EFX allocation must give one

player exactly k goods. Therefore Γ will return a set of size k, which corresponds to a valid vertex

of K(2k + 1, k).

Without loss of generality, assume |A1| = k + 1 and |A2| = k. Then v(A1) = 2k and v(A2) =
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{1, 3}

{2, 4}

{3, 5}{4, 1}

{5, 2}

{4, 5}

{5, 1}

{1, 2}{2, 3}

{3, 4}

Figure 5.2: The graph shown is K(2k + 1, k) for k = 2, also known as the Petersen graph. Each vertex
corresponds to a size 2 subset of [5]. Suppose the allocation where A1 = {1, 2, 3} and A2 = {4, 5} is EFX.
Since v(S1) ≥ v(S2) if and only if f(S1) ≥ f(S2), we have f({4, 5}) ≥ f({1, 2}), f({4, 5}) ≥ f({2, 3}), and
f({4, 5}) ≥ f({1, 3}). Therefore {4,5} is a local maximum in this graph.

2k + δ(A2) < 2k, so v(A1) > v(A2). Therefore the allocation A = (A1, A2) is EFX if and only if

v(A2) ≥ v(A1\{g}) for all g ∈ A1.

We can rewrite this condition as v(A2) ≥ v(S) for all S ⊆ A1 where |S| = k. For any |S| = k, we

have v(A2)− v(S) = δ(A2)− δ(S). Since δ is strictly increasing with f(S), we have v(A2) ≥ v(S) if

and only if f(A2) ≥ f(S). Therefore an allocation (A1, A2) is EFX if and only if f(A2) ≥ f(S) for

all S ⊆ A1 where |S| = k.

Observe that S ⊆ A1 if and only if S ∩ A2 = ∅. Therefore an allocation (A1, A2) is EFX if and

only if f(A2) ≥ f(S) for all S ⊆M where |S| = k and S ∩A2 = ∅. This is exactly the definition of

A2 being a local maximum in K(2k + 1, k). Therefore an allocation (A1, A2) is EFX if and only if

A2 is a local maximum in K(2k + 1, k).

Thus Γ′ correctly solves Local Search. Furthermore, since Γ′ uses no queries outside of running

Γ, and Γ uses at most T queries, Γ′ also uses at most T queries. Therefore

D[EFXid(2, 2k + 1)] ≥ D[LS(K(2k + 1, k))].

It remains to show that v is submodular. For any S ⊆M and x ∈M\S, we have

v(S ∪ {x})− v(S) =


2 if |S ∪ {x}| < k

2 + δ(S ∪ {x}) if |S ∪ {x}| = k

−δ(S) if |S ∪ {x}| = k + 1

0 if |S ∪ {x}| > k + 1.
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Therefore v(S ∪ {x}) − v(S) is non-increasing with |S|, since −1 < δ(S) < 0 for all S. Thus

v(X ∪ {x}) − v(X) ≥ v(Y ∪ {x}) − v(Y ) whenever |X| < |Y |. If X ⊆ Y , either |X| < |Y | or

X = Y . When X = Y , we trivially have v(X ∪ {x}) − v(X) = v(Y ∪ {x}) − v(Y ). Thus we have

v(X ∪ {x})− v(X) ≥ v(Y ∪ {x})− v(Y ) whenever X ⊆ Y , and so v is submodular.

5.3.3 Query complexity of local search on Odd graphs

In this section, we show that finding a local maximum on K(2k + 1, k) has exponential query com-

plexity, completing our lower bound on the number of queries required to find an EFX allocation.11

The role of boundaries

For a graph G = (V,E) and a set S ⊆ V , define the boundary B(S) of S as the set of vertices that

are not in S but are adjacent to a vertex in S. Formally, B(S) = {a ∈ V \S : ∃b ∈ S, (a, b) ∈ E}. The

next result, due to [120], implies that local search is hard in graphs that only have large boundaries.

Lemma 5.3.1 ([120]). For any graph G = (V,E) and integers t and c,

D[LS(G)] ≥ min
(
t,min

S
{|B(S)| : c− t ≤ |S| ≤ c}

)
.

Proof Sketch. We sketch a proof for the benefit of the reader. The proof follows an adversary

argument. Let Gu be the subgraph induced by the still-unqueried vertices. While Gu remains

connected, suppose the adversary simply returns increasing values for each query. Then the only

way for a local maximum to be created is to query a vertex a after querying all of a’s neighbors.

Furthermore, while Gu remains connected and contains at least one unqueried vertex, the most

recently queried vertex a must have an unqueried neighbor b: if not, Gu must have been disconnected

prior to the most recent query. The adversary is free to toggle which of a and b is a local maximum

(or possibly neither, if there are more unqueried vertices). Thus while at least one vertex has not

been queried and the graph of unqueried vertices remains connected, it cannot be determined where

the graph has a local maximum.

Thus the only strategy to counteract the adversary is to perform a sort of binary search. First,

we must disconnect the graph of unqueried vertices. At least one of the resulting components must

contain a local maximum, and Llewellyn et al. [120] show how we can always identify one such

component based on the query results so far. Thus we can recurse on that component, and the

process repeats. Llewellyn et al. [120] call this the separation game. An example of the separation

game being played on a path is given by Figure 5.3.

By this logic, we will have to eventually disconnect a “fairly large” component: if it is too small,

the adversary is free to place the local maximum in another larger component. Specifically, Llewellyn

et al. [120] show that for any integers t and c, the adversary can force us to either query t vertices,

or disconnect a set of vertices S where c− t ≤ |S| ≤ c.
11A similar lower bound for local search on K(2k + 1, k) was proved (using different arguments) in [64].
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In order to disconnect a set of vertices S, every vertex on the boundary of S must be queried.

Thus at least min
(
t,min

S
{|B(S)| : c− t ≤ |S| ≤ c}

)
must be queried, as claimed.

3 2

1 5 3 2

1 5 4 3 2

Figure 5.3: An example of the separation game played on a path. After two central vertices are queried,
returning values 3 and 2 as shown, we know that there must be a local maximum in the left half. Next, we
bisect the left half by querying two more vertices, which return values 1 and 5. At this point, we know that
either the vertex with value 5 or the vertex immediately to its right must be a local maximum, and only one
more query is required to determine which. In this case, the local maximum is the vertex with value 5.

Boundaries of Kneser graphs

In light of Lemma 5.3.1 and our interest in Kneser graphs, the natural next step it to understand

boundary sizes in Kneser graphs. The next lemma is due to Zheng [178].

Lemma 5.3.2 ([178]). Let µG(r) denote min
|S|=r

|B(S)|. Then for all 1 ≤ r ≤
(
n

k

)
,

µK(n,k)(r) ≥
(
n

k

)
− 1

r

(
n− 1

k − 1

)2

− r

We include a proof for completeness. In it, we make use of the following variant of the Erdős-

Ko-Rado theorem. Call the set families X and Y cross-intersecting if X ∩ Y 6= ∅ for all X ∈ X and

Y ∈ Y.

Lemma 5.3.3 ([125]). If X and Y are cross-intersecting families of size-k subsets of [n], then

|X ||Y| ≤
(
n− 1

k − 1

)2

Note that the inequality in Lemma 5.3.3 holds with equality (for k ≤ n/2) when X and Y both

consist of all subsets of size k that contain the element 1.

Proof. (Of Lemma 5.3.2.) For any S, we can partition V into S, B(S), and V \(S ∪ B(S)). An

example of this is shown in Figure 5.4. Consider an arbitrary a ∈ V \(S ∪ B(S)). We know that

a 6∈ S and a 6∈ B(S), so there is no b ∈ S where (a, b) ∈ E. Therefore for all a ∈ V \(S ∪B(S)) and

b ∈ S, a and b are not adjacent. Recall that a and b are adjacent in K(n, k) if a ∩ b = ∅. Therefore

for all a ∈ V \(S ∪ B(S)) and b ∈ S, a ∩ b 6= ∅. Thus S and V \(S ∪ B(S)) are cross-intersecting

families.
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Figure 5.4: The partitioning of an arbitrary graph into S, B(S), and V \(S ∪ B(S)). In this example, S is
the set of pink vertices, B(S) is the set of blue vertices, and V \(S ∪B(S)) is the set of gray vertices.

Therefore by Lemma 5.3.3, we have |S||V \(S ∪ B(S))| ≤
(
n− 1

k − 1

)2

. Let r = |S|. Then |V \(S ∪

B(S))| ≤ 1

r

(
n− 1

k − 1

)2

. Therefore for all S,

|B(S)| = |V | − |V \(S ∪B(S))| − |S|

=
(
n

k

)
− |V \(S ∪B(S))| − r

≥
(
n

k

)
− 1

r

(
n− 1

k − 1

)2

− r

and so µK(n,k)(r) = min
|S|=r

|B(S)| ≥
(
n

k

)
− 1

r

(
n− 1

k − 1

)2

− r.

We will only be interested in K(2k + 1, k), so we will simply write

µ(r) = µK(2k+1,k)(r).

Similarly, let

β(r) =
(

2k + 1

k

)
− 1

r

(
2k

k − 1

)2

− r.

Then µ(r) ≥ β(r) for all r.

We next prove a lemma building on Lemma 5.3.2.

Lemma 5.3.4. Let rmax =
(

2k

k − 1

)
. Then for the graph K(2k + 1, k) and any r∗ ≤ rmax,

min
S
{|B(S)| : r∗ ≤ |S| ≤ rmax} ≥ β(r∗)

Proof. We begin by examining the expression β(r)− β(r − 1):

β(r)− β(r − 1) = − 1

r

(
2k

k − 1

)2

− r +
1

r − 1

(
2k

k − 1

)2

+ r − 1

=
(

1

r − 1
− 1

r

)(
2k

k − 1

)2

− 1

=
1

r(r − 1)

(
2k

k − 1

)2

− 1.

Therefore β(r)− β(r − 1) ≥ 0 when r(r − 1) ≤
(

2k

k − 1

)2

. If r ≤ rmax, then r(r − 1) < r2 ≤ r2
max =(

2k

k − 1

)2

. Thus β(r) ≥ β(r − 1) when r ≤ rmax. Iterating this inequality yields β(r∗) ≤ β(r)
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whenever r∗ ≤ r ≤ rmax.

We can rewrite min
S
{|B(S)| : r∗ ≤ |S| ≤ rmax} as

min
S
{|B(S)| : r∗ ≤ |S| ≤ rmax} = min

r: r∗≤r≤rmax
min
|S|=r

|B(S)|

= min
r: r∗≤r≤rmax

µ(r)

≥ min
r: r∗≤r≤rmax

β(r)

where the last step is due to Lemma 5.3.2. Since β(r∗) ≤ β(r) whenever r∗ ≤ r ≤ rmax,

min
r: r∗≤r≤rmax

β(r) = β(r∗). Therefore min
S
{|B(S)| : r∗ ≤ |S| ≤ rmax} ≥ β(r∗), as required.

Local search on K(2k + 1, k)

We are now ready to prove our result on D[LS(K(2k + 1, k))].

Theorem 5.3.2. For all k,

D[LS(K(2k + 1, k))] ∈ Ω

(
1

k

(
2k + 1

k

))
.

Proof. Let c = rmax =
(

2k

k − 1

)
, and let t =

1

2k + 1
rmax. so c−t =

2k

2k + 1
rmax. Then by Lemma 5.3.1,

D[LS(K(2k + 1, k))] ≥

min
(

1

2k + 1
rmax,min

S

{
|B(S)| : 2k

2k + 1
rmax ≤ |S| ≤ rmax

})
By Lemma 5.3.4,

min
S

{
|B(S)| : 2k

2k + 1
rmax ≤ |S| ≤ rmax

}
≥ β

(
2k

2k + 1
rmax

)
=
(

2k + 1

k

)
− 2k + 1

2k · rmax
r2
max −

2k

2k + 1
rmax

≥
(

2k + 1

k

)
−
(

2k + 1

2k
+ 1
)
rmax.

Using the identity
(
n

k

)
=

n

k

(
n− 1

k − 1

)
for any n, k, we have

(
2k + 1

k

)
=

2k + 1

k

(
2k

k − 1

)
=

2k + 1

k
rmax.

Thus we have

min
S

{
|B(S)| : 2k

2k + 1
rmax ≤ |S| ≤ rmax

}
≥
(

2k + 1

k
− 2k + 1

2k
− 1
)
rmax

=
4k + 2− 2k − 1− 2k

2k
rmax

=
1

2k
rmax.
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Therefore,

D[LS(K(2k + 1, k))] ≥ min
(

1

2k + 1
rmax,

1

2k
rmax

)
=

1

2k + 1
rmax

∈ Ω
(

1

k
rmax

)
.

Since
(

2k + 1

k

)
=

2k + 1

k
rmax, we have

D[LS(K(2k + 1, k))] ∈ Ω
(

1

k

(
2k + 1

k

))
.

Theorem 5.3.1 and Theorem 5.3.2 together imply our main result of Section 5.3.

Theorem 5.3.3. The deterministic query complexity of the EFX Allocation problem satisfies

D[EFXid(2, 2k + 1)] ∈ Ω

(
1

k

(
2k + 1

k

))
,

even for two players with identical submodular valuations.

5.3.4 Randomized query complexity

Our reduction from Local Search to EFX Allocation also yields an exponential lower bound for

randomized algorithms for free, thanks to results due to Dinh and Russell [63] and Valencia-Pabon

and Vera [168]. Let R[LS(G)] be the minimum number of queries required to solve Local Search

on G by a randomized algorithm: the algorithm should output a local maximum with probability

at least 2/3 (say) over its internal coin flips. Formally, R[LS(G)] = min
ΓR

max
f

T (G, f,ΓR), where ΓR

ranges over the set of randomized algorithms.

Similarly, let R[EFXid(2, 2k+ 1)] be the minimum number of queries required by a randomized

algorithm to find an EFX allocation for two players with identical valuations, and 2k + 1 goods

(again with correctness probability at least 2/3, say).

Theorem 5.3.4 ([63]). If G = (V,E) is a vertex transitive graph with diameter d, then

R[LS(G)] ∈ Ω
( √

|V |
d · log |V |

)
Since K(2k + 1, k) is vertex transitive, the last piece of the puzzle is the following theorem,

Theorem 5.3.5 ([168]). The diameter of K(2k + 1, k) is k.

With these two tools in hand, Theorem 5.3.6 requires only a short proof.
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Theorem 5.3.6. The randomized query complexity of the EFX Allocation problem satisfies

R[EFXid(2, 2k + 1)] ∈ Ω
(√(

2k + 1

k

)
1

k2

)
even for two players with identical submodular valuations.

Proof. Since |V | =
(

2k + 1

k

)
and log

((
2k + 1

k

))
∈ O(log(4k)) = O(k), we have

R[LS(K(2k + 1, k))] ∈ Ω
(√(

2k + 1

k

)
1

dk

)
by Theorem 5.3.4. Thus by Theorem 5.3.5, we have

R[LS(K(2k + 1, k))] ∈ Ω
(√(

2k + 1

k

)
1

k2

)
The reduction used to prove that D[EFXid(2, 2k + 1)] ≥ D[LS(K(2k + 1, k))] can equivalently

be used to show that

R[EFXid(2, 2k + 1)] ≥ R[LS(K(2k + 1, k))].

Therefore R[EFXid(2, 2k + 1)] ∈ Ω
(√(

2k + 1

k

)
1

k2

)
.

While this bound is not as strong as our deterministic lower bound (Theorem 5.3.3), it does

establish that even a randomized algorithm requires an exponential number of queries to find an

EFX allocation.

5.4 Existence of EFX allocations for general but identical

valuations

We mentioned in the previous section that an EFX allocation is guaranteed to exist when all players

have the same valuation: this section proves that claim. Specifically, we show that a modified version

of the leximin solution is guaranteed to be EFX for general but identical valutions. This also yields

a cut-and-choose-based protocol for two players with general and possibly distinct valuations.

5.4.1 The leximin solution

The leximin solution selects the allocation which maximizes the minimum utility of any player. If

there are multiple allocations which achieve that minimum utility, it chooses among those the one

which maximizes the second minimum utility, and so on. This implicitly specifies a comparison

operator ≺, which is given by Algorithm 3, and constitutes a total ordering over allocations.

The operator ≺ takes as input two allocations A and B, and the list of player valuations (v1...vn).

The players are ordered by utility, and according to some arbitrary but consistent tiebreak for players
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with the same utility (for example, by player index). The comparison terminates when the `th player

in A’s ordering XA has different utility from the `th player in B′s ordering XB .

The leximin solution is the global maximum under this ordering. The leximin solution is trivially

PO, since if it were possible to improve the utility of one player without decreasing the utility of

any other player, the new allocation would be strictly larger under ≺.

Standard leximin is not EFX

Unfortunately, the standard leximin solution is not always EFX, even for identical valuations. Con-

sider two players with the same (non-additive) valuation v over two goods a and b. Define v by

v(S) =


0 if S = {a}

1 if S = {b}

2 if S = {a, b}

By symmetry, suppose without loss of generality that player 1 receives good b. Define the

allocation A by A1 = {b} and A2 = {a}, and define the allocation B by B1 = {a, b} and B2 = ∅.
Since player 2 (the minimum utility player) is indifferent between A and B, leximin selects allo-

cation B because it maximizes the value of player 1 (the second minimum utility player). However,

A is EFX, while B is not: player 2 envies player 1 even after the removal of a from B1.12

5.4.2 The leximin++ solution

Our fix is that after maximizing the minimum utility, we maximize the size of the bundle of the

player with minimum utility, before maximizing the second minimum utility. Then we maximize

the second minimum utility, followed by the size of the second minimum utility bundle, and so on.

Thus giving good a to the lower utility player (player 2) is preferable, and so the EFX allocation A

is chosen over B.

We call this the leximin++ solution. The leximin++ solution induces a comparison operator

≺++, also given in Algorithm 3. Similarly to ≺, the players are ordered by increasing utility, and

then according to an arbitrary but consistent tiebreak among players with the same utility.13 The

comparison terminates when the `th player in XA differs in utility or bundle size from the `th player

in XB , with utility being checked before bundle size.

It may not be immediately clear that ≺++ specifies a total ordering, but this is in fact the case.

The proof of Theorem 5.4.1 appears in Section 5.7.

Theorem 5.4.1. The comparison operator ≺++ specifies a total ordering.

12This example will be relevant again in Section 5.5 as an instance where there is no allocation which is both EFX
and PO.

13The tiebreak method must be consistent to ensure that ≺++ is a total ordering. Consider two players with the
same valuation v, and a single good a where v({a}) = 0. Suppose a ∈ A1. Since both players have zero utility, if
the tiebreak method were not required to be consistent, both {1, 2} and {2, 1} would be valid player orderings for A.
Consider running A ≺++ A. If player 2 were considered first in the A on the left, and player 1 were considered first
in the A on the right, the operator would see that player 1 has a larger bundle than player 2, and return true.
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Algorithm 3 Leximin and Leximin++ comparison operators

1: function LeximinCmp(A,B, (v1...vn)) . Returns true if A ≺ B (strictly)
2: XA ← ordering of players by increasing utility vi(Ai), then by some arbitrary but consistent

tiebreak method for players with the same utility
3: XB ← corresponding ordering of players under B
4: for each ` ∈ [n] do
5: i← XA

` . `th player in the ordering XA

6: j ← XB
` . `th player in the ordering XB

7: if vi(Ai) 6= vj(Bj) then
8: return vi(Ai) < vj(Bj)

9: return false . In this case, A and B are equal

function Leximin++Cmp(A,B, (v1...vn)) . Returns true if A ≺++ B (strictly)
2: XA ← same as in LeximinCmp

XB ← same as in LeximinCmp
4: for each ` ∈ [n] do

i← XA
`

6: j ← XB
`

if vi(Ai) 6= vj(Bj) then
8: return vi(Ai) < vj(Bj)

if |Ai| 6= |Bj | then
10: return |Ai| < |Bj |

return false

We are now ready to prove our main result of this section.

Theorem 5.4.2. For general but identical valuations, the leximin++ solution is EFX.

Proof. Let A be an allocation that is not EFX. We will show that A is not the leximin++ solution.

Since A is not EFX, there exist players i, j and g ∈ Aj where v(Ai) < v(Aj\{g}). Then any

player with utility mink v(Ak) must also have utility strictly less than v(Aj\{g}), so assume with

loss of generality that i = arg mink v(Ak). If there are multiple players with minimum utility in

A, let i be the one considered last in the ordering XA, according to the arbitrary but consistent

tiebreak method.

Define a new allocation B where Bi = Ai ∪ {g}, Bj = Aj\{g}, and Bk = Ak for all k 6∈ {i, j}.
We will show that A ≺++ B.

Let S be the set of players appearing before i in XA. We know i is considered last among the

players with minimum utility by assumption, so S is exactly the set of players with minimum utility,

other than i. Note that neither i nor j are in S.

Since the only bundles that differ between allocations A and B are that of i and j, we have

Ak = Bk for all k ∈ S. Thus for all k ∈ S, v(Bk) = v(Ak) = v(Ai). Since v(Bj) > v(Ai), j must

occur after every player in S in XB .

Because Ai ⊂ Bi, we have v(Bi) ≥ v(Ai). If v(Bi) > v(Ai), i must occur after every player in S

in XB , since v(Bi) > v(Bk) for all k ∈ S. If v(Bi) = v(Ai), i is still considered after every player in

S according to the arbitrary but consistent tiebreak method. Thus i occurs after every player in S
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Algorithm 4 Find an EFX allocation for two players with general valuations via cut-and-choose

1: function CutAndChoose(m, v1, v2)
2: (A1, A2)← Leximin++Solution(2,m, v1) . Player 1 uses the leximin++ solution to cut,
3: if v2(A1) ≥ v2(A2) then . and player 2 chooses.
4: return (A2, A1)
5: else
6: return (A1, A2)

in XB in either case, which shows that the first |S| players in XB are the players in S, in the same

order they occur in XA.

Therefore the leximin++ comparison will not have terminated before reaching position |S|+1 in

the orderings. Let T be the set of players appearing after i in XA: note that j ∈ T . By assumption,

of the players with minimum utility in A, i appears last in XA. Therefore all players after i in XA

do not have minimum utility, so v(Ak) > v(Ai) for all k ∈ T . Recall that v(Bj) > v(Ai) and that

for all k ∈ T\{j}, v(Bk) = v(Ak). Thus v(Bk) > v(Ai) for all k ∈ T .

We know that XA
|S|+1 = i. If XB

|S|+1 = i, we have |Ai| < |Bi| (and possibly also v(Ai) < v(Bi)),

so A ≺++ B returns true. If XB
|S|+1 = k for some k 6= i, then k ∈ T . Therefore v(Ai) < v(Bk), so

A ≺++ B returns true in this case as well.

Since A ≺++ B, A cannot be the leximin++ solution. Therefore the leximin++ solution must

be EFX.

We now show how Theorem 5.4.2 can easily be used to find an EFX allocation for two players

with general and possibly distinct valuations.14 Our algorithm for this follows from the observation

that any player can partition the goods into k bundles that are mutually EFX from her viewpoint,

simply by computing the leximin++ solution with k copies of herself.

Algorithm 4 is a straightforward adaptation of the cut-and-choose protocol. Player 1 partitions

the goods into two bundles using the leximin++ solution, and player 2 chooses her favorite bundle.

Theorem 5.4.3. For two players with general (not necessarily identical) valuations, Algorithm 4

returns an EFX allocation.

Proof. By Theorem 5.4.2, the allocation is EFX from player 1’s viewpoint regardless of which bundle

she receives. Player 2 receives her favorite bundle, so the resulting allocation is EFX from her

viewpoint as well.

5.4.3 Limitations of leximin++

Unfortunately, the leximin++ solution may not be EFX when players have different valuations. For

example, consider two players with valuations v1(S) = |S| and v2(S) = ε|S|, for some small ε > 0.

As long as player 1 receives at least one good, she will have utility at least 1. However, player 2 will

always have utility less than 1 for a suitably small ε. Thus the leximin++ solution gives a single

14The two-player case is not trivial. For example, our lower bound in Theorem 5.3.3 already applies with two
players (even with identical valuations).

137



good to player 1 and the rest to player 2, which will cause player 1 to envy player 2 in violation of

EFX.

One might hope that this could be remedied by assuming that all players have the same value for

the entire set of goods (or rescaling valuations as necessary if this is not the case). Unfortunately,

the set of additive valuations given by Figure 5.5 thwarts this hope.

a b c d
player 1 14 3 2 1
player 2 7 6 4 3
player 3 20 0 0 0

Figure 5.5: An example where the leximin++ solution fails to be EFX even when all players have the same
value for the entire set of goods.

We claim that the allocation A = ({b, d}, {c}, {a}) is the only allocation where all players have

utility at least 4. To see this, first observe that good a must go to player 3, or player 3 has zero

utility. Then the only way to give players 1 and 2 each utility at least 4 is to give {b, d} to player 1

and {c} to player 2.

Since A is the only allocation which gives all players utility at least 4, A must be the leximin++

solution. However, A is not EFX, because v2({c}) < v2({b, d}\{d}).
We mentioned at the beginning of this section that the leximin solution is trivially PO. The lex-

imin++ solution does not share this guarantee. Indeed, this is necessary in order for the leximin++

solution to be EFX, since it is impossible to simultaneously guarantee EFX and Pareto optimality,

even for identical valuations (Theorem 5.5.2). However, that example relies on zero value goods. We

will show in the next section that if zero value goods are disallowed, the leximin solution becomes

EFX as well as PO in two contexts.

5.5 Pareto optimality

In this section, we examine when EFX and Pareto optimality can be guaranteed simultaneously. We

begin by showing that if a player is wholly indifferent to a good being added to her bundle (zero

marginal utility), EFX and Pareto optimality can be mutually exclusive even in simple cases.

Theorem 5.5.1. If zero marginal utility is allowed, there exist additive valuations where no EFX

allocation is also PO, even for two players.

Proof. Consider the following additive valuations:

a b c

player 1 2 1 0

player 2 2 0 1

Since v1({c}) = 0 but v2({c}) > 0, c ∈ A2 in any PO allocation. Similarly, b ∈ A1 in any PO

allocation.
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By symmetry, assume without loss of generality that a ∈ A1, so A1 = {a, b} and A2 = {c}. Then

v2({c}) = 1, but v2(A1\{b}) = v2({a}) = 2, so the allocation is not EFX.

Therefore no allocation is both EFX and PO.

A similar example exists for general and identical valuations. This example was also used in

Section 5.4 to show that the leximin solution may not be EFX when zero marginal utility is allowed.

Theorem 5.5.2. If zero marginal utility is allowed, there exist general and identical valuations

where no EFX allocation is also PO, even for two players.

Proof. Consider two players with the same valuation v, and two goods a and b. Define v by

v(S) =


0 if S = {a}

1 if S = {b}

2 if S = {a, b}

By symmetry, assume without loss of generality that b ∈ A1. If A1 = {a, b}, then v(A2) = v(∅) = 0,

but v(A1\{a}) = v({b}) > 0, so the allocation is not EFX.

Therefore in any EFX allocation, a ∈ A2. But v({a}) = v(∅) = 0 and v({a, b}) > v({b}). Thus

giving a to player 1 strictly increases player 1’s value, without changing player 2’s value, so the

allocation is not PO.

Therefore no allocation is both EFX and PO.

On the other hand, if valuations are required to be additive and identical, it is possible to

guarantee EFX and Pareto optimality simultaneously, even with zero marginal utility. However,

this is an extremely restrictive setting that we mention mostly for completeness; we consider this a

very minor result. The proof of Theorem 5.5.3 appears in Section 5.7.

Theorem 5.5.3. For additive and identical valuations, there exists an allocation that is both EFX

and PO (even allowing zero marginal utility).

5.5.1 Nonzero marginal utility

The negative results of Theorem 5.5.1 and Theorem 5.5.2 both break down if players are assumed

to have strictly positive utility for any good being added to their bundle. Formally, we say that a

valuation v has nonzero marginal utility if for every set S ⊂ [m] and g 6∈ S, v(S ∪ {g})− v(S) > 0.

We feel that this is a reasonable assumption in practice, as v(S ∪ {g}) − v(S) is allowed to be

arbitrarily small, and one might expect players in real world situations to always prefer to have a

good than not.

Positive results from leximin

Under the assumption of nonzero marginal utility, the leximin solution is guaranteed to be both

EFX and PO for any number of players with general but identical valuations, and for two players

with (possibly distinct) additive valuations.
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Theorem 5.5.4. For general but identical valuations with nonzero marginal utility, the leximin

solution is EFX and PO.

Proof. We follow a very similar analysis to the proof of Theorem 5.4.2. Let A be an allocation that is

not EFX. Then there exist players i, j and g ∈ Aj where v(Ai) < v(Aj\{g}). Again assume without

loss of generality that i = arg mink v(Ak), and if there are multiple players with minimum utility in

A, let i be the one considered last in the ordering XA.

Define the same new allocation B where Bi = Ai ∪ {g}, Bj = Aj\{g}, and Bk = Ak for all

k 6∈ {i, j}. When zero marginal utility is allowed, the leximin++ modification of considering bundle

size is necessary because otherwise if vi(Bi) = vi(Ai), it could be the case that B ≺ A. When zero

marginal utility is disallowed, this modification is not necessary because vi(Bi) > vi(Ai) always.

The proof of Theorem 5.4.2 can be used nearly verbatim to show that A ≺ B (simply omit the

sentences handling the case where v(Bi) = v(Ai), since we now have v(Bi) > v(Ai), due to the

nonzero marginal utility of v). Thus A is not the leximin solution, so the leximin solution is EFX.

As noted before, the leximin solution is trivially Pareto optimal, since if any player could be

made better off without hurting any other player, that new allocation would be strictly larger under

≺.

We now show that assuming nonzero marginal utility, the leximin solution is EFX and PO for two

players with additive valuations. For this theorem, we will assume that vi([m]) = 1 for all i: were this

not the case, we could easily define v′i(S) = vi(S)/vi([m]), and find the leximin solution according

to v′. Additivity is necessary for Theorem 5.5.5 so that vi(A1) < vi(A2) implies vi(A1) < 1/2, and

so that vi(A1) ≥ vi(A2) implies vi(A1) ≥ 1/2.

The proof is similar to those of Theorem 5.4.2 and Theorem 5.5.4, in that we consider an arbitrary

allocation A that is not EFX, and show that it cannot be the leximin solution by constructing an

allocation B such that A ≺ B. However, the allocation B is constructed differently here.

Theorem 5.5.5. For two players with additive valuations (not necessarily identical) with nonzero

marginal utility, the leximin solution is EFX and PO.

Proof. Let A be an allocation that is not EFX. Then there exist players i, j and g ∈ Aj where

vi(Ai) < vi(Aj\{g}). Without loss of generality, assume i = 1 and j = 2.

We know that v1(A1) < v1(A2), so v1(A1) < 1/2. If v2(A2) < v2(A1), the players could swap

bundles to increase both of their utilities, so A could not be the leximin solution. Therefore assume

v2(A2) ≥ v2(A1), and so v2(A2) ≥ 1/2.

Define two new bundles S1 = A1 ∪ {g} and S2 = A2\{g}. Then define a new allocation B where

B1 = arg min
S∈{S1,S2}

v2(S) and B2 = arg max
S∈{S1,S2}

v2(S).

Since player 2 received her favorite of S1 and S2, we still have v2(B2) ≥ 1/2. We have v1(S2) =

v1(A2\{g}) > v1(A1) by our original assumption that A is not EFX, and we have v1(S1) = v1(A1 ∪
{g}) > v1(A1) by the nonzero marginal utility of v1. Therefore regardless of which bundle player 1

receives, v1(B1) > v1(A1).

Thus B has a higher minimum utility than A, so A cannot be the leximin solution. Therefore

the leximin solution is EFX in this setting, and it remains trivially PO.
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Assuming nonzero marginal utility, Theorem 5.5.5 provides stronger guarantees than the cur-

rently deployed algorithm on Spliddit, which only guarantees an EF1 and PO allocation. As de-

scribed in Section 5.1.3, this manifests even in simple cases.

We also argue that the assumption of nonzero marginal utility is particularly reasonable in the

case of two players with additive valuations, since if a player is truly indifferent to some good,

perhaps that good could simply be given to the other player and excluded from the fair division

process entirely.

Counterexample for two players with general valuations

Finally, we show that EFX and Pareto optimality cannot be guaranteed simultaneously for general

and distinct valuations, even with the assumption of nonzero marginal utility.

Theorem 5.5.6. There exist general valuations where no EFX allocation is also PO, even for two

players with nonzero marginal utility.

Proof. We construct a set of valuations for which there is no EFX allocation that is also PO.

Let n = 2 and M = {a, b, c, d, e}. Let α1 = {a}, β1 = {b, d}, γ1 = {a, c, d} and α2 = {b}, β2 =

{a, d}, γ2 = {b, d, e}. The key properties will be α1 ⊂ β2 ⊂ γ1 and α2 ⊂ β1 ⊂ γ2.

Define each player’s valuation vi by

vi(S) =


3 + ε(|S| − 3) if γi ⊆ S

2 + ε(|S| − 2) if βi ⊆ S and γi 6⊆ S

1 + ε(|S| − 1) if αi ⊆ S and βi, γi 6⊆ S

ε|S| otherwise

where ε is some small positive value (.1 would suffice). Adding a good to a bundle always increases

the value of the bundle by at least ε, so vi satisfies nonzero marginal utility. Also, note that the

valuations are symmetric across players, since αi, βi, and γi are symmetric across players.

We have the following implications:

γi 6⊆ S =⇒ vi(S) < 3

βi, γi 6⊆ S =⇒ vi(S) < 2

αi, βi, γi 6⊆ S =⇒ vi(S) < 1

By Theorem 5.4.3, an EFX allocation A = (A1, A2) must exist. Suppose γi ⊆ Ai for some i: by

symmetry, suppose i = 1. Since β1 ∩ β2 ∩ γ1 ∩ γ2 = {d} 6= ∅, we have β2, γ2 6⊆ A2, so v2(A2) < 2.

Furthermore, β2 is a strict subset of A1: specifically, β2 ⊆ A1\{c}. Therefore v2(A1\{c}) ≥ v2(β2) =

2, which is strictly larger than v2(A2). Therefore if γi ⊆ Ai for either i, A is not EFX.

Now suppose βi ⊆ Ai for some i: again suppose i = 1. Similarly, β2, γ2 6⊆ A2. In this case,

we also have α2 6⊆ A2, since α2 ∩ β1 6= ∅. Therefore v2(A2) < 1. Since α2 ⊆ A1\{d}, we have

v2(A1\{d}) ≥ v2(α1) = 1, which is strictly larger than v2(A2). Therefore if βi ⊆ Ai for either i, A
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is not EFX. Since A is EFX by assumption, we have βi, γi 6⊆ Ai for both i, and so vi(Ai) < 2 for

both i.

We next claim that αi ⊆ Ai for both i. Suppose α1 6⊆ A1: then α1 ⊆ A2. Therefore v1(A1) < 1,

and v1(A2) ≥ 1, so player 1 envies player 2. If there exists g ∈ A2\α1, then g could be removed and

player 1 would still envy player 2. Thus if |A2| ≥ 2, A is not EFX, so we have |A2| = 1. But then

α2 ⊆ A1 and |A1| ≥ 2, so player 1 is envied in violation of EFX. Thus we have α1 ⊆ A1, and by

symmetry, α2 ⊆ A2.

One of the players has at least three goods; by symmetry, suppose |A1| ≥ 3. Since α1 ⊆ A1 and

β1, γ1, α2 6⊆ A1, we have A1 = {a, c, e} and A2 = {b, d}.
Consider the allocation B = (B1, B2) = ({a, c, d}, {b, e}). Player 2 is indifferent between {b, d}

and {b, e}, so v2(B2) = v2(A2). But γ1 ⊆ B1, so v1(B1) > v(A1). Thus player 1 is strictly better off

in B, and no player is worse off. Therefore A is not PO, and so no EFX allocation is PO.

One last attempt to salvage EFX and PO in this setting might be to require a strict ranking

over bundles, i.e., not allow player 2 to be indifferent between {b, d} and {b, e}. However, even that

would not work, because we can easily set v2({b, e}) > v2({b, d}), in which case both players are

strictly better off in B.

This counterexample and our query complexity lower bound show that EFX is a very demanding

fairness property, even for two players. In the next section, we complement these negative results by

showing that an approximate version of EFX is satisfiable for any number of players with subadditive

valuations.

5.6 Existence of 1
2-EFX allocations for subadditive valuations

The possible existence of EFX allocations for possibly distinct valuations and n ≥ 3 remains an

open question, even for additive valuations. However, we are able to achieve an approximate version

of EFX, for any number of players with (possibly distinct) subadditive valuations. Recall that an

allocation A is c-EFX if for all i, j, and for all g ∈ Aj , vi(Ai) ≥ c ·vi(Aj\{g}). In words, an allocation

is c-EFX if for all i, j, and g ∈ Aj , i’s value for her own bundle is at least c times her value for j’s

bundle after removing g. For example, 1-EFX is equivalent to standard EFX. In this section, we

give an algorithm that is guaranteed to return a 1
2 -EFX allocation for any number of players with

subadditive valuations.

To describe our algorithm, we must first define the envy graph. The envy graph of an allocation

A has a vertex for each player, and a directed edge from i to j if player i envies player j. Here we

mean full envy (i.e. vi(Ai) < vi(Aj)), not just envy in violation of EFX. It will be necessary for

the envy graph in our algorithm to be acyclic; we now show that we can always ensure this. The

following lemma is adapted from Lipton et al. [119].

Lemma 5.6.1. Let A = (A1, A2...An) be a c-EFX allocation with envy graph G = (V,E), where G

contains a cycle. Then there exists another allocation B = (B1, B2...Bn) with envy graph H where

B is also c-EFX, and H has no cycles.
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Proof. We first show that there exists another c-EFX allocation A′ = (A′1...A
′
n) with envy graph G′,

where G′ has strictly fewer edges than G.

Let c = (1, 2...|c|) be a cycle in G. Thus vi(Ai) < vi(A(i mod |c|)+1) for all i ∈ c. Define a new

allocation A′ where A′i = A(i mod |c|)+1 for all i, and let G′ = (V ′, E′) be the envy graph for A′. It

is clear that A′ is a permutation of A.

Suppose A′ is not c-EFX: then there exist i, j ∈ N and g ∈ A′j where vi(A
′) < c·vi(A′j\{g}). Since

A′ is a permutation of A, there exists k ∈ N where Ak = A′j , so vi(A
′
i) < c · vi(Ak\{g}). Observe

that vi(A
′
i) > vi(Ai) if i ∈ c, and vi(A

′
i) = vi(Ai) otherwise. Thus vi(Ai) ≤ vi(A′i) < c · vi(Ak\{g}),

and so A is also not c-EFX. Therefore if A is c-EFX, then A′ is also c-EFX.

Note that the number of edges from V ′\c into c is unchanged. Also, the number of edges from c

into V ′\c has decreased or stayed the same, since the utility of every player in c has strictly increased.

Furthermore, for each i ∈ c, the number of players in c whom i envies has decreased by at least one.

This shows that G′ has strictly fewer edges than G.

If G′ still contains a cycle, we can apply this process again to obtain G′′, G′′′, and so on. Since

the number of edges strictly decreases each time, we can apply this process at most |E| times before

we obtain a envy graph without a cycle.

Algorithm 5 gives pseudocode for our algorithm. Initially all goods are in the pool P , and we

proceed in rounds until P is empty, maintaining the invariant that the partial allocation at the end

of each round is EFX. The function EliminateEnvyCycles uses Lemma 5.6.1 to ensure that the graph

at the beginning of each round is acyclic. Since the envy graph is acyclic, we can always find an

unenvied player j, and give an arbitrary good g∗ from P to her.

It is possible that this will cause another player i to envy j in violation of 1
2 -EFX. In this case,

we return all of i’s current bundle to P , and let i’s new bundle be just {g∗}. The key insight is that

in order for i to go from not envying j to envying j in violation of 1
2 -EFX, adding g∗ to Aj must

have caused vi(Aj) to at least double. We will use that fact, along with the subadditivity of vi, to

show that vi({g∗}) must be larger than i’s value for her bundle at the beginning of the round. Thus

if i envies any player, it remains consistent with 1
2 -EFX. Any envy directed towards i will be fully

EFX, since i will only have one good.

On each round, either P decreases in size (in the case where g∗ remains with j), or the sum of

utilities increases (in the case where g∗ is instead given to i because i envies j in violation of 1
2 -EFX).

Thus we can use a potential function argument to show that Algorithm 5 terminates (although it

may take a non-polynomial number of rounds).

Theorem 5.6.1. For subadditive valuations, Algorithm 5 returns a 1
2 -EFX allocation.

Proof. We refer to each iteration of the while-loop as a round. We first show that the partial

allocation at the end of each round is 1
2 -EFX. Then we will show that the algorithm is guaranteed

to terminate.

Let A`k be the bundle of player k at the beginning of round `, and let B`k denote the bundle of

player k just before EliminateEnvyCycles is run on round `. Let A` = (A`1...A
`
n) and B` = (B`1...B

`
n).

In this proof, we use k and k′ to denote a generic player; i and j refer exclusively to the variables in

the while-loop.
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Algorithm 5 Find an 1
2 -EFX allocation for n players with subadditive valuations

1: function GetApxEFXAllocation(n,m, (v1...vn))
2: P ← [m] . Initially, all goods are in the pool
3: for each i ∈ [n] do
4: Ai ← ∅
5: while P 6= ∅ do
6: g∗ ← pop(P ) . Remove an arbitrary good from P ,
7: j ← FindUnenviedPlayer(A1, A2...An) . and give it to an unenvied player
8: Aj ← Aj ∪ {g∗}
9: if ∃i ∈ [n], g ∈ Aj such that vi(Ai) <

1
2vi(Aj\{g}) then

10: P ← P ∪Ai . Return i’s old allocation to the pool,
11: Aj ← Aj\{g∗} . and give i just {g∗}
12: Ai ← {g∗}
13: (A1, A2...An)← EliminateEnvyCycles(A1, A2...An) . Ensure the envy graph is acyclic

14: return (A1, A2...An)

We proceed by induction on `. Initially, all players have empty bundles, which trivially satisfies
1
2 -EFX. Thus assume the partial allocation at the beginning of round ` is 1

2 -EFX. We will show

that the partial allocation at the beginning of round ` + 1 is 1
2 -EFX. The partial allocation at the

beginning of round `+1 A`+1 is equal to EliminateEnvyCycles(B`). Thus by Lemma 5.6.1, it suffices

to show that B` is 1
2 -EFX.

If the body of the if-statement (lines 10-12) is not executed, the allocation B` is 1
2 -EFX by

definition. Thus assume the body of the if-statement is executed. Then B`j = A`j , because g∗ was

added and then removed. Thus for all k 6= i, B`k = A`k.

We say that a pair (k, k′) is 1
2 -EFX in B` if v(B`k) ≥ 1

2v(Bk′\{g}) for all g ∈ B`k′ . We know that

A` is 1
2 -EFX by assumption. Therefore since B`k = A`k for all k 6= i, all pairs (k, k′) where k 6= i and

k′ 6= i remain 1
2 -EFX in B`. Furthermore, since B`i = {g∗}, the pair (k, i) is 1

2 -EFX for all players

k, since B`i \{g} = ∅ for all g ∈ B`i .
It remains only to show that the pairs (i, k) are 1

2 -EFX for all players k. We do this by showing

that vi(B
`
i ) > vi(A

`
i). The fact that this inequality is strict will be important later in showing that

the algorithm terminates.

We know that j was unenvied at the beginning of round `, so vi(A
`
i) ≥ vi(A

`
j). Since the body

of the if-statement executed, we also know that there exists g ∈ A`j ∪ {g∗} such that vi(A
`
i) <

1
2vi(A

`
j ∪ {g∗}\{g}). Thus vi(A

`
i) <

1
2vi(A

`
j ∪ {g∗}), which will be all we need. Therefore,

vi(A
`
i) <

1

2
vi(A

`
j ∪ {g∗}) (5.1)

≤ 1

2
(vi(A

`
j) + vi({g∗})) (5.2)

≤ 1

2
(vi(A

`
i) + vi({g∗})) (5.3)

where 5.2 follows from 5.1 due to vi being subadditive, and 5.3 follows from 5.2 due to vi(A
`
i) ≥
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vi(A
`
j). Therefore,

vi(A
`
i)−

1

2
vi(A

`
i) <

1

2
vi({g∗})

vi(A
`
i) < vi({g∗})

vi(A
`
i) < vi(B

`
i )

Consider an arbitrary player k 6= i. Since A` is 1
2 -EFX, we have vi(A

`
i) ≥ 1

2vi(A
`
k\{g}) for all

g ∈ A`k. Since vi(B
`
i ) > vi(A

`
i) and B`k = A`k for all k 6= i, we have vi(B

`
i ) ≥ 1

2vi(B
`
k\{g}) for all

g ∈ B`k as well. Therefore the pair (i, k) is 1
2 -EFX for all players k.

Thus every pair of players is 1
2 -EFX in B`, so B` is 1

2 -EFX. This shows that the partial allocation

at the end of each round is 1
2 -EFX, and so any allocation returned by the algorithm is 1

2 -EFX.

It remains to show that Algorithm 5 terminates. We use a potential function argument. For

round `, define

φ(`) =

n∑
k=1

v(A`k).

We noted above that if round ` falls under Case 2, only i’s bundle changes, and we have the strict

inequality vi(B
`
i ) > vi(A

`
i). Therefore vi(A

`+1
i ) > vi(A

`
i). Thus if round ` falls under Case 2, we

have φ(`+ 1)− φ(`) > 0.

If round ` falls under Case 1, only j’s bundle changes, and we have vj(A
`+1
j ) ≥ vi(A`i). Therefore

if round ` falls under Case 1, we have φ(`+ 1)− φ(`) ≥ 0.

In any round which falls under Case 1, |P | decreases by one. Therefore if m rounds pass without

Case 2 occurring, P becomes empty, and the algorithm terminates. Thus while the algorithm has

not terminated, Case 2 must occur at least once every m rounds, and so φ(`+m)− φ(`) > 0 for all

`.

The number of possible partial allocations is at most (n + 1)m: each good can be given to one

of the n players, or left in the unallocated pool. Thus the number of distinct values φ can take on

is at most (n+ 1)m, and so φ can increase at most that many times. Thus after m(n+ 1)m rounds,

the algorithm must have terminated.

Finally, we briefly show that 1
2 -EFX and EF1 are incomparable, meaning that neither property

implies the other. Recall that an allocation A is EF1 if for all i, j where Aj 6= ∅, there exists g ∈ Aj
where vi(Ai) ≥ vi(Aj\{g}).

Consider the additive valuations on the left, and let A = ({a, b}, {c}). A is EF1 because v2(A2) ≥
v2(A1\{a}), but A is not 1

2 -EFX because v2(A2) < 1
2v2(A1\{b}).

Now consider the valuations on the right, and let A = ({a, b, c}, {d}). Then A is not EF1, because

v2(A2) < v2(A1\{g}) for all g ∈ A1, but A is 1
2 -EFX, because v2(A2) ≥ 1

2v2(A1\{g}) for all g ∈ A1.

a b c

player 1 3 1 0

player 2 3 0 1

a b c d

player 1 1 1 1 1

player 2 1 1 1 1
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5.7 Additional proofs

Proof of Theorem 5.4.1. To show that ≺++, we need to show that for any allocations A,B, and C,

A ≺++ A is false, and that (A ≺++ B and B ≺++ C) implies A ≺++ C.

We first show that A ≺++ A is false. The key fact is that for a given allocation A, there is

only one possible ordering of the players XA: were this not true, ≺++ could fail to produce a total

ordering.15 Therefore on each iteration, the same player is considered from each copy of A. Thus

on each iteration, the two bundles compared will be the same, so A ≺++ A never terminates until

it passes through all ` ∈ [n] and returns false at the very end.

It remains to show that (A ≺++ B and B ≺++ C) implies A ≺++ C. Suppose A ≺++ B and

B ≺++ C. Let `1, `2, and `3 be the iterations on which A ≺++ B, B ≺++ C and A ≺++ C

terminate, respectively. For x ∈ {1, 2, 3}, let ix = XA
`x

, jx = XB
`x

, and kx = XC
`x

.

Since A ≺++ B terminates on iteration `1, we have v(Ai1) < v(Bj1) or |Ai1 | < |Bj1 |. Similarly,

since B ≺++ C terminates on iteration `2, we have v(Bi2) < v(Cj2) or |Bi2 | < |Cj2 |.
First we argue that `3 ≥ min(`1, `2). Suppose ` < min(`1, `2): then A ≺++ B and B ≺++ C do

not terminate until after iteration `3. Therefore v(Ai3) = v(Bj3), |Ai3 | = |Bj3 |, v(Bj3) = v(Ck3),

and |Bj3 | = |Ck3 |. Therefore v(Ai3) = v(Ck3) and |Ai3 | = |Ck3 |, so A ≺++ C could not have

terminated on iteration `3, which is a contradiction. Therefore `3 ≥ min(`1, `2). We proceed by case

analysis.

Case 1: `1 < `2. Since B ≺++ C did not terminate until after iteration `1, we have v(Bj1) =

v(Ck1) and |Bj1 | = |Ck1 |. Therefore v(Ai1) < v(Ck1) or |Ai1 | < |Ck1 |. We know that A ≺++ C

cannot have terminated prior to `1, since `3 ≥ min(`1, `2) = `1. Therefore A ≺++ C will terminate

on iteration `1 and return true, so A ≺++ C holds in Case 1.

Case 2: `2 < `1. This case is similar. Since A ≺++ B did not terminate until after iteration `2,

we have v(Ai2) = v(Bj2) and |Ai2 | = |Bj2 |. Therefore v(Ai2) < v(Ck2) or |Ai2 | < |Ck2 |. We know

that A ≺++ C cannot have terminated prior to `2, since `3 ≥ min(`1, `2) = `2. Therefore A ≺++ C

will terminate on iteration `2 and return true, so A ≺++ C holds Case 2.

Case 3: `1 = `2. In this case we have i1 = i2, j1 = j2, and k1 = k2. Therefore

v(Ai1) < v(Bj1) or
(
v(Ai1) = v(Bj1) and |Ai1 | < |Bj1 |

)
, and

v(Bj1) < v(Ck1) or
(
v(Bj1) = v(Ck1) and |Bj1 | < |Ck1 |

)
Note that v(Ai1) ≤ v(Bj1) and v(Bj1) ≤ v(Ck1). Therefore if either v(Ai1) < v(Bj1) or v(Bj1) <

v(Ck1), we have v(Ai1) < v(Ck1). We know A ≺++ C cannot have terminated before `1 = `2 since

`3 ≥ min(`1, `2), so if v(Ai1) < v(Ck1), A ≺++ C terminates on iteration `1 and returns true.

Thus assume v(Ai1) = v(Bj1) and v(Bj1) = v(Ck1): then |Ai1 | < |Bj1 | and |Bj1 | < |Ck1 |.
Therefore v(Ai1) = v(Ck1) and |Ai1 | < |Ck1 |, so A ≺++ C terminates on iteration `1 and returns

true. Therefore A ≺++ C in Case 3. This shows that (A ≺++ B and B ≺++ C) implies A ≺++ C,

15Consider two players with identical valuations and one good a, where v({a}) = 0. Let A = (∅, {a}). Suppose
both (1,2) and (2,1) are valid orderings of the players according to A, and suppose we run A ≺++ A with the left
hand side A using the ordering (1,2) and the right hand side A using (2,1). Then at ` = 1, ∅ from the left hand side
A will be compared with {a} from the right hand side A, and A ≺++ A will return true.
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and completes the proof.

Proof of Theorem 5.5.3. Let Z be the set of all goods g where v({g}) = 0. Therefore for all g ∈
M\{Z}, we have v({g}) > 0, so v has nonzero marginal utility over the set of goods M\{Z}.

Let A = (A1...An) be the leximin allocation over M\{Z}. By Theorem 5.5.4, A is EFX and PO

over M\{Z}.
Let i be the minimum utility player in A. Define a new allocation B over all of M where

Bi = Ai∪{Z} and Bj = Aj for all j 6= i. Since v(Z) = 0, we have v(Bj) = v(Aj) for all j. Therefore

since i had minimum utility in A, i also has minimum utility in B.

To see that B is EFX, consider arbitrary players j and k, and any g ∈ Bk. If i 6= k, we have

Ak = Bk. Since A is EFX, we have v(Bj) = v(Aj) ≥ v(Ak\{g}) = v(Bk\{g}). If i = k, then

v(Bj) ≥ v(Bk) ≥ v(Bk\{g}), since i has minimum utility in B. This shows that B is EFX.

To see that B is PO, observe that the way the goods in Z are allocated has no effect on the values

of the bundles. Therefore the goods in Z have no effect on the Pareto optimality of the allocation,

so the Pareto optimality of B follows directly from the Pareto optimality of A.

5.8 A setting where an EFX allocation can be computed

quickly

Finally, we describe a setting in which an EFX allocation always exists and can be computed

in polynomial time (counting both the value queries and all additional computation done by an

algorithm). Our result will hold when players have additive valuations with identical rankings,

meaning that all players agree on the relative ordering of individual goods. This is, for all players i

and j, and for all goods g1 and g2, vi(g1) ≥ vi(g2) whenever vj(g1) ≥ vj(g2). This will also yield a

polynomial time algorithm for computing an EFX allocation for two players with additive (possibly

distinct) valuations.

Requiring identical rankings is not as strong as requiring identical valuations. For example, let

v1(g1) = 1, v1(g2) = 2, v1(g3) = 4 and v2(g1) = 2, v2(g2) = 3, v2(g3) = 4. Then the rankings are

identical, but v1({g1, g2}) < v1(g3), whereas v2({g1, g2}) > v2(g3).

While strong, there are certainly real-world contexts where this assumption makes sense. For

example, if the goods are apartments (with differing square footage), airline tickets (with differing

numbers of stops and classes of service), or baseball pitchers (with differing statistics), it is plausible

that buyers generally agree on which goods are more valuable than others, but disagree on the exact

values of these goods.

Our algorithm (Algorithm 6) is reminiscent of our algorithm for finding a 1
2 -EFX allocation for

any number of players with subadditive valuations from Section 5.6, in that we allocate the goods

in rounds and ensure that the envy graph is acyclic at the beginning of each round. However, here

we never return goods to the pool, and allocate the goods in descending order of value.

Recall that Lemma 5.6.1 gives a process that can be used to ensure the envy graph is acyclic:

if an envy cycle exists, bundles can be permuted along this cycle such the number of edges in the
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Algorithm 6 Find an EFX allocation for additive valuations with identical ranking

1: function GetEFXAllocationSameRanking(n,m, (v1...vn))
2: P ← Sorted([m]) . Sort in descending order: P1 = max(P )
3: for each i ∈ [n] do
4: Ai ← ∅
5: for each i ∈ [m] do
6: j ← FindUnenviedPlayer(A1, A2...An)
7: Aj ← Aj ∪ {Pi}
8: (A1, A2...An)← EliminateEnvyCycles(A1, A2...An)

9: return (A1, A2...An)

envy graph decreases by at least one. The function EliminateEnvyCycles repeatedly performs this

process until the envy graph is acyclic.

Theorem 5.8.1. For additive valuations with identical rankings, Algorithm 6 terminates with an

EFX allocation in O(mn3) time.

Proof. We first argue that at all times, vi(Aj)− vi(Ai) ≤ vi(g∗) where g∗ is the good most recently

added to what is currently Aj . Since bundles may have been permuted by EliminateEnvyCycles, j

may not have been in possession of what is currently Aj at the time g∗ was added. This does not

affect the proof, however: it is sufficient to interpret Aj as “the bundle that currently belongs to j”.

Thus instead of saying “i did not envy j at the time”, we will say “i did not envy Aj at the time”.

Observe that a good is only allocated to a player whom no one envies. Thus directly before g∗

was added to Aj , i did not envy Aj : at that point vi(Aj) − vi(Ai) ≤ 0. Therefore directly after

g∗ was given to j, vi(Aj) − vi(Ai) ≤ vi(g
∗). Since vi(Ai) can only have grown since then, we have

vi(Aj)− vi(Ai) ≤ vi(g∗) until a new good is added to Aj .

Since the goods are allocated in decreasing order of value, the good most recently added to Aj

must also be the least valuable good in Aj . Therefore at all times, vi(Aj)− vi(Ai) ≤ min
g∈Aj

vi(g), and

so vi(Ai) ≥ vi(Aj) − min
g∈Aj

vi(g). For additive valuations, this is equivalent to vi(Ai) ≥ vi(Aj\{g})

for all g ∈ Aj . Therefore the allocation at all times is EFX, so the final allocation is EFX.

Finally, we show that Algorithm 6 terminates in O(mn3) time. Each time a good is allocated,

any edges added to the envy graph must point to the recipient. Thus at most n edges are added

to the envy graph on each round, and so at most mn edges are added to the graph over the course

of the algorithm. Each time a cycle is detected and bundles are permuted along that cycle using

Lemma 5.6.1, at least one edge is removed from the graph. Therefore this process is performed at

most mn times. Each time this process is performed, we may have to compute a large part of the

envy graph, which can take O(n2) time. Thus the overall running time bound is O(mn3).

This algorithm is easily generalizable to general valuations under the condition that all players

agree on a single ordering of the marginal values of the goods. Specifically, there must be an ordering

of the goods (g1, g2, . . . , gm) where for any set S, any player i, and all j, we have vi(S ∪ {gj}) ≥
vi(S ∪ {gj+1}). This ordering must be fixed across all sets S. Then instead of allocating goods in
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descending order of value, we allocate goods in descending order of marginal value, and the analog

of Theorem 5.8.1 holds, with essentially the same proof.

Finally, we note that Algorithm 6 can be used to compute an EFX allocation for two players

with additive (possibly distinct) valuations in polynomial time. We use a cut-and-choose argument

similar to that of Theorem 5.4.3: player 1 runs Algorithm 6 with two copies of herself to find an

allocation which will be EFX from her viewpoint, regardless of which bundle she receives. Then

player 2 chooses her favorite bundle in the resulting allocation, so the allocation will be fully envy-free

from her viewpoint.

5.9 Conclusion and future work

In this chapter, we provided the first general results on the fairness concept of envy-freeness up to

any good. Our most technically involved result was an exponential lower bound on the number of

queries required by any deterministic algorithm to find an EFX allocation, via a reduction from

local search. To complete the lower bound, we proved an exponential lower bound on the number of

queries required to find a local maximum on K(2k+1, k). We used results from Dinh and Russell [63]

and Valencia-Pabon and Vera [168] to obtain an exponential lower bound for randomized algorithms

as well. Our EFX lower bounds hold even for two players with identical submodular valuations.

Next, we showed that for n players with general but identical valuations, a modification of the

leximin solution is guaranteed to be EFX. We showed how this result can be adapted into a cut-

and-choose protocol for finding an EFX allocation between two players with general and possibly

distinct valuations.

We also considered satisfying EFX and Pareto optimality together. We showed that if players are

allowed to have zero value for a good being added to their bundle, it is impossible to guarantee EFX

and Pareto optimality simultaneously. However, if we assume that a player’s value for her bundle is

strictly increased by adding any good (even just by some tiny ε), the leximin solution is EFX and PO

two settings: for n players with general but identical valuations, and for two players with possibly

distinct additive valuations. We view the latter result as our result of most practical significance:

assuming nonzero marginal utility, it provides stronger guarantees the currently deployed algorithm

on Spliddit, even in simple examples. We also gave an algorithm for finding a 1
2 -EFX allocation for

any number of players with subadditive valuations. Finally, we discussed a (relatively constrained)

set of valuations for which an EFX allocation can be computed in polynomial time.

The ideal next step would be to consider EFX with distinct valuations and more than two

players.This problem seems quite challenging, even for the special case of additive valuations. Indeed,

Caragiannis et al. [40] were unable to settle the question of whether EFX allocations in that context

always exist, “despite significant effort.” After substantial follow-up work, it was recently shown

that EFX allocations are guaranteed to exist for three players with (possibly distinct) additive

valuations [45]. The case of four of more players remains open.

Another direction is to pursue stronger lower bounds for finding an EFX allocation. In particular,

communication complexity allows players unlimited computation and queries, and only measures
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the number of bits transmitted. The cut-and-choose protocol from Section 5.4 constitutes a linear

communication protocol for two players with general and possibly distinct valuations to compute an

EFX allocation, so any communication complexity lower bound would need to consider more than

two players. On the other hand, we know finding an EFX allocation to be hard in the query model

even for two players, which suggests an interesting separation.

More generally, communication complexity is one example of a topic that has been studied in

algorithmic mechanism design and may be useful in the study of fair division. Another such topic

is the hierarchy of complement-free valuations (additive, submodular, subadditive, etc.). Our work

already implies separations between these valuation classes from a fair division perspective, and

suggests that fair division with different classes of player valuations deserves further study.
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Chapter 6

Communication complexity

This chapter continues our study of axiomatic objectives for indivisible private goods. As discussed,

envy-freeness allocations may not exist when goods are indivisible. One approach to this difficulty

is to consider relaxed versions of envy-freeness: this is what we did in Chapter 5. In this chapter,

we take a sort of converse approach: our goal is to efficiently determine whether or not an envy-free

allocation exists, from the perspective of communication complexity. We also consider proportional-

ity, another common fairness axiom, and approximations of both proprtionality and envy-freeness.

We also study how the complexity varies across valuation classes.

We show that for more than two players (and any combination of other parameters), determining

whether a fair allocation exists requires exponential communication (in the number of goods). For

two players, tractability depends heavily on the specific combination of parameters, and most of the

chapter is focused on the two player setting. Taken together, our results completely resolve whether

the communication complexity of computing a fair allocation (or determining that none exist) is

polynomial or exponential, for every combination of fairness notion, valuation class, and number of

players, for both deterministic and randomized protocols.

6.1 Introduction

An allocationis envy-free (EF) if each player’s value for her own bundle is at least as much as her

value for any other player’s bundle. An allocation is proportional (Prop) if each player’s value for

her bundle is at least 1/n of her value for the entire set of items, where n is the number of players.

We study the problem of finding an envy-free (or proportional) allocation, or showing that none

exists.

We also consider approximate versions of these properties: for c ∈ [0, 1], an allocation is c-EF if

each player’s value for her own bundle is at least c times her value for any other player’s bundle, and

an allocation is c-Prop if each player’s value for her bundle is at least c/n of her value for the entire

set of items. Thus 1-EF and 1-Prop are standard envy-freeness and proportionality, respectively.

The same counterexample of two players and a single item shows that these approximate properties
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also cannot be guaranteed for any c > 0.1

From a computational complexity viewpoint, this problem is hard even when player valuations

are additive, meaning that a player’s value for a set of items is the sum of her values for the individual

items. For two players with identical additive valuations, determining whether a 1-EF or 1-Prop

exists is NP-hard, via a simple reduction from the partition problem [21].

It is arguably even more natural to study fair division from a communication complexity perspec-

tive, where there is no centralized authority and each player initially knows only her own preferences.

When players have combinatorial valuations, their values for a bundle cannot just be decomposed

into their values for the individual items.2 In particular, for m items, a combinatorial valuation may

contain 2m different values. The primary question is to determine whether players need to exchange

an exponential amount of information to compute a fair allocation, or whether the problem can be

solved using only polynomial communication. This question has not been studied previously, despite

the rich literature on communication complexity in combinatorial auctions (e.g. [65, 132, 134]).

Our work can also be thought of as formally studying the difficulty of eliciting different classes

of valuations from a fair division standpoint. Additive valuations are typically used in practice

(for example on the non-profit website Spliddit [98]) because each player need only report one

value for each item to specify the entire valuation. Richer combinatorial valuations allow for more

expressiveness, but may be more difficult to elicit. Our work formally studies the tradeoffs between

these factors.

6.1.1 Our results

We study the following question: “Given n players and m items, a fairness property P ∈ {EF, Prop},
and a constant c ∈ [0, 1], how much communication is required to either find a c-P allocation, or

show that none exists?”3 In other words, the problem is to determine whether a c-P allocation exists,

and if so, return one. We are primarily interested in whether this can be done with communication

polynomial in m. The answer to this question will depend on n, P , and c. We also consider

when player valuations are restricted to be submodular or subadditive, as well as deterministic vs.

randomized protocols.

All in all, we give a full characterization of the communication complexity for every combination

of the following five parameters:

1. Number of players n

2. Valuation class: submodular, subadditive, or general

3. Each P ∈ {EF, Prop}

4. Every constant c ∈ [0, 1]

1We generally assume that c > 0, since every allocation is both 0-EF and 0-Prop.
2An increasing amount of research in fair division considers such combinatorial valuations (e.g., [11, 92]).
3We only consider a single c-P property at a time: we do not consider satisfying envy-freeness and proportionality

simultaneously. For subadditive valuations, c-EF implies c-Prop, but c-EF and c-Prop are incomparable for general
valuations.
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5. Deterministic or randomized communication complexity

The importance of the two-player setting

One of our results (Section 6.7) shows that there is no hope for a polynomial communication protocol

for more than two players: exponential communication is required for every n > 2, for either P ∈
{EF, Prop}, for any c > 0, even for submodular valuations, and even for randomized protocols. The

(very important) two-player case is surprisingly rich, however, with multiple phenomena occurring

across different valuation classes and constants c. The results for two players in the deterministic

setting are summarized in Table 6.1. It is also surprising that there is such a chasm between the two-

and three-player cases; for example, there is no analogous chasm for maximizing the social welfare

in combinatorial auctions.

Furthermore, in contrast to combinatorial auctions, the two-player setting is fundamental in fair

division. Indeed, one of the first known mentions of fair division is in the Bible, when Abraham and

Lot use the cut-and-choose method to divide a piece of land. In modern day, one of the primary

applications of fair division for indivisible items is divorce settlements, which is fundamentally a

two-player setting. Fair Outcomes Inc.4, a commercial fair division website, only allows for two

players. Other applications of fair division, such as dividing an inheritance and international border

disputes, are also often two player settings. Unless otherwise mentioned, we assume that n = 2

throughout the chapter.

Submodular valuations

We first consider submodular valuations in the deterministic setting (for n = 2). We show that

full proportionality (1-Prop) requires only polynomial communication (Theorem 6.3.1), whereas

full envy-freeness requires exponential communication (Theorem 6.6.1), exhibiting an interesting

difference between the two properties.

The hardness result for 1-EF leaves open the intriguing possibility of a polynomial-communication

approximation scheme (PAS):5 for any fixed c < 1, is communication cost polynomial in m sufficient?

As one of our main results, we prove that this is indeed the case, and we prove it using a reduction

to a type of graph we call the “minimal bundle graph” (Theorem 6.4.1). This is our most technically

involved argument.

The communication cost of this protocol exponential in 1
1−c , and so this PAS is not a fully

polynomial-communication approximation scheme (FPAS), which would require polynomial depen-

dence on 1
1−c . Our lower bound for 1-EF (Theorem 6.6.1) rules out an FPAS, so our results are still

tight.

4http://fairoutcomes.com
5This is the same idea as a polynomial-time approximation scheme (PTAS), but here we are interested in commu-

nication, not time.
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Subadditive valuations

The story is different for subadditive valuations, which are treated in Section 6.8. We show that only

polynomial communication is required for c-EF when c ≤ 1/2 (Theorem 6.8.3) and for c-Prop when

c ≤ 2/3 (Theorem 6.8.4). Interestingly, the constants 1/2 and 2/3 turn out to be tight: we show that

exponential communication is required for c-EF for every constant c > 1/2 (Theorem 6.8.5) and for

c-Prop for every constant c > 2/3 (Theorem 6.8.6). This establishes another interesting difference

between the two fairness notions.

General valuations

The story is again different for general valuations, which we consider in Section 6.9. In the determinis-

tic setting, c-EF and c-Prop each require exponential communication for every c > 0 (Theorems 6.9.2

and 6.9.1). This resolves the deterministic setting.

It is interesting that hardness (for two players and deterministic protocols) turns out to be

monotonic with respect to c, i.e., increasing c cannot make the problem easier. This makes sense

intuitively, but we do not have a simple proof of this.

Randomized communication complexity

The c-Prop lower bound for general valuations also holds in the randomized setting for any c > 0.

However, c-EF admits an efficient randomized protocol for any c ≤ 1 and general (and hence also

subadditive and submodular) valuations. This randomized protocol is based on a reduction to

the Equality problem (testing whether two bit strings are identical), which is known to have an

efficient randomized protocol. Our randomized protocol for c-EF also carries over to c-Prop for any

c ≤ 1 in the special case of subadditive (and hence also submodular) valuations. This resolves the

randomized setting.

One may wonder why we care about deterministic protocols, when randomized protocols do so

well. Aside from the technical goal of handling every combination of parameters, in fair division

settings with considerable value (e.g., inheritance, divorce settlements), players may be wary of

allowing randomization.

Lastly, we briefly consider the maximin share property in Section 6.10, and prove exponential

lower bounds in that setting as well.

6.1.2 Ideas behind our protocols

Since the problem is always hard when n > 2, all of our upper bounds are in the two-player setting.

All of our positive results require the following condition: for any partition of the items into two

bundles A1 and A2, each player must be happy with at least one of A1 and A2. This is always true

for envy-freeness: a player is always happy with whichever of A1 and A2 she has maximum value

for (she could be happy with both bundles if they have equal value to her). This is not satisfied for

proportionality in general, for example if a player has value zero for each of A1 and A2, but positive

value for A1 ∪A2. However, it is satisfied for subadditive valuations.
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c-EF (deterministic) c-Prop (deterministic)

easy when hard when easy when hard when

general valuations never c > 0 (Thm. 6.9.2) never c > 0 (Thm. 6.9.1)

subadditive valuations c ≤ 1/2 (Thm. 6.8.3) c > 1/2 (Thm. 6.8.5) c ≤ 2/3 (Thm. 6.8.4) c > 2/3 (Thm. 6.8.6)

submodular valuations c < 1 (Thm. 6.4.1) c = 1 (Thm. 6.6.1) c ≤ 1 (Thm. 6.3.1) never

Table 6.1: A summary of our results for the two-player deterministic setting. For both c-EF and c-Prop,
we characterize exactly when the problem is easy (i.e., can be solved with communication polynomial in the
number of items) and hard (i.e., requires exponential communication). We note that the protocol for Theo-
rem 6.4.1 has communication cost exponential in 1

1−c , and the corresponding lower bound (Theorem 6.6.1)

rules out a protocol with communication cost polynomial in 1
1−c . See Section 6.1.1 for additional discussion.

All of our deterministic protocols have the same first step: if there is any allocation where player

1 would be happy to receive either bundle, she specifies that allocation to player 2, and player 2

selects her preferred bundle. Player 2 is guaranteed to be happy with at least one of the bundles by

the above condition, and player 1 is happy with either bundle in this allocation, so she is happy as

well.

The key to the analysis is what happens when there is no allocation such that player 1 is happy

with either bundle. It will turn out that the absence of such an allocation implies certain structure in

the valuations. The exact structure, and the way the structure is exploited, depends on the setting

(valuation class, property P , and constant c).

For example, consider the case of subadditive valuations and 1
2 -EF. We show that if there is no

allocation where player 1 is happy with either bundle, then there must exist a single item that player

1 values more than the rest of the items combined. Then player 1 can simply specify that item to

player 2. If player 2 is happy with the rest of the items, we have found a satisfactory allocation.

Otherwise, there is no satisfactory allocation, since player 1 and player 2 both care about that

particular item more than the rest of the items combined.

Furthermore, this protocol gives an additional guarantee. If a c-P allocation is not returned, the

protocol will return the fairest allocation possible, i.e., a c′-P allocation where no allocation is c′′-P

for any c′′ > c′. For brevity, we will use c∗ to refer to the maximum c′ such that a c′-P allocation

exists.6 If player 2 determines that a c-P allocation does not exist, then there is a single item g

that both players care about more than all of the other items together. One player will have to not

receive item g, and the protocol gives g to the player who will be most unhappy otherwise. This

yields a c∗-P allocation. In fact, all of our deterministic protocols give this guarantee, although

slightly more work is required to achieve it in other settings.

6It is possible that c∗ = 0 (for example, in the case of two players and one item), but our protocol at least certifies
that this is the best possible.
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Minimal bundles

The reasoning described above is actually a special case of analyzing what we call minimal bundles.

We say that a bundle is minimal for some player if that player is happy with the bundle, but is

not happy with any strict subset of that bundle.7 The minimal bundles represent the most a player

is willing to compromise. If a player does not receive one of her minimal bundles (or a superset

thereof), she cannot be happy, by definition. On the other hand, if a player receives one of her

minimal bundles (or a superset thereof), she is guaranteed to be happy.8 Thus it is both necessary

and sufficient for each player to receive one of her minimal bundles (or a superset thereof). By this

reasoning, it is sufficient for player 1 to specify all of her minimal bundles to player 2: player 2 can

then determine if there is an allocation which satisfies her (player 2), while still giving player 1 one

of player 1’s minimal bundles.

The general Minimal Bundle Protocol (Protocol 8) is as follows. If there is an allocation where

player 1 is happy with either bundle, she specifies that allocation to player 2, and we are done.

Otherwise, player 1 specifies all of her minimal bundles to player 2, who searches for a satisfactory

allocation. If player 2 fails to find one, she declares that no satisfactory allocation exists. There is a

final step that is used to guarantee that a c∗-P allocation is returned if no c-P allocation is found;

this will be described later.

The key is proving that the number of minimal bundles is polynomial in m, and this analysis

varies based on the context. For example, for subadditive valuations and 1
2 -EF, we discussed above

how if there is no allocation where player 1 is happy with either bundle, there must be a single item

g that she values more than all of the other items together. This means that player 1 has a single

minimal bundle: {g}.
We also use the protocol to give a PAS for EF in the submodular setting: we show that for every

fixed c < 1, the number of minimal bundles is at most 2(m + 1)
8

1−c , and thus the protocol uses

polynomial communication for any fixed c. The analysis for this case is technically involved and

involves constructing what we call the “minimal bundle graph” for player 1’s valuation. The vertices

in this graph are the minimal bundles, and two vertices share an edge if the corresponding bundles

overlap by exactly one item (it will be impossible for two minimal bundles to overlap by more than

one item). For some of these edges, moving the overlapping item between bundles will cause a large

change in value: these special edges will play an important role. We will show that the only way to

have a large number of minimal bundles is for there to be a large number of these special edges, but

submodularity will imply an upper bound on how many special edges can be incident on a single

vertex, and hence an upper bound on the total number of special edges.

The Minimal Bundle Protocol is correct for any valuation class, property P , or constant c.

However, in some contexts, the number of minimal bundles may be exponential. Our lower bound

constructions all involve valuations with an exponential number of minimal bundles.

7A similar notion of “minimal bundles” features prominently in [26].
8We assume monotonicity: adding items to a bundle cannot decrease its value.
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6.1.3 Related work

In the previous chapter, we discussed general related work in the area of fair division (Section 5.1.2),

so in this section, we focus specifically on the relationship with communication complexity.

Communication complexity was first studied by [177]. The paper most relevant to our work

is [134], which shows that maximizing social welfare requires exponential communication, even for

two players with submodular valuations. Furthermore, they show that for general valuations, any

constant factor approximation of the social welfare requires exponential communication to compute.

Although they do not mention envy-freeness, proportionality, or fair division, some of their argu-

ments can be adapted to prove exponential lower bounds for some (but not all) of the cases that we

study.

A recent and complementary line of work is presented in [29]. They study the communication

complexity of fair division with divisible goods (also known as “cake cutting”), where each resource

can be divided into arbitrarily small pieces. Their paper complements this chapter with no overlap.

Together, our works give a comprehensive picture of the communication complexity of fair division

in both the indivisible and divisible models.

The organization of the rest of the chapter is as follows. Section 6.2 formally presents the model.

Section 6.3 presents our 1-Prop protocol for submodular valuations. In Section 6.4, we discuss the

PAS for 1-EF for submodular valuations. Section 6.5 describes our general lower bound approach,

and proves a lemma that we will use to prove lower bounds later on in a standardized way. Section 6.6

uses that lemma to prove hardness for 1-EF for submodular valuations, which shows that the PAS

from Section 6.4 is optimal. Section 6.7 shows that the problem is always hard for more than two

players, even for submodular valuations and even in the randomized setting. The rest of the chapter

is focused on resolving the two player case. Section 6.8 presents the upper and lower bounds for

subadditive valuations. Section 6.9 considers general valuations, and also handles the randomized

two player setting. Table 6.1 will be complete after this section. Finally, we consider the maximin

share property (to be defined later) in Section 6.10.

6.2 Model

We assume the same resource allocation model as in Chapter 5: each agent i has a valuation vi,

which may be submodular, subadditive, or unrestricted, and our goal is determine an allocation

A = (A1, . . . , An). In this chapter, our fairness axioms of interest are approximate proportionality

and envy-freeness:

Definition 6.2.1. An allocation A = (A1, . . . , An) is c-EF for some c ∈ [0, 1] if for all i, j ∈ N ,

vi(Ai) ≥ c · vi(Aj)

Definition 6.2.2. An allocation A = (A1, . . . , An) is c-Prop for some c ∈ [0, 1] if for all i ∈ N ,

vi(Ai) ≥ c ·
vi(M)

n
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Thus 1-EF is standard envy-freeness, and 1-Prop is standard proportionality.

We will say that a player is (c, P )-happy with an allocation A if property c-P is satisfied from her

viewpoint. Specifically, when P = EF, we will say that player i is (c, P )-happy with allocation A if

vi(Ai) ≥ c ·vi(Aj) for all j. For P = Prop, we will say a player i is (c, P )-happy if vi(Ai) ≥
c

n
vi(M).

We will typically leave P implicit, and just say that player i is c-happy. We sometimes also leave c

implicit, and just say that player i is happy.

An instance of Fair Division consists of a set of players N , a set of items M , player valuations

(v1...vn), a fairness property P ∈ {EF, Prop}, and a constant c ∈ [0, 1]. The goal is to find an

allocation satisfying c-P , or show that none exists.

Two players

We use the following additional terminology when n = 2. For a player i, we will use i to denote

the other player. For an allocation A = (A1, A2), let A be the allocation (A2, A1). Also, when

n = 2, knowing player i’s bundle uniquely determines the overall allocation, since player i simply

has every item not in player i’s bundle. Therefore, with slight abuse of notation, we say that player

i is c-happy with bundle S if player i is c-happy with the allocation A where Ai = S and Ai = M\S.

6.2.1 Communication complexity

We assume that each player knows only her own valuation vi, and does not know anything about

other players’ valuations. In order to solve an instance of Fair Division, players will need to

exchange information about their valuations. We assume that all players know N,M,P , and c.

Since there 2m subsets of M , specifying a bundle requires m bits. We will use vsize to refer to

the number of bits required to represent a value vi(S). We assume that vsize is polynomial in m,

otherwise sending even a single value would rule out a polynomial communication protocol.

A (deterministic) protocol Γ specifies which player should speak (and what she should say) as

a function of the messages sent so far, and terminates when a player declares that an allocation

A satisfies c-P , or when a player declares that no c-P allocation exists. For fixed N,M,P , and

c, we define the communication cost of a protocol Γ to be the maximum number of bits Γ sends

across all player valuations v1...vn. Formally, let CΓ(N,M, (v1...vn), P, c) be the number of bits that Γ

communicates when run on the fair division instance (N,M, (v1...vn), P, c). Then the communication

cost of Γ is max(v1...vn) CΓ(N,M, (v1...vn), P, c).

We define the deterministic communication complexity D(n,m,P, c) as the minimum communi-

cation cost of any protocol Γ which correctly solves Fair Division for n players, m items, property

P and constant c. Formally,

D(n,m,P, c) = min
Γ

max
(v1...vn)

CΓ([n], [m], (v1...vn), P, c)

where Γ ranges over all correct deterministic protocols.

In a randomized protocol ΓR, each player also has access to an infinite stream of random bits.

The protocol should correctly solve Fair Division with probability 2/3 (say) over these random bits.
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Like the deterministic setting, the communication cost of ΓR is the number of bits ΓR communicates

for a worst-case choice of v1...vn. We can similarly define the randomized communication complexity

R(n,m,P, c) as the minimum communication cost of any randomized protocol ΓR which correctly

solves Fair Division with probability at least 2/3. Formally,

R(n,m,P, c) = min
ΓR

max
(v1...vn)

CΓR([n], [m], (v1...vn), P, c)

where ΓR ranges over all correct randomized protocols. If valuations are restricted to be subadditive

or submodular, the problem may become easier, so D(n,m,P, c) and R(n,m,P, c) may be affected.

We use Dsubadd(n,m,P, c) and Dsubmod(n,m,P, c) to denote the deterministic communication com-

plexity when valuations are restricted to be subadditive and submodular, respectively (and similarly

for Rsubadd(n,m,P, c) and Rsubmod(n,m,P, c)). The following relationships are immediate, for all

n,m,P, and c:

R(n,m,P, c) ≤ D(n,m,P, c)

Dsubmod(n,m,P, c) ≤ Dsubadd(n,m,P, c) ≤ D(n,m,P, c)

Rsubmod(n,m,P, c) ≤ Rsubadd(n,m,P, c) ≤ R(n,m,P, c)

Another factor that may affect the communication complexity is how the players gain access to

random bits. In the public-coin model, the players can also see other players’ streams of random bits;

in the private-coin model, each player sees only her own stream. This distinction is not significant

in our setting, however, due to the following theorem from [131].

Theorem 6.2.1 ([131]). Suppose there exists a public-coin randomized protocol with communication

cost C on ` bits of input. Then there exists a private-coin randomized protocol with communication

cost O(C + log `).

Thus we will assume all randomized protocols to be public-coin for the rest of the chapter.

Finally, we mention the multiparty (i.e., n > 2) communication complexity model. There is

more than one such model: for example, do players communicate in a peer-to-peer fashion, or is

each message broadcast for all of the players to see? We discuss in Section 6.7 how this turns out

not to matter in our setting.

6.3 An upper bound for 1-Prop with submodular valuations

This section presents our first result: a deterministic protocol for 1-Prop, when there are two players,

and when valuations are submodular. The protocol will communicate just m+ 1 values and a single

bundle. Our protocol either finds a 1-Prop allocation or a c∗-Prop allocation. Recall that c∗ is the

maximum c such that a c-P allocation exists.9 We prove the following theorem:

9Technically, our protocol always returns a c∗-Prop allocation, since we only consider c ∈ [0, 1]. We state the
1-Prop case separately in the theorem because it is handled separately in the protocol.
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k 1 2 3
v1(g1, . . . , gk) 2 2 3

δMk 2 0 1

Figure 6.1: An example of a possible valuation v1 over three goods, and the corresponding values for δSk .

Theorem 6.3.1. For two players with submodular valuations, Protocol 7 has communication cost

at most (m+ 1)vsize +m, and either returns a 1-Prop allocation or a c∗-Prop allocation. This also

implies that for any c ∈ [0, 1],

Dsubmod(2,m,Prop, c) ≤ (m+ 1)vsize +m

To see that the theorem also implies Dsubmod(2,m,Prop, c) ≤ (m+1)vsize+m for any c, suppose

that the protocol returns a c∗-Prop allocation where c∗ < 1: then we know that no allocation is

c′-Prop for any c′ > c∗, so a c-Prop allocation exists if and only if c∗ ≥ c. Thus Protocol 7 either

finds a c-Prop allocation or shows that none exists, for any c ∈ [0, 1].

It will be important that the following condition is satisfied in this setting:

Condition 6.3.1. For every allocation A, each player is happy with at least one of A and A.

Recall that for an allocation A = (A1, A2), A = (A2, A1). This condition is satisfied for propor-

tionality with subadditive valuations (and hence also satisfied for submodular valuations):

max
(
vi(A1), vi(A2)

)
≥ 1

2

(
vi(A1) + vi(A2)

)
≥ 1

2
vi(A1 ∪A2) =

1

2
vi(M) ≥ c

2
vi(M)

for all c ∈ [0, 1]. Thus player i is always happy if she receives the bundle arg max
(
vi(A1), vi(A2)

)
.

Also, we assume in this section that v1(M) = 1, without loss of generality: were this not the case,

we could simply rescale v1 as needed.

Let M = (g1, g2...gm) be an arbitrary ordering of the items. We assume that this ordering

is publicly known. Consider starting from the empty set and adding the items in M one at a

time in this order. We define δMk as player 1’s marginal value of adding gk in this process: δMk =

v1(g1, g2 . . . gk−1, gk)− v1(g1, g2 . . . gk−1). Note that δMk is not equal to vi({gk}) in general, because

of submodularity.

The protocol is as follows. The first step is common to all of our deterministic protocols: player

1 checks if there is an allocation A where she is happy with both A and A. If so, player 2 can choose

whichever she prefers, and we are done by Condition 6.3.1. If this fails, the following condition is

satisfied:

Condition 6.3.2. There is no allocation A for which player 1 is happy with both A and A.

In this case, player 1 sends the values (δM1 , δM2 ...δMm ) to player 2. For every bundle S, player 2

needs to be able to figure out whether player 1 likes S or M\S. To do this, player 2 simply pretends

that player 1’s valuation is additive where δMk is the value of item gk. Formally, let χ(S) =
∑
gk∈S

δMk :

player 2 pretends that v1(S) = χ(S). This will not be a perfect estimate of v1, of course, but player
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2 does not need to know the exact value of v1(S): she only needs to know whether player 1 is happy

with S.

Lemma 6.3.1 shows that this actually works: assuming Condition 6.3.2, v1(S) ≥ 1/2 if and only

if χ(S) ≥ 1/2. We informally argue why this is case. Crucially, submodularity implies that χ(S) will

be an underestimate of v1(S): v1(S) ≥ χ(S) for all S. Since χ(S) + χ(M\S) =
∑m
k=1 δ

M
k = v1(M),

either χ(S) ≥ 1/2 or χ(M\S) ≥ 1/2. Say χ(S) ≥ 1/2: then v1(S) ≥ χ(S) ≥ 1/2, so player 1 is

happy with S. Then by Condition 6.3.2, we know that player 1 is not happy with M\S. Therefore,

for any bundle S, player 2 can correctly use χ as a proxy for v1 to determine which of S and M\S
player 1 is happy with. Thus χ is sufficient for her to determine whether or not a 1-Prop allocation

exists, and if so, find one. This lemma is the heart of Protocol 7.

Step 4, S∗(vi), and ci(S
∗(vi)) are necessary only for finding a c∗-Prop allocation if no 1-Prop

allocation is found. For a bundle S and property P , let cPi (S) be the maximum c′ ≤ 1 such that

player i is c′-happy with S. For example, cPropi (S) = min
(

1,
2vi(S)

vi(M)

)
= min(1, 2vi(S)), since we

assumed vi(M) = 1. Although this section considers only proportionality, we allow for either P ∈
{EF, Prop} in our definitions, since we will use this terminology again in later sections. We will

typically leave P implicit and write ci(S).

For each player i, we define a special bundle

S∗(vi) = arg max
S⊆M : ci(S)<c

ci(S)

In words, S∗(vi) is the bundle that player i is the most happy with, out of all of the bundles she is

not fully happy (i.e., c-happy) with.10

Protocol 7 Protocol for two players with submodular valuations to either find a 1-Prop allocation
or a c∗-Prop allocation.

Private inputs: v1, v2

Public inputs: the ordering of M = {g1, g2...gm}

1. If there exists an allocation A where player 1 is happy with both A and A, player 1 sends that
allocation to player 2. If player 2 is happy with A, she declares that A is 1-Prop, otherwise
she declares that A is 1-Prop.

2. If there is no such allocation A, player 1 sends the values (δM1 , δM2 ...δMm ) to player 2, along with
S∗(v1) and the value c1(S∗(v1)).

3. Player 2 first checks if there exists any bundle S where χ(S) ≥ 1/2 and v2(M\S) ≥ 1/2. If so,
she declares that the allocation (S,M\S) is 1-Prop.

4. If not, player 2 computes S∗(v2), c2(S∗(v2)), and i = arg maxi′∈{1,2} ci′(S
∗(vi′)). Let A be

the allocation where Ai = S∗(vi) and Ai = M\S∗(vi). Player 2 then declares that A is
ci(S

∗(vi))-Prop, and that c∗ = ci(S
∗(vi)).

10Although incentives are not the focus of this chapter, we mention that Step 4 makes Protocol 7 easily manipulable.
Specifically, it is a dominant strategy for player 1 report c1(S∗(v1)) = 0 (i.e., if I am not fully happy, I am not happy
at all, so you should make me fully happy). The same reasoning applies to Protocol 8, which has the same Step 4.
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It will be useful for the analysis to define δSi for an arbitrary bundle S. First, let

S≤k = {gj ∈ S | j ≤ k}

For example, S≤0 = ∅ and S≤m = S for all S. Also, whenever gk ∈ S, we have S≤k = S≤k−1 ∪{gk}.
Let δSk = v1(S≤k)− v1(S≤k−1). Note that for all S, v1(S) =

∑m
k=1 δ

S
k .

Lemma 6.3.1. Assuming Condition 6.3.2, for any bundle S, v1(S) ≥ 1/2 if and only if χ(S) ≥ 1/2.

Proof. We first claim that for any bundle S and any item gk ∈ S, δSk ≥ δMk . We have

δSk = v1(S≤k)− v1(S≤k−1) = v1(S≤k−1 ∪ {gk})− v1(S≤k−1)

and

δMk = v1(M≤k)− v1(M≤k−1) = v1(M≤k−1 ∪ {gk})− v1(M≤k−1)

Since S≤k−1 ⊆ M≤k−1, we have v1(S≤k−1 ∪ {gk}) − v1(S≤k−1) ≥ v1(M≤k−1 ∪ {gk}) − v1(M≤k−1)

by submodularity. Thus δSk ≥ δMk for all k and S. Therefore for any bundle S,

v1(S) =
∑
gk∈S

δSk ≥
∑
gk∈S

δMk = χ(S)

so v1(S) ≥ χ(S) for all S ⊆M .

Suppose χ(S) ≥ 1/2: then we immediately have v1(S) ≥ 1/2 by the above argument. Suppose

v1(S) ≥ 1/2. Then by Condition 6.3.2, v1(M\S) < 1/2. Therefore χ(M\S) < 1/2. Next, we have

χ(S) + χ(M\S) =
∑
gk∈S

δMk +
∑

gk∈M\S

δMk =

m∑
k=1

δMk = v1(M) = 1

Since χ(M\S) < 1/2, we have χ(S) ≥ 1/2.

Theorem 6.3.1. For two players with submodular valuations, Protocol 7 has communication cost

at most (m+ 1)vsize +m, and either returns a 1-Prop allocation or a c∗-Prop allocation. This also

implies that for any c ∈ [0, 1],

Dsubmod(2,m,Prop, c) ≤ (m+ 1)vsize +m

Proof. If the protocol terminates in step 1, just one bundle is communicated (and zero values), which

requires m bits. Thus in this case, the communication cost is m ≤ (m+ 1)vsize +m. If the protocol

does not terminate in step 1, then the m values (δM1 ...δMm ) are sent, plus the bundle S∗(v1), plus the

value c1(S∗(v1)). By definition of cProp1 , c1(S∗(v1)) requires a single value to communicate.

Thus in this case, m+ 1 values and one bundle are communicated, so the communication cost is

(m+ 1)vsize +m. Therefore the communication cost bound is satisfied.

It remains to prove correctness. Suppose the protocol terminates in step 1. By Condition 6.3.1,

player 2 is happy with at least one of A and A. Therefore player 2 is happy with whichever of A and
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A she declares to be 1-Prop. Player 1 is happy with both A and A, so she is also happy. Therefore

if the protocol terminates in step 1, the declared allocation is in fact 1-Prop.

Suppose the protocol does not terminate in step 1. We assume Condition 6.3.2 for the remainder

of the proof. Suppose player 2 declares that (S,M\S) is 1-Prop in step 3: then

χ(S) ≥ 1/2 and v2(M\S) ≥ 1/2

Thus by Lemma 6.3.1, v1(S) ≥ 1/2, so (S,M\S) is indeed a 1-Prop allocation.

So suppose the protocol does not terminate until step 4. We first claim that no 1-Prop allocation

exists. Suppose that a 1-Prop allocation A does exist: then vi(Ai) ≥ 1/2 for both i. Since the

protocol did not terminate in step 1, we have Condition 6.3.2. Thus by Lemma 6.3.1, χ(A1) ≥ 1/2.

Let S = A1: then

χ(S) ≥ 1/2 and v2(M\S) = v2(A2) ≥ 1/2

so the protocol should have terminated in step 3, which is a contradiction.

Therefore no 1-Prop allocation exists. It remains to show that we return a c∗-Prop allocation

in this case. Let i = arg maxi′∈{1,2} ci′(S
∗(vi′)) as computed by player 2 in step 4. Let A be the

allocation returned by the protocol in this case: Ai = S∗(vi) and Ai = M\S∗(vi).
We first claim that A is ci(S

∗(vi))-Prop. Player i is ci(S
∗(vi))-happy with A by definition, and

we claim that player i is 1-happy with A. If i were not 1-happy with A, then she must be 1-happy

with A by Condition 6.3.1. Furthermore, since player i is not 1-happy with A, she must be 1-happy

with A also by Condition 6.3.1. But then both players are 1-happy with A, which is a contradiction.

Thus A is ci(S
∗(vi))-Prop. Suppose that c∗ 6= ci(S

∗(vi)): then there exists an allocation A′ where

A′ is c-Prop for some c > ci(S
∗(vi)). We know that player i cannot be happier than ci(S

∗(vi))-

happy without being 1-happy, so player i must be 1-happy with A′. That implies that player 2 is

not 1-happy with A′, since no allocation makes both players 1-happy in this case. But then the

happiest player i can be is ci(S
∗(vi)), and ci(S

∗(vi)) ≤ ci(S
∗(vi)) by assumption. Thus for any

allocation, there is a player who is at most ci(S
∗(vi))-happy. Therefore no allocation is c-Prop for

any c > ci(S
∗(vi)).

6.4 PAS for EF with submodular valuations

In this section, we prove our other positive result for specifically submodular valuations: a deter-

ministic protocol for c-EF when c < 1, and when there are two players. This is our most technically

involved result. We prove the following theorem:

Theorem 6.4.1. For two players with submodular valuations and any c < 1, Protocol 8 has com-

munication cost at most 2m(m + 1)
8

1−c + 2vsize, and either returns a c-EF allocation or a c∗-EF

allocation. This also implies that

Dsubmod(2,m,EF, c) ≤ 2m(m+ 1)
8

1−c + 2vsize
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bundle S vi(S) 1-Prop? minimal?
{g1} 2 no N/A
{g2} 4 no N/A
{g3} 5 yes yes
{g1, g2} 6 yes yes
{g1, g3} 7 yes no
{g2, g3} 9 yes no
{g1, g2, g3} 10 yes no

Figure 6.2: An example demonstrating the minimal bundle property for P = Prop and c = 1. This instance
involves a valuation vi over three goods. Since vi(M) = vi({g1, g2, g3}) = 10 in this case, player i is happy
with S if and only if vi(S) ≥ 10/n = 5. For example, player i is happy with {g1, g3}, but that bundle is not
minimal, since player i is also happy with {g3}. In contrast, {g1, g2} is minimal, since player i is happy with
neither {g1} nor {g2}.

for any c < 1.

This constitutes a polynomial-communication approximation scheme (PAS): the communication

cost approaches infinity exponentially as c goes to 1, but for any fixed constant c < 1, it is polynomial

in m.11

We use much of the same terminology from Section 6.3: in particular, cPi (A), S∗(vi), S≤k, and

δSk . Also, recall the following condition:

Condition 6.3.1. For every allocation A, each player is happy with at least one of A and A.

This is satisfied for c-EF for any c ∈ [0, 1], even for general valuations: if vi(Ai) ≥ vi(Ai), player

i is happy with A. Otherwise, vi(Ai) ≥ vi(Ai), so she is happy with A.

Our PAS protocol will use the minimal bundle analysis discussed in Section 6.1.2. For a fixed

constant c, we say that a bundle S is minimal for a particular player if that player is c-happy with

S, but for all g ∈ S, she is not c-happy with S\{g}. We use S to denote the set of player 1’s

minimal bundles: each S ∈ S is a minimal bundle for player 1. Also, in this section, we assume that

v1(M) = 1.

6.4.1 The protocol

We now describe Protocol 8, also known as the Minimal Bundle Protocol. Although we only consider

envy-freeness in this section, we define Protocol 8 for either P ∈ {EF, Prop}. We will use this same

protocol in Section 6.8.1 to prove upper bounds for both envy-freeness and proportionality in the

subadditive case.

First, if there is an allocation A where player 1 is happy with both A and A, we are done: player

2 chooses her favorite of A and A, and she is guaranteed to be happy with at least one them by

Condition 6.3.1. If there is no such allocation A, player 1 sends the set S of all of her minimal

bundles to the other player. We will prove that in our setting, the number of minimal bundles sent

in step 2 must be polynomial in m. Specifically, we will show that |S| < 2(m+ 1)
8

1−c .

11Because the dependence on 1
1−c is exponential, this constitutes a PAS but not an FPAS. An FPAS is ruled out

in Section 6.6.

164



Protocol 8 Protocol for two players to either find a c-P allocation or a c∗-P allocation.

Private inputs: v1, v2

Public inputs: P, c

1. If there exists an allocation A where player 1 is happy with both A and A, player 1 sends that
allocation to player 2. If player 2 is happy with A, she declares that A is c-P , otherwise she
declares that A is c-P .

2. If there is no such allocation A, player 1 sends the set S of her minimal bundles to player 2.
She also sends the bundle S∗(v1) and the value c1(S∗(v1)).

3. Player 2 first checks if there exists a bundle S ∈ S where player 2 is happy with M\S. If so,
she declares that (S,M\S) is c-P .

4. If not, player 2 computes S∗(v2) and i = arg maxi′∈{1,2} ci′(S
∗(vi′)). Let A be the allocation

where Ai = S∗(vi) and Ai = M\S∗(vi). Player 2 then declares that A is ci(S
∗(vi))-P , and

that c∗ = ci(S
∗(vi)).

The minimal bundles represent the most player 1 is willing to compromise while still being happy:

she does not require anything more than a minimal bundle, but she is not happy with any strict

subset of any of her minimal bundles. In this way, receiving a minimal bundle is both necessary and

sufficient for player 1 to be happy. Using this reasoning, we will show that knowing S is sufficient

for player 2 to find a c-P allocation or show that none exists. Finally, step 4 is identical to that of

Protocol 7, and is used to find a c∗-P allocation when no c-P allocation exists.

6.4.2 Correctness

We now formally prove the correctness of Protocol 8. We will prove a few helpful lemmas before

proving the main correctness lemma (Lemma 6.4.4).

Lemma 6.4.1. If Protocol 8 declares an allocation to be c-P , the allocation is in fact c-P .

Proof. The only two steps that can declare an allocation to be c-P are steps 1 and 3. Suppose the

protocol declares an allocation to be c-P in step 1. Then by assumption, there exists an allocation A

where player 1 is happy with both A and A. If player 2 declares A to be c-P , then both players are

happy with A, and the claim is satisfied. If player 2 declares A to be c-P , then she was not happy

with A. By Condition 6.3.1, player 2 is happy with A. Thus A is c-P in this case, so the lemma is

satisfied if the protocol terminates in step 1.

Suppose the protocol declares an allocation to be c-P in step 3. Then the allocation declared can

be written as (S,M\S) for some S ∈ S. Since S is minimal, player 1 is happy with S by assumption,

and player 2 only declares an allocation to be c-P in this step if she is happy with it. Thus the

lemma is satisfied in this case as well.

Lemma 6.4.2. Player 1 is happy with a bundle S if and only if there exists a minimal bundle T

where T ⊆ S.
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Proof. ( =⇒ ) Suppose player 1 is happy with bundle S. If S is minimal, we are done, so assume

S is not minimal. Then there exists g ∈ S where player 1 is happy with S\{g}. If S\{g} is not

minimal, there again exists some g′ ∈ S\{g} that we can remove, and this process can be repeated

until we obtain some minimal subset of S.

(⇐= ) Suppose there exists a minimal bundle T where T ⊆ S. Then by monotonicity, v1(S) ≥
v1(T ). Since T is minimal, player 1 is happy with T . If P = Prop, this is sufficient to show that

player 1 is happy with S. If P = EF, it is also necessary to note that v1(M\S) ≤ v1(M\T ), again

by monotonicity. Thus the claim holds for both P ∈ {EF, Prop}.

Lemma 6.4.3. Protocol 8 declares an allocation to be c-P if and only if a c-P allocation exists.

Proof. If no c-P allocation exists, the protocol does not declare any allocation to be c-P by Lemma 6.4.1.

Thus assume a c-P allocation A exists. Then player 1 is happy with A1, so by Lemma 6.4.2, there

exists S ∈ S where S ⊆ A1. Then A2 ⊆ M\S, so by monotonicity, player 2 is happy with M\S.

Thus if the protocol has not already terminated, player 2 will declare will declare (S,M\S) to be

c-P . Then by Lemma 6.4.1, the declared allocation is in fact c-P , so the claim is satisfied in this

case.

If the protocol terminated before player 2 considered S in step 3, the protocol declared some

other allocation to be c-P , and the declared allocation is again c-P by Lemma 6.4.1 in this case.

Thus the claim is satisfied in both cases.

Finally, we show that the protocol correctly returns a c∗-P allocation if no c-P allocation exists.

Recall the definitions of S∗(vi) and c(S): ci(S) is the maximum c′ ≤ 1 where player i is c′-happy

with S, and S∗(vi) = arg maxS⊆M : ci(S)<c ci(S). In words, S∗(vi) is the bundle that makes player

i the most happy, out of all the bundles that do not make her c-happy. For P = EF, ci(S) =

min
(

1,
vi(S)

vi(M\S)

)
.

Lemma 6.4.4. Protocol 8 either returns a c-P allocation or a c∗-P allocation.

Proof. If a c-P allocation exists, Lemma 6.4.3 implies that the protocol correctly returns one, so the

claim is satisfied in this case.

Suppose no c-P allocation exists: then the protocol does not declare an allocation to be c-P , again

by Lemma 6.4.3. Thus the protocol does not terminate until step 4. Let i = arg maxi′∈{1,2} ci′(S
∗(vi′))

as computed by player 2 in step 4. Let A be the allocation returned by the protocol in this case:

Ai = S∗(vi) and Ai = M\S∗(vi).
First observe that A is ci(S

∗(vi))-P : this is because player i is ci(S
∗(vi))-happy with A, and

player i is c-happy with A. Suppose that A is not c∗-P : then there exists an allocation A′ where A′

is c′′-P for some c′′ > ci(S
∗(vi)). We know that player i cannot be happier than ci(S

∗(vi))-happy

without being c-happy, so player i must be c-happy with A′. That implies that player 2 is not

c-happy with A′, since no allocation makes both players c-happy in this case. But then the happiest

player i can be is ci(S
∗(vi)), and ci(S

∗(vi)) ≤ ci(S
∗(vi)) by assumption. Thus for any allocation,

there is a player who is at most ci(S
∗(vi))-happy. Therefore c∗ = ci(S

∗(vi)).

166



6.4.3 Communication cost

It remains to bound the communication cost. This will primarily consist of proving an upper bound

on the number of minimal bundles player 1 sends to player 2. We will go through a series of helpful

lemmas before proving the final theorem.

The upper bound on the number of minimal bundles will depend on there being no allocation

A for which player 1 is happy with both A and A: recall that if there is such an allocation, then

Protocol 8 terminates after step 1 and does not even send the set of minimal bundles S. This

condition was defined in Section 6.3.

Condition 6.3.2. There is no allocation A for which player 1 is happy with both A and A.

Let ∆(S, g) be player 1’s marginal value for adding item g to bundle S. Formally, ∆(S, g) =

v1(S ∪ {g})− v1(S). Also, let α =
1− c

2
.

The idea behind Lemma 6.4.5 is the following. Because of Condition 6.3.2, we have c · v1(S) >

v1(M\S) whenever player 1 is happy with S. If S is minimal, then moving any g ∈ S to M\S will

invert this inequality: v1(S\{g}) < c · v1

(
(M\S)∪{g}

)
. Lemma 6.4.5 uses this to show that at least

one of ∆(S\{g}, g) and ∆(M\S, g) has to be fairly large.

Lemma 6.4.5. Assuming Condition 6.3.2, for every minimal bundle S and every good g ∈ S,

max
(

∆(S\{g}, g),∆(M\S, g)
)
≥ α

Proof. Since S is minimal, for every good g ∈ S, we know that player 1 is not happy with S\{g}.
Specifically,

v1(S\{g}) < c · v1

(
(M\S) ∪ {g}

)
so by definition of ∆, we have

v1(S)−∆(S\{g}, g) < c ·
(
v1(M\S) + ∆(M\S, g)

)
= c · v1(M\S) + c ·∆(M\S, g)

We also know that player 1 is happy with S. Thus by Condition 6.3.2, player 1 is not happy

with M\S, so v1(M\S) < c · v1(S). Adding this to the above equation yields

v1(S)−∆(S\{g}, g) + v1(M\S) < c · v1(M\S) + c ·∆(M\S, g) + c · v1(S)

(1− c)v1(S) + (1− c)v1(M\S) < ∆(S\{g}, g) + c ·∆(M\S, g)

(1− c)v1(S) + (1− c)v1(M\S) < ∆(S\{g}, g) + ∆(M\S, g)

(1− c)
(
v1(S) + v1(M\S)

)
< ∆(S\{g}, g) + ∆(M\S, g)

(1− c)v1(M) < ∆(S\{g}, g) + ∆(M\S, g)

where the last step follows from submodularity (actually just subadditivity).
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Since v1(M) = 1 by assumption, we have

∆(S\{g}, g) + ∆(M\S, g) ≥ 1− c

max
(

∆(S\{g}),∆(M\S, g)
)
≥ 1− c

2
= α

Next, we define a directed graph G = (V,E) which we call the minimal bundle graph. The vertex

set V is the set of minimal bundles. With slight abuse of notation, we will use S and T to refer both

to minimal bundles and to the corresponding vertices in V . We define the edge set E by

E =
{

(S, T ) | ∃g ∈ S where T ⊆ (M\S) ∪ {g}
}

The next three lemmas establish some useful properties of the minimal bundle graph.

Lemma 6.4.6. Assuming Condition 6.3.2, let (S, T ) ∈ E, and let g be a good in S such that

T ⊆ (M\S) ∪ {g}. Then g ∈ T .

Proof. Suppose g 6∈ T : then S ⊆ M\T . Since S is minimal, player 1 is happy with S. Thus by

monotonicity, player 1 is also happy with M\T . But player 1 is also happy with T , because T is

minimal. This contradicts Condition 6.3.2, so we must have g ∈ T .

Lemma 6.4.7. Assuming Condition 6.3.2, if (S, T ) ∈ E, then there is a unique g ∈ S where

T ⊆ (M\S) ∪ {g}.

Proof. Suppose there exist g1, g2 ∈ S where g1 6= g2, T ⊆ (M\S) ∪ {g1}, and T ⊆ (M\S) ∪ {g2}.
Then by Lemma 6.4.6, g1 ∈ T and g2 ∈ T . But this contradicts T ⊆ (M\S) ∪ {g1}, because

g2 ∈ S\{g1}, so g2 6∈ (M\S) ∪ {g1}. Therefore g1 = g2.

Using Lemma 6.4.7 for each edge (S, T ) ∈ E, let g(S, T ) be the unique good such that T ⊆
(M\S) ∪ {g(S, T )}.

Lemma 6.4.8. Assuming Condition 6.3.2, if (S, T ) ∈ E, then (T, S) ∈ E. Furthermore, g(T, S) =

g(S, T ).

Proof. Suppose (S, T ) ∈ E: then T ⊆ (M\S) ∪ {g(S, T )}. By Lemma 6.4.6, we have g(S, T ) ∈ T .

Since T ⊆ (M\S)∪{g(S, T )}, we have S\{g(S, T )} ⊆M\T . Therefore S ⊆ (M\T )∪{g(S, T )}, and

so (T, S) ∈ E and g(S, T ) = g(T, S).

The next lemma is because there are |S| items in S that we could move to M\S. The proof uses

Lemma 6.4.7 to show that each of them will yield a different minimal bundle T , so this constitutes

|S| distinct edges (S, T ).

Lemma 6.4.9. The out-degree of each bundle S ∈ V is at least |S|.
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Proof. Let S = {g1, g2...g|S|}. We first claim that for all gj ∈ S, there exists Tj ∈ V where

Tj ⊆ (M\S) ∪ {gj}. Consider some gj ∈ S. Because S is minimal, we know that player 1 is not

happy with S\{gj}. Therefore player 1 must be happy with (M\S) ∪ {gj}. Then by Lemma 6.4.2,

there exists Tj ⊆ (M\S) ∪ {gj} where Tj is minimal. Therefore (S, Tj) ∈ E.

By Lemma 6.4.7, gj = g(S, Tj) is unique. Thus for all g ∈ S where g 6= g(S, Tj), we have g 6∈ Tj .
This implies that each Tj is distinct. Thus (S, T1), (S, T2)...(S, T|S|) are all distinct edges in E, so

the out-degree of S is at least |S|.

Next, we define a set of edges E+ ⊆ E by

E+ = {(S, T ) | ∆(S\{g(S, T )}, g(S, T )) ≥ α}

This is the set of “special edges” alluded to in Section 6.1.2.

The informal argument for the next lemma is as follows. By Lemma 6.4.8, we have (S, T ) ∈ E if

and only if (T, S) ∈ E. Then Lemma 6.4.5 (combined with submodularity) implies that at least one

of ∆(S\{g(S, T )}, g(S, T )) ≥ α and ∆(T\{g(S, T )}, g(S, T )) ≥ α is true, so at least one of (S, T )

and (T, S) must be in E+.

Lemma 6.4.10. Assuming Condition 6.3.2, |E+| ≥ |E|/2.

Proof. Let (S, T ) be some edge in E: then by Lemma 6.4.8, (T, S) ∈ E. It suffices to show that for

every edge (S, T ) ∈ E, at least one of (S, T ) and (T, S) are in E+. Assume (S, T ) 6∈ E+: otherwise

we are done. Then

∆
(
S\{g(S, T )}, g(S, T )

)
< α

Thus by Lemma 6.4.5,

∆
(
M\S, g(S, T )

)
≥ α

Since (T, S) is an edge in the graph, S ⊆ (M\T ) ∪ {g(S, T )}. Therefore S\{g(S, T )} ⊆M\T . Thus

by submodularity, ∆(S\{g(S, T )}, g(S, T )) ≥ ∆(M\T, g(S, T )) ≥ α. Therefore (S, T ) ∈ E+.

Lemma 6.4.11 follows from a simple counting argument.

Lemma 6.4.11. For any integers m and `,
∑̀
j=0

(
m

j

)
≤ (m+ 1)`.

Proof. The left-hand-side is number of subsets of [m] of size at most `. The right-hand-side is the

number of ways to select ` elements from [m] ∪ {d}, where each element can be selected multiple

times, and including ordering. We think of d as a dummy element. For each subset S ⊆ [m] counted

by
∑`
j=0

(
m
j

)
, we represent it in (m + 1)` as follows: first select element d ` − |S| times, and then

select the elements in S in any order. Thus each subset of [m] counted by the left-hand-side is

represented in a unique way by the right-hand-side, and so
∑`
j=0

(
m
j

)
≤ (m+ 1)`.

We are now ready to prove the final theorem. Recall the following definitions from Section 6.3:

S≤k = {gj ∈ S | j ≤ k}
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δSk = v1(S≤k)− v1(S≤k−1)

Theorem 6.4.1. For two players with submodular valuations and any c < 1, Protocol 8 has com-

munication cost at most 2m(m + 1)
8

1−c + 2vsize, and either returns a c-EF allocation or a c∗-EF

allocation. This also implies that

Dsubmod(2,m,EF, c) ≤ 2m(m+ 1)
8

1−c + 2vsize

for any c < 1.

Proof. Correctness of Protocol 8 follows from Lemma 6.4.4, so it remains only to bound the com-

munication cost.

We prove that the number of minimal bundles is (strictly) less than 2(m+ 1)
8

1−c = 2(m+ 1)4/α,

assuming Condition 6.3.2. Let β = 4/α, and suppose that the number of minimal bundles is at least

2(m+ 1)4/α = 2(m+ 1)β . By Lemma 6.4.11, the number of minimal bundles of size at most β is at

most (m+ 1)β . Thus there are at least (m+ 1)β minimal bundles S where |S| > β.

So at least half of the minimal bundles have size more than β. Let G = (V,E) be the minimal

bundle graph. Then by Lemma 6.4.9, at least half of the minimal bundles in V have out-degree

more than β. Therefore |E| > β|V |/2. Then by Lemma 6.4.10, |E+| > β|V |/4 = |V |/α.

For a bundle S, let XS
+ be the set of out-edges from S that are in E+. Formally,

XS
+ = {(S, T ) ∈ E | ∆(S\{g(S, T )}, g(S, T )) ≥ α}

and we can define the corresponding goods by g(XS
+) = {g ∈ S | ∆(S\{g}, g) ≥ α}.

We next show that there must exist a minimal bundle S ∈ V where |XS
+| > 1/α. Suppose that

|XS
+| ≤ 1/α for all S ∈ V : then

|E+| ≤ |V |/α

which contradicts |E+| > |V |/α. Therefore there exists some bundle S with |XS
+| > 1/α. By

definitions, we have

v1(S) =

m∑
k=1

δSk =
∑

k:gk∈S

δSk =
∑

k:gk∈S

∆(S≤k−1, gk) ≥
∑

k:gk∈g(XS+)

∆(S≤k−1, gk)

Because S≤k−1 ⊆ S and gk 6∈ S≤k−1, we have S≤k−1 ⊆ S\{gk}. Therefore by submodularity,12

∑
k:gk∈g(XS+)

∆(S≤k−1, gk) ≥
∑

k:gk∈g(XS+)

∆(S\{gk}, gk) ≥
∑

k:gk∈g(XS+)

α = α|XS
+| > 1

But v1(M) = 1, so this is a contradiction. Therefore the number of minimal bundles is less than

2(m+ 1)
8

1−c .

12This is the crucial use of submodularity: that we can add in the items in S one by one, and the value of the set
increases by at least ∆(S\{gk}, gk) each time. This allows us to pump the value of S over v1(M).
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Thus the number of minimal bundles is at most 2(m + 1)
8

1−c − 1. If the protocol terminates

in step 1, just one bundle is communicated (and zero values), so the communication cost bound is

trivially satisfied. Suppose the protocol does not terminate in step 1: then player 1 sends at most

2(m + 1)
8

1−c − 1 minimal bundles, as well as S∗(v1). Thus at most 2(m + 1)
8

1−c bundles are sent,

each of which require m bits to communicate.

Player 1 also sends ci(S
∗(v1)). By definition of cEFi , ci(S

∗(v1)) can be expressed as the ratio of

two values, each of which takes vsize bits to communicate. Therefore the total communication cost

is

2m(m+ 1)
8

1−c + 2vsize

as required.

We will show formally in Section 6.6 that Theorem 6.4.1 is tight, meaning that exponential

communication can be required when c = 1. To see why the minimal bundle argument fails for

c = 1, consider an additive (and hence submodular) valuation over an even number of items, where

the value of each item is one. Then a bundle is minimal if and only if it contains exactly half the

items, and there are exponential number of such bundles.

6.5 Lower bound approach

In Section 6.6, we will prove a lower bound that matches the PAS from Section 6.4. Before we

do that, we describe our general lower bound approach in this section. All of our lower bounds

will rely on reductions from two well-known problems in communication complexity: determining

whether two bit strings are equal, and determining whether two bit strings are disjoint. Let xi

denote the bit string held by player i, and let xij denote the jth bit of xi. An input (x1, x2) is

a yes-instance of the Equality problem if and only if x1j 6= x2j for all j. An input (x1, x2) is a

yes-instance of the Disjointness problem if and only if there exists no j such that x1j = x2j = 1.

The following lemma states that Disjointness is hard in the randomized setting (and thus also in

the deterministic setting).

Lemma 6.5.1 ([106, 151]). Any randomized protocol which solves Disjointness for bit strings of

length ` has communication cost Ω(`).

The following well-known lemma states that Equality is hard in the deterministic setting.

Lemma 6.5.2. Any deterministic protocol which solves Equality for bit strings of length ` has

communication cost at least `.

Perhaps surprisingly, Equality admits a constant communication randomized protocol, due to

[177].

Lemma 6.5.3 ([177]). There exists a randomized protocol which solves Equality and has commu-

nication cost O(1).
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The protocol for Lemma 6.5.3 asks each player to compute the inner product mod 2 of her bit string

and a random string. The protocol then compares those inner products. The Principle of Deferred

Decisions can be used to show that this protocol arrives at the correct answer with probability at

least 3/4. Lemma 6.5.3 will be a key element of our randomized upper bound in Section 6.9.3.

All of our lower bounds have the following structure. Given two bit strings x1 and x2 of length

` = Ω(
(

2k
k

)
), we construct a corresponding instance of Fair Division with O(k) items. In the two

player case, each index in the bit strings will correspond to a possible allocation that gives each

player k items.

Our constructed instance will have that a property that a c-P allocation exists if and only

if (x1, x2) is a no-instance13 of Equality (for a deterministic lower bound), or a no-instance of

Disjointness (for a randomized lower bound). Thus if there existed a protocol for Fair Division

with communication cost less than Ω(
(

2k
k

)
), it could also be used to solve Equality or Disjointness

in communication less than Ω(`). This is impossible according to Lemmas 6.5.1 and 6.5.2, so any

protocol for Fair Division requires exponential communication.

Using this framework, all that is needed to prove a lower bound for a particular set of parameters

(property P , constant c, and a valuation class) is:

1. Given bit strings x1 and x2 of length Ω(
(

2k
k

)
), define how to construct a corresponding instance

of Fair Division with O(k) items.

2. Show that a c-P allocation exists in the constructed instance if and only if (x1, x2) is a no-

instance of Equality or Disjointness.

3. Show that the valuations in the constructed instance of Fair Division are of the desired

valuation class.

More specifically, our Fair Division instance will have two players and 2k items. Valuations

will be constructed such that a player will never be happy if she receives fewer than k items, so

both players will have to receive exactly k items. There are
(

2k
k

)
allocations which give each player

k items, and this gives rise to the exponential communication lower bound.

In fact, we can do this in a very standardized way for the two player deterministic case. Given bit

strings of length 1
2

(
2k
k

)
, we define a list of allocations T = (T1, T2...T|T |) where each Tj = (Tj1, Tj2) ∈

T is an allocation giving each player k items: |Tj1| = |Tj2| = k. There two important properties

we will need T to have. First, T should not contain every such allocation: in particular, for any

allocation A ∈ T , A 6∈ T .14 Second, the order of allocations in T cannot depend on the input

strings. This order is arbitrary, but publicly known. Note that |T | = 1
2

(
2k
k

)
.

Lemma 6.5.4 states that under this approach, all that is necessary to complete the lower bound

is to construct valuations satisfying three particular properties. The exact way valuations are con-

structed will depend on what class we wish them to belong to (general, subadditive, or submodular).

We only prove the lemma for the c-EF in the two player deterministic setting. A similar result is

13Note that no-instances of Equality or Disjointness become instances where a c-P allocation does exist.
14Recall that for A = (A1, A2), A = (A2, A1).
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possible for other settings, but this is only setting where we prove enough different lower bounds to

make it worth having a separate lemma.

For a bit string xi, let xi denote the string obtained by flipping every bit: xij 6= xij for all j. We

will define two new bit strings, y1 and y2, by y1 = x1 and y2 = x2. Also, recall that for a player i, i

denotes the other player.

The lemma relies on three conditions. Condition 6.5.1 states that neither player is happy with

any bundle containing fewer than k items: then any c-P allocation must either be A or A for some

A ∈ T . Condition 6.5.2 states that player i is unhappy receiving Tji when yij = 1 (and happy

receiving Tji). Condition 6.5.3 states that player i is unhappy receiving Tji when yij = 0 (and

happy receiving Tji). Thus we want to find an index j where either y1j = y2j = 1, in which case the

allocation (Tj1, Tj2) is c-P , or where y1j = y2j = 0, in which case the allocation (Tj2, Tj1) is c-P .

Therefore we are looking for an index where y1j = y2j , which is equivalent to x1j 6= x2j . This is

exactly the Equality problem.

Lemma 6.5.4. Given bit strings x1, x2, each of length
1

2

(
2k

k

)
for some integer k, let M = [2k] and

N = [2]. Let y1 = x1 and y2 = x2, and let c be some constant. Let T = (T1, T2...T|T |) be a list of

allocations as described above. Suppose v1, v2 can be constructed such that the following conditions

are met:

Condition 6.5.1. For all |S| < k and both i, vi(S) < c · vi(M\S).

Condition 6.5.2. Whenever yij = 1, vi(Tji) < c · vi(Tji).

Condition 6.5.3. Whenever yij = 0, vi(Tji) < c · vi(Tji).

Then any deterministic protocol which finds a c-EF allocation for two players requires exponential

communication. Specifically,

D(2, 2k,EF, c) ≥ 1

2

(
2k

k

)
Proof. We reduce from Equality. Given bit strings x1 and x2 of length

1

2

(
2k

k

)
for some integer

k, we construct the following instance of Fair Division. Let N,M, (y1, y2), and T be as defined in

the statement of Lemma 6.5.4. Also assume that v1 and v2 satisfy Conditions 6.5.1, 6.5.2, and 6.5.3.

Suppose that (x1, x2) is a no-instance of Equality: then there exists j where x1j 6= x2j .

Therefore y1j = y2j . If y1j = y2j = 1, then by Condition 6.5.2,

vi(Tji) >
1

c
vi(Tji) ≥ c · vi(Tji)

for both i. Thus the allocation Tj is c-EF, because each player i receives Tji. If y1j = y2j = 0, then

by Condition 6.5.3,

vi(Tji) >
1

c
vi(Tji) ≥ c · vi(Tji)

for both i. Thus the allocation Tj is c-EF, because each player i receives Tji. Therefore if (x1, x2)

is a no-instance of Equality, there exists an allocation satisfying c-EF.
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Suppose that (x1, x2) is a yes-instance of Equality: then for every j, y1j 6= y2j . For any

allocation A where |Ai| < k for some i, we have vi(Ai) < c · vi(Ai) by Condition 6.5.1. Thus A

cannot be c-EF whenever |Ai| < k for some i.

Now consider an arbitrary allocation A where |A1| = |A2| = k. For any such allocation, there

must exist j where either A = Tj , or A = Tj . Since y1j 6= y2j , there exists a player i where

yij = 0, and yij = 1. Then by Condition 6.5.3, vi(Tji) < c · vi(Tji). Also, vi(Tji) < c · vi(Tji) by

Condition 6.5.2, where i = i represents the player other than i. Thus vi(Tji) < c · vi(Tji).
Therefore neither player is happy with bundle Tji. But since either A = Tj or A = Tj , there

must be a player who receives Tji, is hence is not happy. Thus no allocation where |A1| = |A2| = k

can be c-EF, no allocation is c-EF.

This lemma will be useful in a variety of settings. In the next section, we will use this lemma to

prove a lower bound for 1-EF that matches the PAS from Section 6.4.

6.6 1-EF is hard for submodular valuations

In this section, we use the general approach described in Section 6.5 to show that 1-EF requires

exponential communication, even for two players with submodular valuations. This shows that the

PAS for this setting from Section 6.4 is the best we can hope for.

Formally, Section 6.4 showed that Dsubmod(2,m,EF, c) is polynomial in m when c < 1. We now

show thatDsubmod(2,m,EF, c) is exponential when c = 1. Section 6.3 showed thatDsubmod(2,m,Prop, c)

is polynomial for any c, so there is no lower bound necessary there. Thus this section resolves the

deterministic submodular case for two players.

Theorem 6.6.1. For two players with submodular valuations, any deterministic protocol which de-

termines whether a 1-EF allocation exists requires an exponential amount of communication. Specif-

ically,

Dsubmod(2, 2k,EF, 1) ≥ 1

2

(
2k

k

)
Proof. Given bit strings of length

1

2

(
2k

k

)
for some integer k, define M,N, (y1, y2), and T as in

Lemma 6.5.4. We need only to construct submodular valuations v1, v2 such that Conditions 6.5.1,

6.5.2, and 6.5.3 are met. We define each vi by

vi(S) =



3|S| if |S| < k

3k if |S| > k

3k if S = Tji and yij = 1

3k if S = Tji and yij = 0

3k − 1 if S = Tji and yij = 0

3k − 1 if S = Tji and yij = 1
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Importantly, for every bundle S with |S| = k, there exists exactly one pair (i, j) such that S = Tji.

Thus if |S| = k, S falls under exactly one of the last four cases in the definition of vi.

If |S| < k, we have |M\S| > k, so vi(S) < 3k = vi(M\S). This satisfies Condition 6.5.1. Suppose

yij = 1 for some i, j: then vi(Tji) = 3k − 1 < 3k = vi(Tji), so Condition 6.5.2 is satisfied. Suppose

yij = 0 for some i, j: then similarly, vi(Tji) = 3k − 1 < 3k = vi(Tji). Thus Condition 6.5.3 is

satisfied as well.

It remains to show that the valuations are submodular. To do this, we examine vi(S∪{g})−vi(S),

for any bundle S and item g 6∈ S.

vi(S ∪ {g})− vi(S) =


3 if |S ∪ {g}| < k

2 or 3 if |S ∪ {g}| = k

0 or 1 if |S ∪ {g}| = k + 1

0 if |S ∪ {g}| > k + 1

Therefore vi(S∪{g})−vi(S) is non-increasing with |S|. Thus vi(X∪{g})−vi(X) ≥ vi(Y ∪{g})−vi(Y )

whenever |X| < |Y |. If X ⊆ Y , either |X| < |Y | or X = Y . When X = Y , we trivially have

vi(X ∪{g})− vi(X) = vi(Y ∪{g})− vi(Y ). Thus we have vi(X ∪{g})− vi(X) ≥ vi(Y ∪{g})− vi(Y )

whenever X ⊆ Y , and so vi is submodular.

Recall that Section 6.4 gave a PAS for this setting, where for any fixed c, communication at most

2(m + 1)
8

1−c is required. In a fully polynomial-communication approximation scheme (FPAS), the

dependence in 1
1−c is required to be polynomial. The PAS from Section 6.4 is not an FPAS, since

the dependence on 1
1−c is exponential.

The above proof of Theorem 6.6.1 actually shows that for any c > 3k−1
3k = 3m−2

3m , exponential

communication is required. This does not contradict the PAS from Section 6.4, because 3m−2
3m is

not a fixed constant (it depends on m). However, this does rule out the possibility of an FPAS.

To see this, suppose an FPAS existed, and consider some c > 3m−2
3m . Then the FPAS would have

communication cost polynomial in 1
1−c . We have

1

1− c
>

1

1− 3m− 2

3m

=
3m

2

so the communication cost is polynomial of m. But the proof of Theorem 6.6.1 shows communication

exponential in m is required, which is a contradiction.

Finally, we note that the proof of Theorem 6.6.1 can easily be adapted to prove exponential

lower bounds on the communication complexity of maximizing Nash welfare (the product of player

valuations) or egalitarian welfare (the minimum player valuation).
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6.7 Everything is hard for more than two players

In this section, we show that Fair Division requires an exponential amount of communication

whenever there are more than two players: even when randomization is allowed, even for submodular

valuations, and for any c > 0. This will allow us to focus on the two player setting for the rest of

the chapter.

Before proving the theorems, we discuss the multiparty (i.e., n > 2) communication complexity

model. As mentioned in Section 6.2, there is more than one such model. This will turn out not to

matter in our setting. The reason is that our lower bounds will hold even when only player 1 and

player 2 have private valuations, and the valuations of all other players are public information. One

can think of the other players as not really being agents, and just being a (publicly known) part of

the input. Thus we never actually consider multiparty communication. In this way, the theorem

that we are really proving is that when there are more than two Fair Division players, the problem

is hard in the two-party communication complexity model.

We first prove hardness for envy-freeness, and then reduce envy-freeness to proportionality. Recall

that Disjointness has randomized communication complexity Ω(`), where ` is the length of the bit

strings (Lemma 6.5.1).

Theorem 6.7.1. For any n > 2 and any c > 0, any randomized protocol which determines whether

a c-EF allocation exists requires an exponential amount of communication, even for submodular

valuations. Specifically,

Rsubmod(n, 2k + n− 2,EF, c) ∈ Ω

((
2k

k

))
for any n > 2 and c > 0.

Proof. We reduce from Disjointness. Given bit strings x1 and x2 of length
(

2k

k

)
, we construct a

fair division instance as follows. Although there will be more than two players, there are only two

bit strings. Let player 1 hold x1 and player 2 hold x2, and the other players will have no bit strings.

Let M1 = [2k],M2 = {g3...gn}, and M = M1 ∪M2: note that |M | = 2k + n − 2. Let N = [n].

We define a similar list of allocations T = (T1, T2...), where Tj = (Tj1, Tj2). Here each Tj is an

allocation over only M1, and for just two players. Any such allocation A where |A1| = |A2| = k is

in T (and so is A). Note that |T | =
(

2k

k

)
. For i ∈ {1, 2}, vi is given by

vi(S) =



k if g3 ∈ S

|S|c if |S| < k and g3 6∈ S

kc if |S| > k and g3 6∈ S

(k − 1
2 )c if |S| = k and g3 6∈ S and S ∩M2 6= ∅

kc if ∃j S = Tji where xij = 1 and g3 6∈ S

(k − 1
2 )c if ∃j S = Tji where xij = 0 and g3 6∈ S

Every allocation giving each player k items occurs in T exactly once. Thus when |S| = k and
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S ⊂ M1, exactly one of the last two cases occurs, and any such j must be unique. For i > 2, vi(S)

is given by

vi(S) =

1 if gi ∈ S

0 otherwise

Suppose that (x1, x2) is a no-instance of Disjointness: then there exists j where x1j = x2j = 1.

Consider the allocation A where Ai = Tji for i ≤ 2, and Ai = {gi} for i > 2. For i > 2, vi(Ai) = 1

and vi(Ai′) = 0 for all i′ 6= i, so each player i > 2 is happy. For i ≤ 2, we have vi(Ai) = vi(Tji) = kc,

and vi(Ai′) ≤ k for all i′. Therefore for all i, i′, vi(Ai) ≥ cvi(Ai′), so A is c-EF.

Suppose that (x1, x2) is a yes-instance of Disjointness: then for every j, there exists i where

xij = 0. Suppose that a c-EF allocation A = (A1, A2) exists. We first claim that for every i > 2,

gi ∈ Ai: if not, vi(Ai) = 0, so player i will envy whichever player receives gi.

Thus for i ≤ 2,

vi(Ai) ≥ c · vi(A3) ≥ c · vi({g3}) = kc

Suppose a player i ≤ 2 receives strictly fewer than k items in Ai: then vi(Ai) < kc, since none of

those items can be g3. This is a contradiction, so we have |A1| = |A2| = k. Since T contains all of

the allocations which give each player k items, there must exist j where Ai = Tji for both i, and

vi(Ai) ≥ kc. But that implies that x1j = x2j = 1, which is a contradiction. Therefore no allocation

is c-Prop.

It remains to show that the valuations are submodular. For i > 2, vi is trivially submodular. We

now we examine vi(S∪{g})−vi(S) for i ≤ 2, any bundle S, and any item g 6∈ S where g3 6∈ S∪{g}.

vi(S ∪ {g})− vi(S) =


c if |S ∪ {g}| < k

c or c/2 if |S ∪ {g}| = k

c/2 or 0 if |S ∪ {g}| = k + 1

0 if |S ∪ {g}| > k + 1

Therefore vi(S∪{g})−vi(S) is non-increasing with |S| when g3 6∈ S∪{g}. Thus vi(X∪{g})−vi(X) ≥
vi(Y ∪ {g}) − vi(Y ) whenever |X| < |Y | and g3 6∈ S ∪ {g}. If X ⊆ Y , either |X| < |Y | or X = Y .

When X = Y , we trivially have vi(X ∪ {g}) − vi(X) = vi(Y ∪ {g}) − vi(Y ). Thus we have

vi(X ∪ {g}) − vi(X) ≥ vi(Y ∪ {g}) − vi(Y ) whenever X ⊆ Y and g3 6∈ S ∪ {g}. Therefore the

submodularity condition is satisfied when g3 6∈ S ∪ {g}.
There are two remaining cases: when g3 ∈ S, or when g = g3. For g3 ∈ S, vi(S∪{g})−vi(S) = 0

for all S and g, so the condition is satisfied in this case. For g = g3, we have vi(X ∪{g3})− vi(X) =

vi(M) − vi(X) and vi(Y ∪ {g3}) − vi(Y ) = vi(M) − vi(Y ). If X ⊆ Y , we have vi(X) ≤ vi(Y ), so

vi(X ∪ {g3})− vi(X) ≥ vi(Y ∪ {g3})− vi(Y ). Therefore vi is submodular for all i.

We now prove hardness for proportionality for more than two players, by reducing from envy-

freeness.

Theorem 6.7.2. For any n > 2 and any c > 0, any randomized protocol which determines whether
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a c-Prop allocation exists requires an exponential amount of communication, even for submodular

valuations. Specifically,

Rsubmod(n, 2k + n− 2,Prop, c) ∈ Ω

((
2k

k

))
for any c > 0.

Proof. We reduce from Fair Division for P = EF. Given an input (x1, x2), we define vi as in the

proof of Theorem 6.7.1, except using c/n instead of c. That is, for i ≤ 2,

vi(S) =



k if g3 ∈ S

|S|c/n if |S| < k and g3 6∈ S

kc/n if |S| > k and g3 6∈ S

(k − 1
2 )c/n if |S| = k and g3 6∈ S and S ∩M2 6= ∅

kc/n if ∃j S = Tji where xij = 1 and g3 6∈ S

(k − 1
2 )c/n if ∃j S = Tji where xij = 0 and g3 6∈ S

It was shown in the proof of Theorem 6.7.1 that these valuations are submodular.

Theorem 6.7.1 implies that Ω(
(

2k
k

)
) communication is required to determine whether a c

n -EF

allocation exists under these valuations. We will show that under these valuations, an allocation is

c-Prop if and only if it is c
n -EF. This will imply that determining whether a c-Prop allocation exists

is just as hard as whether a c
n -EF allocation exists.

In order for an allocation A to be c
n -EF or c-Prop, we must have vi(Ai) > 0 for all i. Thus

assume gi ∈ Ai for all i > 2, and we need only consider i ≤ 2.

Suppose an allocation A is c-Prop: then for i ≤ 2, vi(Ai) ≥
c

n
vi(M) =

kc

n
. Since vi(Ai′) ≤ k for

all i′, we have

vi(Ai) ≥
kc

n
≥ c

n
vi(Ai′)

for all i′. Therefore A is c
n -EF.

Suppose an allocation A is c
n -EF: then for all i and i′, vi(Ai) ≥ c

nvi(Ai′). For i ≤ 2, we have

vi(A3) ≥ vi({g3}) = k, so

vi(Ai) ≥
c

n
vi(A3) ≥ kc

n
=
c

n
vi(M)

so A is c-Prop.

This resolves the n > 2 case for all combinations of other parameters, so we will assume that

n = 2 for the remainder of the chapter.

6.8 Subadditive valuations

In this section, we consider the deterministic setting for two players with subadditive valuations. In

Section 6.8.1, we use the Minimal Bundle Protocol from Section 6.4 to show that c-EF for c ≤ 1/2
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Protocol 8 Protocol for two players to either find a c-P allocation or a c∗-P allocation.

Private inputs: v1, v2

Public inputs: P, c

1. If there exists an allocation A where player 1 is happy with both A and A, player 1 sends that
allocation to player 2. If player 2 is happy with A, she declares that A is c-P , otherwise she
declares that A is c-P .

2. If there is no such allocation A, player 1 sends the set S of her minimal bundles to player 2.
She also sends the bundle S∗(v1) and the value c1(S∗(v1)).

3. Player 2 first checks if there exists a bundle S ∈ S where player 2 is happy with M\S. If so,
she declares that (S,M\S) is c-P .

4. If not, player 2 computes S∗(v2) and i = arg maxi′∈{1,2} ci′(S
∗(vi′)). Let A be the allocation

where Ai = S∗(vi) and Ai = M\S∗(vi). Player 2 then declares that A is ci(S
∗(vi))-P , and

that c∗ = ci(S
∗(vi)).

and c-Prop for c ≤ 2/3 require only polynomial communication. This is the same protocol that

yielded the PAS for EF with submodular valuations, but the communication cost analysis will be

different. In Section 6.8.2, we show that this is tight, by giving an exponential lower bound for c-EF

and c-Prop when c exceeds 1/2 and 2/3, respectively.

6.8.1 Upper bounds

In this section, we prove that when players have subadditive valuations, the Minimal Bundle Protocol

(Protocol 8) can be used to solve Fair Division for 1
2 -EF and 2

3 -Prop with polynomial communi-

cation. In fact, we will show that if a satisfactory allocation is not found in step 1, there must exist

a single item g where v1({g}) > v1(M\{g}). This will imply that the only minimal bundle is {g}.
Protocol 8 is restated here for the convenience of the reader.

In Section 6.4, we proved correctness of this protocol for any setting, so it remains only to prove

the communication cost bound for this setting.

Let α ∈ (0, 1] be some constant. Let ηP (α) be the maximum c ≤ 1 for which any allocation A is

guaranteed to be c-P , given vi(Ai) ≥ αvi(Ai) for both i. For example, ηEF (α) = α. We will write

ηP (α) = η(α) and leave P implicit. Lemma 6.8.1 is strongest for α = 1/2, but we find it insightful

to prove the theorem for any α ≤ 1/2.

Also, recall that Condition 6.3.1 is satisfied for c-Prop with subadditive valuations, for any c: for

any allocation A, each player must be happy with at least one of A and A.

Lemma 6.8.1. For two players with subadditive valuations, α ∈ (0, 1/2], and c = η(α), Protocol 8

has communication cost at most

2(m+ vsize)

Proof. If the protocol terminates in step 1, a single allocation is communicated, which requires m

bits. Thus the claim is satisfied in this case.
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If the protocol does not terminate in step 1, the only communication happens in step 2. For

a bundle S, ci(S) is defined as the ratio of two values:
vi(S)

vi(M\S)
for EF, and

2vi(S)

vi(M)
for Prop15.

Thus communicating c1(S∗(v1)) requires 2vsize bits. The only other information transmitted is the

bundle S∗(v1) and S. Communicating S∗(v1) requires m bits, and S requires |S|m bits. Thus the

communication cost of the protocol is

m(|S|+ 1) + 2vsize

It remains to show that if the protocol does not terminate in step 1, |S| = 1.

By Condition 6.3.1, for every allocation A, player 1 is happy with at least one of A and A. Thus

|S| ≥ 1, so let S be a minimal bundle in S. Since player 1 is happy with S, we know that she is not

happy with M\S, or the protocol would have terminated in step 1. Suppose αv1(S) ≤ v1(M\S):

then player 1 is η(α)-happy with M\S. Since c = η(α), this means player 1 is happy with M\S,

which is a contradiction. Therefore αv1(S) > v1(M\S). This also implies that v1(S) > 0.

Also, since S is minimal, player 1 is not happy with S\{g} for all g ∈ S. Therefore player 1 is

happy with (M\S)∪{g} for all g ∈ S. By the same argument as above, we have αv1(M\S)∪{g}) >
v1(S\{g}).

Since vi(S) > 0, S must be nonempty, so let g be an arbitrary item in S. By subadditivity of v1,

we have

v1(M\S) + v1({g}) ≥ v1

(
(M\S) ∪ {g}

)
Similarly,

v1(S\{g}) + v1({g}) ≥ v1(S)

v1(S\{g}) ≥ v1(S)− v1({g})

Therefore

v1(M\S) + v1({g}) ≥ v1

(
(M\S) ∪ {g}

)
>

1

α
v1(S\{g})

≥
( 1

α
− 1
)
v1(S\{g}) + v1(S)− v1({g})

Since v1(S) > 1
αv1(M\S), we have

v1(M\S) + v1({g}) >
( 1

α
− 1
)
v1(S\{g}) +

1

α
v1(M\S)− v1({g})

2v1({g}) ≥
( 1

α
− 1
)
v1(S\{g}) +

( 1

α
− 1
)
v1(M\S)

15Technically only one value is needed for Prop, since we can assume that v1(M) = 1, so only v1(S) is needed.
However, since two values are needed for EF, we ignore this.
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v1({g}) ≥ 1

2

( 1

α
− 1
)(
v1(S\{g}) + v1(M\S)

)
By subadditivity of v1, we have

v1(S\{g}) + v1(M\S) ≥ v1

(
(S ∪ (M\S))\{g}

)
= v1(M\{g})

Therefore,

v1({g}) > 1

2

( 1

α
− 1
)
v1(M\{g})

v1({g}) ≥ αv1(M\{g})

where the final step is due to 0 < α ≤ 1/2.

Thus player 1 is η(α)-happy with the bundle {g} by definition. Since the protocol did not

terminate in step 1, player 1 must not be happy with M\{g}. Therefore player i is happy with a

bundle S if and only if g ∈ S, and so the only minimal bundle is {g}.

Theorem 6.8.1 is immediately implied by the combination of Lemma 6.4.4 (correctness) and

Lemma 6.8.1 (communication cost).

Theorem 6.8.1. For two players with subadditive valuations and c = η(1/2), Protocol 8 has com-

munication cost at at most 2(m+ vsize), and either returns a c-P allocation or a c∗-P allocation.

Theorem 6.8.1 immediately implies the following result.

Theorem 6.8.2. For two players with subadditive valuations, a property P , and any constant c ≤
ηP (1/2), there exists a deterministic protocol with communication cost 2(m + vsize) which solves

Fair Division. Formally,

Dsubadd(2,m, P, c) ≤ 2(m+ vsize)

for any c ≤ ηP (1/2).

Proof. Run Protocol 8 to either find a ηP (1/2)-P allocation, or to find a c′-P allocation where c′ is

the best possible. If a ηP (1/2)-P allocation exists, then a c-P allocation exists, since c ≤ ηP (1/2).

If a c∗-P allocation is returned where c∗ < ηP (1/2), then by definition of c∗, a c-P allocation exists

if and only if c∗ ≥ c.

Theorem 6.8.3 is a direct consequence of Theorem 6.8.2 since ηEF (α) = α, and Theorem 6.8.4

requires only a short proof.

Theorem 6.8.3. For two players with subadditive valuations, P = EF, and any constant c ≤
1/2, there exists a deterministic protocol with communication cost 2(m + vsize) which solves Fair

Division. Formally,

Dsubadd(2,m,EF, c) ≤ 2(m+ vsize)
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for any c ≤ 1/2.

Theorem 6.8.4. For two players with subadditive valuations, P = Prop, and any constant c ≤
2/3, there exists a deterministic protocol with communication cost 2(m + vsize) which solves Fair

Division. Formally,

Dsubadd(2,m,Prop, c) ≤ 2(m+ vsize)

for any c ≤ 2/3.

Proof. By Theorem 6.8.1, we need only show that ηProp(1/2) ≥ 2/3. Suppose v1(A1) ≥ αv1(A2).

Then v1(A2) ≤ 1

α
v1(A1), and by subadditivity of v1, we have

v1(M) = v1(A1 ∪A2)

≤ v1(A1) + v1(A2)

≤ v1(A1) +
1

α
v1(A1)

=
α+ 1

α
v1(A1)

Therefore v1(A1) ≥ 2α

α+ 1

(
1

2
v1(M)

)
, so ηProp(α) ≥ 2α

α+ 1
. Therefore ηProp(1/2) ≥ 2/3.

Since ηProp(1/2) ≥ 2/3, any 1
2 -EF A allocation is also 2

3 -Prop. However, a c′-EF allocation where

c′ is the maximum possible EF approximation ratio does not necessarily achieve the maximum

possible approximation ratio for Prop. Consider the case where M = {g1, g2} and the players

valuations are given by

v1(S) =


9 if S = M

7 if S = {g1}

2 if S = {g2}

v2(S) =


4 if S = M

4 if S = {g1}

1 if S = {g2}

and vi(∅) = 0 for both i. There is no 1
2 -EF allocation or 2

3 -Prop allocation in this instance. The

allocation achieving the maximum EF approximation ratio is A = ({g2}, {g1}) which is 2
7 -EF. On

the other hand, the allocation achieving the maximum Prop approximation ratio is A, which is
1
2 -Prop.

6.8.2 Lower bounds

In this section, we show that 1
2 -EF and 2

3 -Prop are the best we can do deterministically for two

players with subadditive valuations. We first prove that c-EF is hard for any c > 1/2, and then

show that the same construction also proves hardness for c-Prop when c > 2/3.

We will use Lemma 6.5.4, which gives a standardized way to prove deterministic lower bounds

for EF for two players. Recall that a list of allocations T = (T1, T2...) is defined where each

Tj = (Tj1, Tj2) is an allocation giving each player k items. Also, for every such allocation A, exactly
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one of A and A appears in T . All that is needed to complete the reduction is to show how to

construct valuations v1, v2 such that the following conditions are satisfied:

Condition 6.5.1. For all |S| < k and both i, vi(S) < c · vi(M\S).

Condition 6.5.2. Whenever yij = 1, vi(Tji) < c · vi(Tji).

Condition 6.5.3. Whenever yij = 0, vi(Tji) < c · vi(Tji).

Theorem 6.8.5. For two players with subadditive valuations and any c > 1/2, any determinis-

tic protocol which determines whether a c-EF allocation exists requires an exponential amount of

communication. Formally,

Dsubadd(2, 2k,EF, c) ≥ 1

2

(
2k

k

)
for any c > 1/2.

Proof. Given bit strings of length
1

2

(
2k

k

)
for some integer k, define M,N, (y1, y2), and T as in

Lemma 6.5.4. We need only to construct subadditive valuations v1, v2 such that Conditions 6.5.1,

6.5.2, and 6.5.3 are met. We define each vi by

vi(S) =



0 if |S| = 0

1 if 0 < |S| < k

2 if k < |S| < 2k

3 if |S| = 2k

2 if ∃j S = Tji where yij = 1

2 if ∃j S = Tji where yij = 0

1 if ∃j S = Tji where yij = 0

1 if ∃j S = Tji where yij = 1

When |S| = k, S falls under exactly one of the last four cases in the definition of vi.

If |S| < k, we have |M\S| > k, so vi(S) ≤ 1 and vi(M\S) ≥ 2. Thus for any c > 1/2,

vi(S) < c · vi(M\S), so Condition 6.5.1 is met. Suppose yij = 1 for some i, j: then vi(Tji) = 1

and vi(Tji) = 2, so again vi(S) < c · vi(M\S) for any c > 1/2. Suppose yij = 0 for some i, j: then

similarly, vi(Tji) = 1 < c · 2 = c · vi(Tji) for any c > 1/2. Thus Condition 6.5.3 is satisfied as well.

It remains to show that vi is subadditive for both i. Specifically, we need to show that for any S

and T , vi(S) + vi(T ) ≥ vi(S ∪ T ). If either S = ∅ or T = ∅, this trivially holds, so suppose |S| > 0

and |T | > 0. We proceed by case analysis.

Case 1: |S ∪ T | < 2k. Then vi(S ∪ T ) ≤ 2. Since |S| > 0 and |T | > 0, we have

vi(S) + vi(T ) ≥ 1 + 1 ≥ 2 ≥ vi(S ∪ T )

Case 2: |S∪T | = 2k. Then vi(S∪T ) = 3. Since vi(S) ≥ 1 and vi(T ) ≥ 1, it remains to show that

at least one of vi(S) ≥ 2 and vi(T ) ≥ 2 is true. Since S ∪ T = M in this case, we have M\S ⊆ T .
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Observe that under these valuations, for any allocation A where vi(Ai) ≤ 1, we have vi(Ai) ≥ 2.

Thus if vi(S) ≤ 1, then vi(M\S) ≥ 2, so vi(T ) ≥ 2. Since vi only takes on integer values in this

proof, if vi(S) > 1, we have vi(S) ≥ 2. Thus at least one of vi(S) ≥ 2 and vi(T ) ≥ 2 is true, so the

claim is satisfied in this case. Thus vi is subadditive for both i.

To prove hardness for proportionality, we reduce from envy-freeness.

Theorem 6.8.6. For two players with subadditive valuations and any c > 2/3, any determinis-

tic protocol which determines whether a c-Prop allocation exists requires an exponential amount of

communication. Formally,

Dsubadd(2, 2k,Prop, c) ≥ 1

2

(
2k

k

)
for any c > 2/3.

Proof. We reduce from Fair Division for P = EF. Given an input (x1, x2), we define vi as in the

proof of Theorem 6.8.5. By Theorem 6.8.5, for any c′ > 1/2, at least
1

2

(
2k

k

)
communication is

required to determine whether a c′-EF allocation exists under these valuations. We will show that

under these valuations, for any c > 2/3 and any c′ > 1/2, an allocation A is c-Prop if and only if is

c′-EF: thus the lower bound of Theorem 6.8.5 will apply to c-Prop for c > 1/2 as well.16

Suppose an allocation A is c′-EF for some c′ > 1/2: then vi(Ai) ≥ c′vi(Ai) >
1

2
vi(Ai). Under

these valuations, for any allocation A where vi(Ai) ≤ 1, we have vi(Ai) ≥ 2. Thus vi(Ai) must

be strictly greater than 1. Since these valuations only take on integer values, this implies that

vi(Ai) ≥ 2 for both i. Therefore

vi(Ai) ≥ 2 ≥ 3

2
=

1

2
vi(M) ≥ c

2
vi(M)

for every c > 2/3, so A is c-Prop for every c > 2/3.

Now suppose that A is c-Prop for some c > 2/3: then vi(Ai) ≥
c

2
vi(M) =

3c

2
> 1 for both i.

Thus we again have vi(Ai) ≥ 2 for both i, since these valuations only take on integer values. This

also implies that |Ai| > 0 for both i, which means that |Ai| < 2k for both i. Therefore vi(Ai) ≤ 2

for both i, so we have

vi(Ai) ≥ 2 ≥ vi(Ai) ≥ c
′vi(Ai)

for any c′ > 1/2. Therefore A is c′-EF for every c′ > 1/2.

Theorems 6.8.5 and 6.8.6 resolve the deterministic subadditive case. We now move on to general

valuations, and give the last few results we need to complete Table 6.1.

16It is actually sufficient to show that for any c > 2/3, there exists such a c′ > 1/2, but we prove that this holds
for any c′ > 1/2.
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6.9 General valuations

This section covers the remaining settings for envy-freeness and proportionality. In Section 6.9.1,

we show that c-Prop is hard for general valuations for any c > 0, in both the randomized and

deterministic settings. Section 6.9.2 gives a similar lower bound for c-EF for any c > 0, but only for

deterministic protocols. In Section 6.9.3, we show that there actually exists an efficient randomized

protocol for c-EF for any c ∈ [0, 1]. We also show that this protocol works for proportionality in

the subadditive case, again for any c ∈ [0, 1]. These results conclude our study of envy-freeness and

proportionality.

6.9.1 Proportionality randomized lower bound

Recall that Disjointness on bit strings of length ` has randomized communication complexity Ω(`).

(Lemma 6.5.1).

Theorem 6.9.1. For two players with general valuations and any c > 0, any randomized protocol

which determines whether a c-Prop allocation exists requires an exponential amount of communica-

tion. Specifically

R(2, 2k,Prop, c) ∈ Ω

((
2k

k

))
for any c > 0.

Proof. We reduce from Disjointness. Given bit strings x1 and x2 of length
(

2k

k

)
, we construct an

instance of Fair Division as follows. Let N = [2] be the set of players, and let M = [2k] be the set

of items. Let T = (T1, T2...T|T |) be an arbitrary ordering of all of the allocations which give each

player k items: for any allocation A = (A1, A2) where |A1| = |A2| = k, there exists j where Ai = Tji

for both i. Both A and A appear in T . Note that |T | =
(

2k

k

)
. Each player i’s valuation is defined

by

vi(S) =


0 if |S| < k

1 if |S| > k

1 if ∃j S = Tji where xij = 1

0 if ∃j S = Tji where xij = 0

Exactly one of the last two cases occur when |S| = k, and any such j is unique.

Suppose that (x1, x2) is a no-instance of Disjointness: then there exists j where x1j = x2j = 1.

Consider the allocation Tj = (Tj1, Tj2). Then for both i, vi(Tji) = 1 = vi(M) ≥ c

2
· vi(M), so the

allocation Tj satisfies c-Prop.

Suppose that (x1, x2) is a yes-instance of Disjointness: then for every j, there exists i where

xij = 0. Suppose that a c-Prop allocation A = (A1, A2) exists: then vi(Ai) ≥
c

2
· vi(M) > 0 for

both i. Suppose a player i receives strictly more than k items in Ai: then the other player receives

strictly fewer than k items, and has value zero, which is impossible. Thus |A1| = |A2| = k. Since

T contains all of the allocations which give each player k items, there must exist j where Ai = Tji
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for both i. But that implies that x1j = x2j = 1, which is a contradiction. Therefore no allocation is

c-Prop.

This lower bound is actually much more general than just c-Prop. It holds for any imaginable

fairness property (not just c-EF or c-Prop) where (1) player i is always unhappy if vi(Ai) = 0, even

if vi(Ai) is also 0, and (2) player i is always happy if vi(Ai) = vi(M). Both c-EF and c-Prop satisfy

the first condition. The second condition is satisfied by c-Prop for any c, but c-EF violates this for

every c: player i is always happy if vi(Ai) = vi(Ai) = 0. We will see in Section 6.9.3 that this leads

to an efficient randomized protocol for c-EF, for any c ∈ [0, 1].

6.9.2 Envy-freeness deterministic lower bound

In this section we prove that for general valuations, c-EF is hard in the deterministic setting for any

c > 0. We will use Lemma 6.5.4; recall that we need only show how to construct valuations that

satisfy the following conditions:

Condition 6.5.1. For all |S| < k and both i, vi(S) < c · vi(M\S).

Condition 6.5.2. Whenever yij = 1, vi(Tji) < c · vi(Tji).

Condition 6.5.3. Whenever yij = 0, vi(Tji) < c · vi(Tji).

Theorem 6.9.2. For two players with general valuations and any c > 0, any deterministic protocol

which determines whether a c-EF allocation exists requires an exponential amount of communication.

Specifically,

D(2, 2k,EF, c) ≥ 1

2

(
2k

k

)
for any c > 0.

Proof. We use Lemma 6.5.4. Given bit strings of length
1

2

(
2k

k

)
for some integer k, defineM,N, (y1, y2),

and T as in Lemma 6.5.4. We need only to construct valuations v1, v2 such that Conditions 6.5.1,

6.5.2, and 6.5.3 are met. We define each vi by

vi(S) =



0 if |S| < k

1 if |S| > k

1 if ∃j S = Tji where yij = 1

1 if ∃j S = Tji where yij = 0

0 if ∃j S = Tji where yij = 0

0 if ∃j S = Tji where yij = 1

Recall that for every allocation A which gives each player k items, T (as defined by Lemma 6.5.4)

contains exactly one of A and A. Thus if |S| = k, S falls under exactly one of the last four cases in

the definition of vi.
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If |S| < k, we have |M\S| > k, so vi(S) = 0 < c = c · vi(M\S). This satisfies Condition 6.5.1.

Suppose yij = 1 for some i, j: then vi(Tji) = 0 < c = c · vi(Tji), so Condition 6.5.2 is satisfied.

Suppose yij = 0 for some i, j: then similarly, vi(Tji) = 0 < c = c · vi(Tji). Thus Condition 6.5.3 is

satisfied as well.

6.9.3 A randomized upper bound

Although c-EF is hard for general valuations in the deterministic setting, it admits an efficient

randomized protocol for any c ≤ 1. Fundamentally, this is because the randomized communication

complexity of Equality is constant, while its deterministic complexity is the length of the string.

Our deterministic lower bound in Section 6.9.2 was based on a reduction from Equality: in this

section, we reduce to Equality.

Our protocol will actually be much more general than just c-EF. For example, it will also work

for c-Prop for subadditive valuations, for any c ∈ [0, 1]. More generally, it solves Fair Division

with two players when (c, P ) satisfies two conditions:

Condition 6.3.1. For every allocation A, each player is happy with at least one of A and A.

Condition 6.9.1. Whether player i is happy does not depend on any valuation other than vi.

All of the fairness properties we consider satisfy Condition 6.9.1. The c-EF property satisfies

Condition 6.3.1 for any c ≤ 1. As mentioned before, c-Prop satisfies this for any c ≤ 1 for subadditive

valuations.

Despite being hard in the deterministic setting, Equality admits an efficient randomized pro-

tocol (Lemma 6.5.3), as described in Section 6.5. This protocol (let us call it ΓEQ) enables the Fair

Division randomized protocol that we present in this section.

The standard Equality problem is a decision problem, but Fair Division is a search prob-

lem: we must output a satisfactory allocation if one exists. The search version of Equality is to

determine whether two bit strings are equal, and if they are not, to return an index where they

differ.

Lemma 6.9.1 ([133]). There exists a randomized protocol which solves the search version of Equal-

ity for two players and has communication cost O(log `), where ` is the length of the bit strings.

The protocol uses a binary search approach. The players first use ΓEQ to check if their strings

are equal. If so, the protocol terminates. If not, the players split their strings into a left half and a

right half. They again use ΓEQ to check if their left halves are equal: if they are not, the players

recurse on the left half, otherwise they recurse on the right half. This process continues until players

isolate a single bit which differs in their bit strings17.

Since ΓEQ is a randomized protocol, it may return an incorrect answer with probability up to

1/3 (say) each time it is run. If we use ΓEQ many times, as required by the above binary search

17The protocol described in [133] is actually slightly stronger: they find the most significant bit where the two
strings differ. This is because they have a slightly different goal in that paper, for which finding any bit that differs
is not sufficient.
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argument, the probability ΓEQ returns the correct answer every time may be less than 2/3, which is

unacceptable. This makes the protocol a sort of “noisy binary” search. This can be done with total

communication O(log ` log log `) using a standard Chernoff bound argument, but [77] shows how

this can be done with total communication just O(log `). We refer to protocol from Lemma 6.9.1 as

ΓEQS .

We now present our randomized protocol (Protocol 9). Let T = (T1, T2...) be a list of every

possible allocation (not just those with bundles of a fixed size) in an arbitrary order. The ordering

T will be publicly agreed upon ahead of time; note that this is not a “cheat” in the sense that

our lower bounds still apply even if players publicly agree on an ordering of possible allocations.

Condition 6.9.1 is necessary for Protocol 9 to be well-defined (step 1 in particular), but will not

appear in the proof of Theorem 6.9.3.

The protocol uses a similar construction to the previous lower bounds in that players have

exponentially long bit strings, with each index representing a possible allocation, and where yij = 1

if player i is happy with Tj . Similarly to the Equality lower bounds, an index where y1j = y2j

implies the existence of a c-P allocation: if y1j = y2j = 1, both players are happy with that allocation,

and if y1j = y2j = 0, both players are happy with the reverse allocation by Condition 6.3.1. This is

made formal by the following theorem:

Protocol 9 Randomized protocol for two players to either find an P allocation or determines that
none exists, assuming P satisfies Conditions 6.3.1 and 6.9.1.

Private inputs: v1, v2

Public inputs: P, c, T

1. Each player i constructs a bit string yi as follows: for all j where player i is happy with Tj ,
player i sets yij = 1. For all j where player i is unhappy with Tj , player i sets yij = 0.

2. Player 1 sets x1 = y1 and player 2 sets x2 = y2.

3. The players run ΓEQS on (x1, x2), which either returns an index j where x1j 6= x2j , or deter-
mines that the two strings are equal.

4. If the two bit strings are equal, the players declare that no c-P allocation exists.

5. If an index j is returned where x1j = 1 and x2j = 0, the players declare that Tj is a c-P
allocation.

6. If an index j is returned where x1j = 0 and x2j = 1, the players declare that T j is a c-P
allocation.

Theorem 6.9.3. If (c, P ) satisfies Conditions 6.3.1 and 6.9.1, then Procotol 9 either finds a c-P

allocation or shows that none exists, and uses communication O(m).

Proof. Suppose Protocol 9 declares that no c-P allocation exists: then x1j = x2j for all j. This

implies that y1j 6= y2j for all j. Therefore whenever player 1 is happy with Tj , player 2 is unhappy

with Tj , so no c-P allocation exists.
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Suppose Protocol 9 returns an index j where x1j 6= x2j . If x1j = 1 and x2j = 0, then y1j = y2j =

1. Thus both players are happy with Tj , so Tj is c-P . If x1j = 0 and x2j = 1, then y1j = y2j = 0,

so neither player is happy with Tj . Then by Condition 6.3.1, both players are happy with Tj , so T j

is c-P . Therefore Protocol 9 correctly finds a c-P allocation or determines that none exist.

Since the total number of allocations is O(2m) when n = 2, x1 and x2 have length O(2m). Thus

ΓEQS has communication cost O
(

log(2m)) = O(m). Since all other steps require no communication,

Protocol 9 uses communication O(m).

Theorem 6.9.3 immediately implies the following two theorems:

Theorem 6.9.4. For any c ∈ [0, 1], Protocol 9 finds an c-EF allocation or shows that none exists,

and has communication cost O(m). Formally,

R(2,m,EF, c) ∈ O(m)

Theorem 6.9.5. For subadditive valuations and any c ∈ [0, 1], Protocol 9 finds an c-Prop allocation

or shows that none exists, and has communication cost O(m). Formally,

Rsubadd(2,m, Prop, c) ∈ O(m)

Since Rsubmod(n,m,P, c) ≤ Rsubadd(n,m,P, c) ≤ R(n,m,P, c), this settles the randomized com-

munication complexities for all settings with two players. The reader can verify that Table 6.1 is

now complete.

6.10 Maximin share

Finally, we consider a different fairness property: maximin share. A player’s maximin share (MMS)

is the maximum value as she could guarantee herself if she gets to divide the items into n bundles,

but chooses last. An allocation A is c-MMS for c ∈ [0, 1] if each player receives at least a c-fraction

of her MMS. We use “MMS” to refer to both each player’s max-min share and the fairness property

itself. Formally,

Definition 6.10.1. An allocation A is c-MMS if for every player i,

vi(Ai) ≥ max
A′=(A′1...A

′
n)

min
j∈[n]

vi(A
′
j)

where A′ ranges over all possible allocations.

In this section, we prove exponential lower bounds for MMS in two settings: for general valu-

ations and any c > 0, and for submodular valuations when c = 1. Both lower bounds hold even

for two players, and for randomized protocols. Both lower bounds will rely on reductions from

Disjointness.
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6.10.1 Lower bound for general valuations and any c > 0

In this section we show that for general valuations, c-MMS is hard for any c > 0, even for randomized

protocols and even if there are only two players. We will reduce from 1-Prop, which we know to be

hard in this setting (randomized, n = 2, general valuations) from Theorem 6.9.1. We say that an

allocation A is over a set of items M to mean that A1 ∪A2 = M . Also, we say that an allocation A

is c-Prop for valuations v1, v2 if vi(Ai) ≥ c
2vi(M) for both i. Since we will be reducing between two

different Fair Division instances, we will be dealing with allocations over different sets of items

and different sets of valuations.

Theorem 6.10.1. For two players with general valuations and any c > 0, any randomized protocol

which determines whether a c-MMS allocation exists requires an exponential amount of communica-

tion. Specifically,

R(2, 2k + 4,MMS, c) ∈ Ω

((
2k

k

))
for any c > 0.

Proof. Consider an arbitrary instance of Fair Division for two players with general valuations

v1, v2, any c > 0, and some set of items M . We want to know whether there exists an allocation A

over M which is 1-Prop for v1, v2. Let αi =
1

2c
vi(M): then A is 1-Prop if and only if vi(Ai) ≥ cαi

for both i.

We will create a second instance of Fair Division as follows. Add four items g1, g2, g3, g4, let

X = {g1, g2, g3, g4}, and define M ′ = M ∪ X. Let Y1 = {g1, g2}, Y2 = {g3, g4}, Z1 = {g1, g3}, and

Z2 = {g2, g4}. The set of players is the same. Define the following valuations v′1 and v′2 over M ′:

v′1(S) =


α1 if Y1 ⊆ S or Y2 ⊆ S

min(v1(S\X), cα1) if {g1, g4} ⊆ S and g2, g3 6∈ S

0 otherwise

v′2(S) =


α2 if Z1 ⊆ S or Z2 ⊆ S

min(v2(S\X), cα2) if {g2, g3} ⊆ S and g1, g4 6∈ S

0 otherwise

We first claim that each player i’s MMS is exactly αi. Since c ≤ 1, we have v′i(A
′
i) ≤ αi for all

i and for every allocation A′ over M ′. Thus each player’s MMS is at most αi. In the partition

(Y1, Y2 ∪M), player 1 has value α1 for both bundles, so player 1’s MMS is at least α1. Similarly,

player 2 has value α2 for both bundles in the partition (Z1, Z2 ∪M). Thus each player i’s MMS is

exactly αi.

Therefore an allocation A′ over M ′ is c-MMS for v′1, v
′
2 if and only if v′i(A

′
i) ≥ cαi for both i.

It remains to show that there exists such an allocation A′ over M ′ if and only if an there exists a

1-Prop allocation for v1, v2 over M .

Suppose A is 1-Prop allocation over M for v1, v2: then vi(Ai) ≥ cαi for both i. Let A′ =
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(A1 ∪X,A2): then v′i(A
′
i) ≥ vi(Ai) ≥ cαi, so A′ is c-MMS for v′1, v

′
2 over M ′.

Now suppose A′ is a c-MMS allocation for v′1, v
′
2 over M ′. Since c > 0, we have v′i(A

′
i) ≥ cαi > 0

for all i. For all j and j′, we have Yj ∩ Zj′ 6= ∅. Thus if player 1 receives Y1 or Y2: then player

2 player 2 cannot receive Z1 or Z2. Furthermore, player 2 cannot receives {g2, g3}, so v′2(A′2) = 0,

which is a contradiction. Therefore player 1 cannot receive either Y1 or Y2. Similarly, if player 2

receives Z1 and Z2, player 1 will have value 0. Thus player 2 does not receive Z1 or Z2.

Therefore v1(A1) = 0 unless {g1, g4} ⊆ A1, and v2(A2) = 0 unless {g2, g3} ⊆ A2. Therefore

{g1, g4} ⊆ A1 and {g2, g3} ⊆ A2. Thus v′i(A
′
i) = min(vi(A

′
i\X), cαi) for both i. Since v′i(A

′
i) ≥ cαi

for all i, we have vi(A
′
i\X) ≥ cαi for both i.

Define an allocation A where Ai = A′i\X. It is clear that A is an allocation over M . Then

vi(Ai) ≥ cαi for both i, so A is a 1-Prop allocation for v1, v2 over M .

Therefore there exists a c-MMS allocation for v′1, v
′
2 over M ′ if and only if there exists 1-Prop

allocation over for v1, v2 over M . This completes the reduction, and shows that for any c > 0 and

any number of items m,

R(2,m+ 4,MMS, c) ≥ R(2,m,Prop, 1)

Therefore by Theorem 6.9.1, we have R(2, 2k + 4,MMS, c) ∈ Ω
((

2k

k

))
.

6.10.2 Lower bound for submodular valuations and c = 1

We now show that even for two players with submodular valuations, 1-MMS is hard. This does not

hold for c-MMS for any c: in fact, a 1
3 -MMS is guaranteed to exist for submodular valuations [92].

Theorem 6.10.2. For two players with submodular valuations, any randomized protocol which

determines whether a 1-MMS allocation exists requires an exponential amount of communication.

Specifically

R(2, 2k,MMS, 1) ∈ Ω

((
2k

k

))
Proof. We reduce from Disjointness. Given bit strings x1 and x2 of length

(
2k

k

)
, we construct an

instance of Fair Division as follows. Let N = [2] be the set of players, and let M = [2k] be the set

of items. We define Y1 = {1...k}, Z1 = {k + 1...2k}, Y2 = {2...k + 1}, and Z2 = {1} ∪ {k + 2...2k}.
Let T = (T1, T2...T|T |) be an arbitrary ordering of all of the allocations which give each player

k items: for any allocation A = (A1, A2) where |A1| = |A2| = k, there exists j where Ai = Tji for

both i. Note that |T | =
(

2k

k

)
. One exception: none of (Y1, Z1), (Z1, Y1), (Y2, Z2), or (Z2, Y2) appear

in T .
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Player i’s valuation is given by:

vi(S) =



3|S| if |S| < k

3k if |S| > k

3k if S = Yi or S = Zi

3k − 1 if S = Yi or S = Zi

3k if ∃j S = Tji where xij = 1

3k − 1 if ∃j S = Tji where xij = 0

These valuations are submodular by the same argument as in the proof of Theorem 6.6.1. Observe

that when |S| = k, exactly one of the last four cases occur.

Since vi(S) ≤ 3k for all S, player i’s MMS is at most 3k. For both i, (Yi, Zi) is a valid allocation.

Furthermore, player i has value 3k for both bundles in that allocation. Thus each player i’s MMS

is at least 3k, so both players’ MMS are exactly 3k.

Suppose that (x1, x2) is a no-instance of Disjointness: then there exists j where x1j = x2j = 1.

Consider the allocation Tj = (Tj1, Tj2). Then for both i, vi(Tji) = 3k, so the allocation Tj satisfies

1-MMS.

Suppose that (x1, x2) is a yes-instance of Disjointness: then for every j, there exists i where

xij = 0. Suppose a 1-MMS allocation A exists. We first claim that for both i, A 6= (Yi, Zi) and

A 6= (Zi, Yi) for both i. This is because player i will have value 3k − 1, which is less than her

MMS. Suppose there is a player i where |Ai| < k: then vi(Ai) < 3k, which is impossible. Thus

|A1| = |A2| = k.

Therefore there exists j where A = Tj . But since (x1, x2) is a yes-instance of Disjointness,

there exists i where xij = 0, so vi(Tji) = 3k − 1. This is a contradiction, so no 1-MMS allocation

exists.

6.11 Conclusion

In this chapter, we proposed a simple model for the communication complexity of fair division, and

solved it completely, for every combination of five parameters: number of players, valuation class,

fairness property P , constant c, and deterministic vs. randomized complexity.

More broadly, communication complexity is an example of topic that has been well-studied in

algorithmic game theory but not in fair division, despite having a natural fair division analog. We

wonder if there are other such topics.
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Part III

Public Resource Allocation
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Chapter 7

Markets for public decision-making

We now pivot to public resource allocation, where the group makes a single decision that affects

all agents, rather than allocating a separate bundle to each agent. In this chapter, we focus on the

case where the resources are a set of issues, each with two possible alternatives. Each agent has

a preferred alternative for each issue, as well as a utility function describing their relative values

between issues. We call this a public decision-making problem.

We study adaptations of market economies to this setting: issues have prices, and each agent is

endowed with artificial currency that she can use to purchase probability for her preferred alternatives

(we allow randomized outcomes). We first show that when each issue has a single price that is

common to all agents, market equilibria can be arbitrarily bad.

This negative result motivates a different approach. We present a novel technique called pairwise

issue expansion, which transforms any public decision-making instance into an equivalent Fisher

market, the simplest type of private goods market. This is done by expanding each issue into

many goods: one for each pair of agents who disagree on that issue. We show that the equilibrium

prices in the constructed Fisher market yield a pairwise pricing equilibrium in the original public

decision-making problem which maximizes Nash welfare. More broadly, pairwise issue expansion

uncovers a powerful connection between the public decision-making and private goods settings; this

immediately yields several interesting results about public decisions markets, and furthers the hope

that we will be able to find a simple iterative voting protocol that leads to near-optimum decisions.

7.1 Introduction

Fair and transparent public decision-making is a key element of a democratic society, but many

public decisions are made by government officials behind closed doors. In this chapter, we inves-

tigate mechanisms for large-scale public decision-making where citizens directly vote on a set of

issues at the same time, focusing on the case where each issue has exactly two alternatives. In

particular, we examine connections to private goods allocation. One can think of each issue that is

under consideration as a “good”, and public decision-making as “allocating” the good to one of the

alternatives. We allow randomized outcomes, where the outcome can put nonzero probability on
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multiple alternatives: this is analogous to divisible private goods, where a good can be split among

multiple agents1. The fundamental difference is that in private goods allocation, each agent’s utility

depends only on the bundle of goods she receives; in public decision-making, the group makes a

single decision that affects all agents.

Market economies are one of the longest-studied areas in the distributions of private goods. In

our setting, we argue that the fixed-budget model is more appropriate than the quasilinear model.

The idea is that rather than using “real money”, we will endow each agent with a fixed amount of

artificial currency which can only be used within our mechanism. This corresponds to the assumption

of a fixed budget, as well as the assumption that agents have no value for leftover money. We will

focus on the fixed-budget model with linear prices, often called the Fisher market model [24, 80].

7.1.1 Our contribution

We consider adaptations of markets to the public decision-making setting. Many democracy theorists

believe that it is unethical (e.g., see [158]) and many democratic countries stipulate that it is illegal

to allow citizens to purchase political influence with actual money. Instead, we think of each agent

being endowed with the same amount of “artificial currency” that is useful only for voting on these

issues; thus our approach to public decision markets is consistent with the spirit of “one person

one vote”. Prices are assigned to issues, and agents can use their artificial currency to “purchase”

probability for their preferred alternatives on the issues they most value2.

Markets have the desirable property that each agent can choose how to allocate her money across

goods, based on their relative values to her. In the context of large-scale public decision-making,

this allows agents to express their relative weights for the different issues in a fine-grained way. This

is in contrast to approaches like asking agents to rank the issues by importance, which are more

limited in expressiveness. Markets have the additional property that the equilibria are “supported”

by prices: prices provide a sort of certificate of fairness, in that each agent can verify that she is

spending her budget in the best way possible.

The simplest pricing model assigns a single (linear) price to each issue, and all agents are subject

to the same set of prices. We refer to this as “per-issue pricing”, or just “issue pricing”. In the

private goods setting, per-good pricing is sufficient to yield a market equilibrium with optimal Nash

welfare: the product of agent utilities3. Unfortunately, we show in Section 7.3 that issue pricing in

the public decisions setting can result in very poor equilibria: the Nash welfare of the equilibrium

may be a factor of Ω(n) worse than optimal, where n is the number of agents. The same instance

shows that the utilitarian welfare (the sum of agent utilities) and egalitarian welfare (the minimum

agent utility) may both be a factor of Ω(n) worse than optimal as well.

1An alternative interpretation is that the issues themselves are divisible: for example, in the case of a city choosing
how much money to a particular project, any amount of money is a valid outcome.

2This can also be thought of as a private goods market with externalities: each agent’s utility depends not only
on her own bundle, but also other agents’ bundles.

3The concept of Nash welfare is due to [129] and [108].
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Pairwise issue expansion

This negative result motivates a more complex market model. Our main contribution is a reduction

which transforms any public decision-making instance into a private goods Fisher market instance

that is “equivalent” in a strong sense. For each issue, we construct a good for each pair of agents

who disagree on that issue. The outcome on that issue can be thought of as the result of pairwise

negotiations between each pair of agents who disagree. We refer to this reduction as pairwise

issue expansion. The equilibrium prices of the constructed Fisher market yield a “pairwise pricing

equilibrium” in the original public decisions instance. We show that the resulting pairwise pricing

equilibrium maximizes Nash welfare in the public decisions instance.

Furthermore, pairwise issue expansion allows us to directly import results for Fisher markets

to the public decisions setting. If the utilities in the public decisions instance are in class H (say,

linear utilities), the utilities in the constructed Fisher market will be nested H-Leontief (for example,

nested linear-Leontief)4. This means that any result which works for Fisher markets with nested

H-Leontief utilities can be imported to public decisions instances with utilities in class H. The main

Fisher market results we consider are: (1) a strongly polynomial-time algorithm for finding a Fisher

market equilibrium with two agents and any utility functions [43], (2) a strongly polynomial-time

algorithm for finding a Fisher market equilibrium for Leontief utilities with weights in {0, 1} [87],

(3) a polynomial-time algorithm for a Fisher market with Leontief utilities which yields a O(log n)

approximation simultaneously for all canonical welfare functions (i.e. Nash welfare, utilitarian wel-

fare, egalitarian welfare, etc) [95], and (4) a discrete-time tâtonnement process for finding the Fisher

market equilibrium for nested CES-Leontief utilities that converges in polynomial-time [9]. Thus

pairwise issue expansion yields the following results for the public decision-making setting:

1. A strongly polynomial-time algorithm for finding a public decisions market equilibrium with

two agents and any utility functions.

2. A strongly polynomial-time algorithm for finding a public decisions market equilibrium for

Leontief utilities with weights in {0, 1}.

3. A polynomial-time algorithm for a public decisions instance with Leontief utilities which yields

a O(log n) approximation simultaneously for all canonical welfare functions (i.e. Nash welfare,

utilitarian welfare, egalitarian welfare, etc).

4. A discrete-time tâtonnement process for finding a public decisions market equilibrium for CES

utilities that converges in polynomial-time.

These Fisher market results yield the analogous results for public decisions instances for two

agents with any utilities, Leontief utilities with weights in {0, 1}5, any Leontief utilities, and CES

utilities, respectively. We also discuss public decisions tâtonnement in more depth, and show how

4These utility classes will be defined and discussed later.
5A nested Leontief-Leontief function is still a Leontief function. Incidentally, this also implies that for a public

decision making problem where agent utilities are Leontief, we get a Fisher market which has exactly the same form,
i.e. with Leontief utilities.
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our reduction can be used to implement a tâtonnement process where agents only interact with the

public decisions instance, and never see the constructed Fisher market.

More broadly, our work uncovers a powerful connection between private goods allocation and

public decision-making. We hope that pairwise issue expansion will have applications in future work

as well. One particularly promising direction is to design an iterative local voting scheme akin to

prediction markets (see [47]), where agents (or pairs of agents) arrive sequentially and move the

current decision vector in their preferred direction subject to offered issue prices. Our proof of the

existence of a simple tâtonnement for public decision markets offers hope that such a scheme may

be possible.

7.1.2 Related work

We have already discussed in depth the foundational works regarding private goods markets (Sec-

tion 1.5). Thus we presently focus only on public resource allocation and public goods markets.

Foley’s work on Lindahl Equilibria

The market concept most directly relevant to our public decision markets is that of Lindahl equilibria,

developed by Foley [82], who showed that personalized prices (i.e., each agent may be assigned a

different price for each good with no restrictions) can support any Pareto optimal solution in the

context of public goods6. Our work can be thought of as improving upon Foley’s work to get

much stronger properties for the special case of public decision-making. We obtain these stronger

properties using a more sophisticated reduction, one which is in fact weaker in the sense that there

is a correspondence between the public decisions market and the private market only at equilibrium.

Our reduction explicitly relies on the fact that agents are in opposition on each issue in the public

decisions setting, which is not the case in the public goods setting.

The stronger properties we obtain are as follows. First, Foley’s work [82] allows arbitrary per-

sonalized prices, whereas we only require pairwise prices: for each issue, there is a price for each

pair of agents who disagree on that issue. Our Fisher market can be thought of as negotiating

independently with each person that disagrees with you through a normal market; we are not aware

of any such simple interpretation that follows from Foley’s very general work. Second, in our private

goods reduction, a feasible public goods decision (where each agent shares the same societal decision)

emerges naturally: we leverage properties of nested-Leontief utilities and the Nash welfare objective

function to implicitly represent the feasibility constraints, which allows us to obtain the correspon-

dence only at equilibrium. In contrast, Foley adds cone constraints to a private goods market to

explicitly enforce the feasibility constraints of the public decision-making problem; these constraints

have no natural real-world analogue. Third, we reduce the public goods setting to a Fisher market,

arguably the simplest possible and most-studied private goods market. Because of this, our reduc-

tion allows us to lift many Fisher market equilibrium results to the public decision-making setting.

6In public goods, all agents have nonnegative utility for every good, and the question is how to allocate their
money between the goods. In contrast, in public decision-making, agents have opposing preferred alternatives and
are in direct competition on each issue. With a careful modification, Foley’s work does carry over to the public
decision-making setting.
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In particular, our reduction allows us to obtain a tâtonnement for public decision-making, even

though intermediate steps in the tâtonnement are in a regime where the public and private markets

are not in direct correspondence. It is unclear whether this is possible with Foley’s construction.

We discuss this in technical detail and elaborate on how our work relates to Lindahl equilibria in

Section 7.6.

Tâtonnement

As mentioned above, one of our results is a tâtonnement for public decision-making. A tâtonnement

is an iterative process which presents agents with a set of prices, asks what they would buy given

those prices, and updates the price of each good based on the aggregate demand of each good.

A tâtonnement-like process for computing the maximum Nash welfare outcome in participatory

budgeting (see e.g. [97] for more on PB) was recently given by Fain et al. [75]. They showed

that the maximum Nash welfare outcome can be computed by using a stochastic gradient descent

style algorithm. Their algorithm iteratively elicits agents’ demands using a process very similar

to quadratic voting [115] and updates the current solution accordingly. While this is similar to a

tâtonnement, there is one crucial difference. A true tâtonnement (such as the one we present) allows

the agents to directly change the current point: the price of each good is updated by a fixed rule

based on the aggregate demand of that good. In contrast, the algorithm of [75] moves to a point

that is different from the one elicited by the quadratic voting. Also, their result also holds only for

linear utilities7.

A tâtonnement, with a similar elicitation scheme, has been shown to work in practice in the

participatory budgeting setting [89, 90]. In those works, a new budget is directly elicited from

voters, and the mechanism works for `p normed cost functions. However, their mechanism finds a

total welfare maximizing point as opposed to a Nash welfare maximizing outcome. One direction

for future work is to adapt the tâtonnement from this work into such an implementable mechanism

with a large number of voters.

Inefficiencies of pricing schemes

Another relevant paper from the economics literature is [57], which shows that per-good pricing can

lead to inefficiency for public goods. Their examples do not provide bounds on how much worse

per-good pricing can be: in contrast, we show that for linear utilities, issue pricing can be a factor of

O(n) worse than optimal. Also, we note that it is easy to adapt the examples in Section 3 to show

that two other popular market-based approaches, namely Quadratic Voting [115] and Trading Post

Prices [164], also do not result in good equilibria with issue pricing in our public decision market

setting.

7This discussion is thanks to Kamesh Munagala via private correspondence.
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Strategic agents

A key property in mechanism design is strategy-proofness (or lack thereof). A mechanism is strategy-

proof if even a selfish agent would always honestly report her preferences. Most relevant to us is [159],

which shows that even for two agents with linear utilities over divisible goods, any mechanism which

is both strategy-proof and Pareto optimal8 is dictatorial, meaning that one agent receives all of

the resources9. Our binary-issue public decisions setting generalizes the two agent private goods

setting, and hence we immediately inherit this impossibility result: any mechanism which is both

strategy-proof and Pareto optimal is dictatorial. A dictatorial solution is clearly not desirable, and

we would like our outcomes to be Pareto optimal, so we assume throughout this chapter that agents

honestly report their preferences and do not address the issue of strategic behavior. Other incentive

compatibility results for implementation of general classes of social choice functions are discussed

in [58].

We note that several works extending Foley relax the assumption that agents report their prefer-

ences truthfully, by building voting games in which the equilibrium is one in which truthful reporting

is incentive compatible for each agent [99, 172, 107]. Most notably, Groves and Ledyard [99] con-

struct an allocation-taxation scheme – using message passing – for a market with both private goods

and public commodities, such that the equilibrium behavior results in a Pareto optimal solution. As

in our work, however, their mechanism is still susceptible to a manipulation in which a consumer

considers how future prices and the behavior of others are affected by her current decisions.

Other voting schemes, and one person one vote

Other works also propose alternate voting schemes for multiple issues. Storable Votes [41] allows

members of a committee to store votes for future meetings so as to spend their votes on issues that

matter most to them; the work proves welfare gains in the case of two voters but does not give

a principled way to balance the relative importance or cost of different issues, as we do here. In

[52], the authors study adaptations of private goods fairness notions (such as proportionality) to the

public decision-making context when randomized outcomes are not allowed. In contrast, we allow

fractional solutions (i.e. randomized outcomes) and exactly maximize Nash welfare.

Such works, especially this one, may seem to violate the principle of One Person One Vote [83,

101, 32, 5, 91, 109]. In particular, as we propose individual prices, a given issue may “cost” more for

one voter than for another. However, as discussed below, these prices are generated in a principled

manner – for each issue, there is a single price for each pair of voters who disagree on the issue.

Furthermore, we note that, at the onset, each voter is allocated the same “budget” through which

to vote on issues.

Other works in market equilibria for public goods

Finally, we note that many more strands of literature, too many to detail here, discuss and extend

the work of Foley [82] and more generally the idea of equilibria for the funding of public goods. To

8An outcome is Pareto optimal if there is no way to improve the utility of any agent without hurting another agent.
9A similar result holds for indivisible goods [113].
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our knowledge, our public decision-making setting has not been studied as a special case of such

public goods markets.

In [22] and [15], the authors ask what happens when the decision to fund a single public good

is simply made through a majority vote; in particular, they study under what conditions of voter

preferences for the public good and distribution of tax shares of each voter is the funding of the good

Pareto optimal. They find that majority vote can fall short of optimal if income is asymmetrically

distributed. In Section 7.3, we show that the case with multiple public decisions is far worse: a

generalization of majority vote – where each issue has a price – leads to highly suboptimal outcomes,

even when everyone is endowed with the same income.

Another strand aims to study the implications of relationships between individuals. For example,

in [150], agents are allowed to form coalitions through binding contracts, resulting in inefficiencies.

In [74], there are people who can “produce” a given public good and those who “benefit” from

that good. These relationships can be represented by a network in a certain way, and the Lindahl

outcomes correspond to a solution characterized by the eigenvector centralities of each node. In this

work, voters who agree on a given issue end up on the same side of a bipartite graph, resulting in

them purchasing the same probability for that issue.

The assumptions and philosophical underpinnings of equilibria theory are also well-studied, as

are applications to other fields. Sen [162] challenges the notion that people have consistent prefer-

ences that can be elicited. In particular, he posits that people have “commitments” to a particular

social group of other people, whose welfare they care about. We note that the assumption of a utility

function is nevertheless common, though it is important to be aware of the limitations of such behav-

ioral abstractions. In [153], competitive equilibria is connected to the idea that in capitalism people

are given fruits commensurate to their labor, as part of a discussion of the relationship of notions of

justice and capitalism. General equilibrium theories are even connected to Structuralism within the

philosophy of science [100]. One prominent application of the economics of public goods has been to

study environmental (non-)cooperation [44, 121]. Our work extends such applications by connect-

ing market equilibria ideas to voting on different issues in a fair and efficient way, as discussed above.

The rest of the chapter is organized as follows. Section 7.2 formally defines the models of pri-

vate goods allocation, public decision-making, and Fisher markets. Section 7.3 shows that issue

pricing can result in (very) poor equilibria for public decisions markets. Section 7.4 presents the

concept of pairwise issue expansion, and shows how this can be used to obtain optimal equilibria, as

well as other properties. Section 7.4.3 gives examples of Fisher market results that we can import

to the public decisions setting using our reduction. Section 7.5 focuses on a particular such result:

tâtonnement. Section 7.6 discusses the connection to [82] and Lindahl equilibria in more depth.

Finally, Section 7.7 provides some additional tâtonnement results. Some proofs are deferred to the

end of the chapter to avoid interrupting the narrative flow.
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7.2 Model

We use the same general resource allocation framework as the previous chapters, defined in Sec-

tion 1.2. Our focus here is defining clear terminology and notation which accommodates both public

and private goods resource allocation. As much as possible, we intentionally use the same notation

for the private and public settings, as one of our primary contributions is to highlight the connections

between these.

A private goods instance consists of a set of agents N = [n] and a set of goods M = [m]; a

public decisions instance consists of a set of agents N = [n] and a set of issues M = [m]. We will

typically use i and k to denote agents, and j and ` to denote goods/issues. We assume that issues are

binary, meaning that each issue j has two alternatives: 0 and 1. Each agent i ∈ N has a preferred

alternative for each issue j, denoted by aij , which they truthfully report.

We assume that goods/issues are divisible, meaning that a single good/issue can split among

multiple agents. In a public decision instance, divisibility can be interpreted as randomization over

alternatives.10 An outcome of a private goods instance is an allocation x ∈ [0, 1]m×n. The main

constraint on a private goods allocation is that it cannot allocate more than the available supply11:

x is valid only if
∑
i∈N xij ≤ 1 for all j ∈M . The outcome of a public decisions instance is denoted

by z = (z1, . . . , zm) ∈ [0, 1]m×2, where zj = (zj,0, zj,1) ∈ [0, 1]2, and zj,a ∈ [0, 1] is the probability

put on alternative a for issue j. An outcome z is valid only if
∑
a∈{0,1} z

j,a ≤ 1 for all j ∈M .

7.2.1 Utility functions

In a private goods instance, we use ui(x) ∈ R to denote i’s utility for allocation x; in a public

decisions instance, we use ui(z) ∈ R to denote i’s utility for outcome z. In a private goods instance,

it is assumed that an agent’s utility depends on only the bundle she receives: ui(x) = ui(xi). In a

public decisions instance, agents do not receive separate bundles: instead, the group makes a single

decision that affects all agents. We will assume that agents only have utility for their preferred

alternative: this will let us standardize notation as follows. For a public decisions outcome z, let

xij(z) = zj,aij for all i ∈ N and j ∈ M (we will typically write xij(z) = xij for brevity). Then we

can define agent i’s public bundle as xi = (xi1, . . . , xim). An agent’s public bundle represents the

fraction of the public decision allocated to her preferred alternative, and so we have ui(z) = ui(xi)

in a public decisions instance as well.

Throughout the chapter, we make the following standard assumptions on each agent’s utility

function ui:

1. Continuous: ui : [0, 1]m → R≥0 is a continuous function.

2. Normalized: ui(0, 0, ...0) = 0.

3. Non-constant: There exists a bundle xi where ui(xi) > 0.

10In our model, divisibility and randomization are equivalent, but this is not always the case: for example, if there
were a some sort of global budget constraint, randomization could lead to a non-viable deterministic outcome.

11Although the entire supply is typically allocated, it is standard in the private goods literature to allow for outcomes
where this does not occur, i.e.

∑
i∈N xij < 1. This will be discussed in Section 7.2.2.
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4. Monotone: For any bundles xi and x′i where xij ≥ x′ij for all j, ui(xi) ≥ ui(x′i).

5. Concave: For any bundles xi and x′i and constant λ ∈ [0, 1], we have ui(λxi + (1 − λ)x′i) ≥
λui(xi) + (1− λ)ui(x

′
i).

6. Homogeneous of degree 1: For any bundles xi and x′i and constant λ ≥ 0 where xij = λx′ij for

all j, ui(xi) = λui(x
′
i).

While many of our results hold for any utility functions satisfying our six assumptions, some

hold only for particular subclasses; we will make it clear when this is the case.

The first five of those are standard assumptions in the market literature. The last is less ubiqui-

tous, but still common: in particular, the vast majority of the popular subclasses of utility functions

satisfy this assumption. For example, it is often assumed in real-world applications that utility

functions are linear, meaning that

ui(xi) =
∑
j∈M

wijxij

where wij ≥ 0 is the weight agent i has for good j. Another important class is Leontief functions,

where

ui(xi) = min
j∈M :wij 6=0

xij
wij

Linear utilities imply that goods are independent, whereas Leontief utilities represent perfect com-

plements: goods that only have value in combination. For Leontief utilities, wij is the relative

proportion agent i needs of good j.

Both linear and Leontief utilities are generalized by the class of constant elasticity of substitution

(CES) utilities, where ui(xi) =
( ∑
j∈M

wρijx
ρ
ij

)1/ρ

for some constant ρ ∈ (−∞, 0) ∪ (0, 1]. Linear

utilities are obtained by setting ρ = 1, and taking the limit as ρ approaches −∞ yields Leontief

utilities. Taking the limit as ρ approaches 0 gives Cobb-Douglas utility functions, which have the

form ui(xi) =
( ∏
j∈M

x
wij
ij

)1/
∑
j∈M wij

12.

The reader may not that this functional form is identical to the CES welfare functions we studied

in Part I. A welfare function is what we want to maximize as a social planner; a utility function is

what an agent wishes to selfishly maximize. In this chapter, we focus on CES utility functions, but

primarily use Nash welfare as our welfare function.

7.2.2 Private goods & Fisher markets

We will use the fixed-budget model for our private goods market model. We will focus on linear

prices, i.e., p(xi) =
∑
j∈M pjxij . With abuse of notation, we will also write p(xi) = xi · p. The

12The weights wij have different interpretations for Leontief utilities vs other CES utilities. For example, if there
is only a single good, the CES utility form reduces to wi1xi1 and the Leontief utility form reduces to xi1/wi1. When
we say that taking the limit as ρ→ −∞ yields Leontief utilities, we mean that we obtain the form of Leontief utilities
(i.e., a minimization over all the goods).
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demand set is defined in the standard way:

Di(p) = arg max
xi∈Rm≥0

: xi·p≤Bi
ui(xi)

As are the equilibrium conditions:

1. Each agent receives a bundle in her demand set: xi ∈ Di(p).

2. The market clears: for all j,
∑
i∈N

xij ≤ 1. Also, if pj > 0, then
∑
i∈N

xij = 1.

The most natural case is when all agents have the same budget, in which case the ME is also called

the competitive equilibrium from equal incomes [169].

Condition 2 states that the demand never exceeds the supply, and that any good whose supply

is not fully exhausted must have price zero. This implies that agents have no utility for the leftover

goods: otherwise they would simply buy more with no additional cost. Note that agents can demand

more of a good than the available supply if the cost is less than their budget. It is the role of prices

at equilibrium to ensure that demand does not exceed supply.

Under the first five assumptions on utility functions described in Section 7.2.1, a market equi-

librium is guaranteed to exist for any Fisher market instance [6]. With the addition of the sixth

assumption (homogeneity of degree 1), the equilibrium allocations are exactly the allocations maxi-

mizing the Nash welfare13:

NW (x) =
( ∏
i∈N

ui(xi)
Bi
)1/B

where B =
∑
i∈N Bi. Maximum Nash welfare allocations can be computed in polynomial time by

the celebrated Eisenberg-Gale (EG) convex program [72, 73]14. Nash welfare will be the primary

objective function we seek to maximize.

7.2.3 Public decisions

As in the private markets case, the maximum Nash welfare outcome can be found via a convex

program:

max
z∈[0,1]m×2

( ∏
i∈N

ui(z)Bi
)1/B

s.t. zj,0 + zj,1 ≤ 1 ∀j ∈M (7.1)

The solution to this convex program can be found in polynomial time. This program is very

different than the EG program; however, we will show via our reduction that these programs become

identical under a transformation of utility functions and issue space.

Furthermore, even without any knowledge of utility functions, a 1/2 approximation of this pro-

gram emerges. Because issues are binary, we can very easily guarantee each agent half of her maxi-

mum possible utility simply by putting equal probability on each alternative, i.e., zj,0 = zj,1 = 1/2.

13This is technically the “budget-weighted” Nash welfare, but we will omit “budget-weighted” throughout the
chapter.

14This correspondence still holds under slightly weaker assumptions that our six assumptions [104].
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It follows from concavity and ui(0, 0, ..., 0) = 0 that this also achieves 1/2 of the maximum possible

Nash welfare.

Proposition 7.2.1. Let Γ be a public decisions instance (N,M) with agent budgets B = (B1...Bn),

and let z be the outcome where zj,0 = zj,1 = 1/2 for all j ∈M . Then
max
z′

NW (z′)

NW (z)
≤ 2.15

In light of this, we would expect any reasonable mechanism for public decision-making to do no

worse than this (in terms of Nash welfare), and hopefully do substantially better. Unfortunately, we

show in the next section that the natural adaption of Fisher markets to the public decisions setting

does no better than this for several important classes of utility functions. Even worse, in the case of

linear utilities – the most important class of utilities in practice – the Nash welfare can be a factor

of O(n) worse than optimal.

7.3 Inefficiency of public decisions markets with issue pricing

In a Fisher market, each good is assigned a single price which is common to all agents: thus all

agents are treated the same, which is desirable for fairness. This approach can be thought of as

giving each agent the same number of votes and allowing them to trade freely: the price for a given

issue expresses the “exchange rate” for that issue. This section shows that in the public decisions

setting, setting a single price for each issue (issue pricing) can result in very poor equilibria. Although

we primarily consider Nash welfare in this chapter, the same family of instances will show that the

utilitarian welfare (sum of agent utilities) and egalitarian welfare (the minimum agent utility) can

also be much worse than optimal. We do not consider this a substantial result; it is conceptually

similar to the “free-rider problem” (where an agent benefits from resources that they do not pay

for), which is known to lead to inefficiency for public goods. Rather, it is important that we establish

inefficiency for per-issue pricing in our specific model in order to motivate a more complex pricing

scheme.

7.3.1 Setup

A public decisions market (PDM) consists of a public decisions instance (N,M) along with agent

budgets B = (B1 . . . Bn). This definition is independent of the pricing scheme: we use the term

“PDM” to describe all notions of markets for the public decisions setting. This section uses the

following scheme: each issue has a price, each agent uses her budget to purchase probability for her

preferred alternatives, and the total probability placed on an alternative is the sum over agents of

the probability purchased for that alternative.

Given per-issue prices p ∈ Rm≥0, agent i’s private bundle yi ∈ Rm≥0 refers to the vector of proba-

bilities that agent i purchases. We say that yi is affordable if yi · p ≤ Bi. Throughout the chapter,

we will use yi to refer to i’s private bundle, and xi to refer to i’s public bundle (recall, as defined in

15Whenever we maximize over outcomes of a public decisions instance, i.e., maxzNW (z), we implicitly assume that
only valid outcomes are considered, meaning that zj,0 + zj,1 ≤ 1 for all j ∈M . The same is true when we maximize
over outcomes of a private goods instance, and we adopt these conventions throughout the chapter.
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Section 7.2, that the public bundle xi represents the fraction of the public decision allocated to i’s

preferred alternative). This distinction only matters in the public decisions setting: we use yi and

xi interchangeably in the private goods setting.

In this section, for private bundles y = (y1...yn), the corresponding outcome z = (z1...zm) ∈
[0, 1]m×2 is

zj,a =
∑

i∈N : aij=a

yij

The above definition of z as a function of y is specific to the issue pricing scheme. The different

pricing scheme discussed in Section 7.4 will define z differently.

In a Fisher market, an agent’s demand set contains the bundles which maximize her utility

subject to being affordable. In a PDM with issue pricing, an agent’s utility depends not only on her

own bundle, but also on other agent’s bundles. Thus if we want to define an agent’s demand set

as the bundles which maximize her utility subject to being affordable, the demand set must depend

not only on the prices, but also on the private bundles of other agents. With this in mind, we define

the demand set by

Di(p, y−i) = arg max
yi∈Rm≥0

: yi·p≤Bi
ui(y−i, yi)

where y−i is the list of private bundles other than that of agent i, and with slight abuse of types,

ui(y−i, yi) is agent i’s utility for the outcome when i purchases private bundle yi and the other

agents purchase private bundles y−i
16.

An issue-pricing market equilibrium (IME) (y, p) is a list of private bundles y and issue prices

p ∈ Rm≥0 where

1. Each agent receives a private bundle in her demand set: yi ∈ Di(p, y−i).

2. The market clears: for all j,
∑
i∈N

yij ≤ 1. Also, if pj > 0, then
∑
i∈N

yij = 1.

By the same reasoning as in the private setting, whenever an issue is not sold completely, agents

have no utility for the unsold fraction of the issue17.

In general it is not known whether every PDM admits an IME. However, for several important

utility classes, we give an instance where an IME does exist, but where every IME has poor Nash

welfare.

7.3.2 Linear utilities

We first show that for linear utilities, an IME always exists. Furthermore, the set of IMEs is identical

to the set of private goods MEs that would be obtained if the input were instead treated as a Fisher

market (i.e., if each agent’s utility only depended on her private bundle).

16As in the Fisher market setting, agents are allowed to demand more than 1 unit of an issue if the cost is less than
their budget. The interpretation of demanding more than unit probability is difficult, but the prices will ensure that
this never occurs in equilibrium.

17If some issue j is not sold completely and so zj,0 + zj,1 < 1, one can think of the remaining 1− zj,0 − zj,1 being
allocated to some third option that has no value for any agent.
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To see this, we can write agent i’s utility for private bundles y as

ui(y) =
∑
j∈M

wij
∑
k∈N :
akj=aij

ykj =
∑
j∈M

wijyij +
∑
j∈M

wij
∑

k∈N\{i}:
akj=aij

ykj

Agent i cannot affect the actions of other agents, and so has no control over the second term. Thus

agent i maximizes her utility by maximizing the first term,
∑
j∈M wijyij , which is exactly the utility

function of an agent in a Fisher market. This is expressed formally by Theorem 7.3.1, whose proof

appears in Section 7.10.

Theorem 7.3.1. For a PDM (N,M,B) with linear utilities given by weights wij ≥ 0, for every list

of private bundles y and list of prices p, (y, p) is an IME if and only (y, p) is a ME for the Fisher

market (N,M,B) with linear utilities given by the same weights.

We now define the family of instances that exhibit poor equilibria in the issue pricing model.

For any integer n ≥ 2 and real number w ≥ 0, let Φ(n,w) be the PDM defined by n = m, wii = w

for all i, wij = 1 for all j 6= i, aii = 0, aij = 1 for all j 6= i, and Bi = 1 for all i. In words, on each

issue i, agent i is alone on one side of the issue, and the other n− 1 agents are on the opposite side.

Each agent i has weight w for issue i, and weight 1 for every other issue.

Our next theorem shows that for linear utilities, the Nash welfare of the IME can be a linear

factor worse than optimal. This is especially dreadful in light of how easy it is to achieve half of the

optimal Nash welfare via Proposition 7.2.1.

Theorem 7.3.2. For any ε > 0, Φ(n, 1 + ε) with linear utilities has a unique equilibrium (y, p),

where
max
z′

NW (z′)

NW (y)
≥ n− 1

1 + ε

The proof appears in Section 7.10, but we give some intuition here. We observe that an agent’s

demand set in a Fisher market always maximizes her “bang-per-buck” ratio: wij/pj . To see this,

suppose agent i spends some money on a good that does not maximize her bang-per-buck ratio: she

could instead spend the same amount of money to get strictly more utility by spending it on a good

with maximum bang-per-buck. By Theorem 7.3.1, this property carries over to the IME.

By symmetry, every issue will have the same price. Since wii > wij for all i and for all j 6= i,

agent i’s bang-per-buck ratio is maximized only by good i. Thus each agent i spends all of her

budget on good i. This leads to the outcome where yii = 1 for all i, and yij = 0 for all j 6= i. Thus

zj,0 = 1 for all j ∈ M . The utility of each agent for this outcome 1 + ε, so the Nash welfare is also

1 + ε. But in the outcome where zj,1 = 1, for all j, each agent has utility n− 1, so the Nash welfare

is n− 1. This yields the desired bound of (n− 1)/(1 + ε).

If we used wii = wij = 1 for all i, j, the outcome where zj,0 = 1 would still be an IME.

However, there would now be many more IMEs, including ones with optimal Nash welfare. By setting

wii = 1+ε instead of wii = 1, we can make the outcome where xii = 1 for all i the unique equilibrium.

This same issue is not present for Cobb-Douglas and CES utilities with ρ ∈ (−∞, 0) ∪ (0, 1), which

we examine in the next section.
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7.3.3 Other utilities

We briefly mention two results we have for other classes of utility functions. Using the same Φ

construction, Theorems 7.3.3 and 7.3.4 state that the Nash welfare of an IME cannot be much

better than 1/2 for Cobb-Douglas utilities and CES utilities, respectively. The formal proofs of

Theorems 7.3.3 and 7.3.4 appear in Section 7.10.1.

Theorem 7.3.3. For any IME (y, p) of Φ(n, 1) with Cobb-Douglas utilities,

max
z′

NW (z′)

NW (y)
≥ 2− 2/n

(n− 1)1/n

Theorem 7.3.4. For any IME (y, p) of Φ(n, 1) with CES utilities for parameter ρ ∈ (−∞, 0)∪(0, 1),

max
z′

NW (z′)

NW (y)
≥ 2(1− 1/n)1/ρ

As the number of agents approaches infinity, the bounds in Theorems 7.3.3 and 7.3.4 approach

2. This means that for those classes of utility functions, the issue pricing market model cannot be

guaranteed to do better than simply picking the midpoint on every issue (Proposition 7.2.1). The

situation is even worse for linear utilities, where the Nash welfare of an IME can be arbitrarily worse

than the optimal Nash welfare.

One may wonder why Cobb-Douglas and CES utilities with ρ ∈ (−∞, 0) ∪ (0, 1) do not fail as

badly as linear utilities on this family of instances. On a high level, the reason is that both Cobb-

Douglas and CES utilities exhibit diminishing returns: the more one buys of a particular good, the

less value it adds. This leads to agents splitting their money across multiple goods, regardless of

their weights on the individual goods. As a result, small changes in agents’ weights end up not

affecting their purchases too much. In contrast, for linear utilities, an agent might spend her entire

budget on a single good: in fact, if there is a unique good which maximizes her bang-per-buck, she

must spend her entire budget on that good. This is exactly the property we use in our inefficiency

example, where the fact the wii = 1 + ε > wij for j 6= i causes agent i to spend her entire budget on

good i.

These negative results motivate a more complex market model, which we present in the next

section.

7.4 Pairwise issue expansion and pairwise pricing

In this section, we describe a more complex model of a public decisions market, which relies on

pairwise pricing : for each issue, there will be a price for each pair of agents who disagree on that

issue. We then present our main result: a reduction from any PDM to an equivalent Fisher market.

This reduction, which we call pairwise issue expansion, can be used to construct a pairwise pricing

equilibrium that maximizes the Nash welfare. Specifically, for any PDM, we will construct a Fisher
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market such that market equilibria in the Fisher market correspond to pairwise pricing equilibria in

the original PDM which maximize Nash welfare.

The section is organized as follows. Section 7.4.1 introduces pairwise issue expansion and gives

an informal argument for correctness. Section 7.4.2 gives some additional notation and setup, and

states our theorems. The formal proofs of correctness are somewhat technical and are deferred to the

end of the chapter, to improve narrative flow. Finally, Section 7.4.3 discusses some Fisher market

results that this reduction allows us to immediately lift to the public decisions setting.

7.4.1 Pairwise issue expansion

For any PDM Γ, we construct a Fisher market R(Γ) as follows. The set of agents N = {1...n}
and their budgets B1...Bn will be the same. Every issue j ∈ M will become O(n2) goods in R(Γ).

Specifically, for every issue j, there will one good for each pair of agents who disagree on issue j.

Let Rg(M) be the set of goods in R(Γ): then

Rg(M) =
{

(i, k, j) | j ∈M, i, k ∈ N, aij 6= akj
}

We we will refer to goods (k, k′, j) where i ∈ {k, k′} as agent i’s “pairwise goods”. Note that (i, k, j)

and (k, i, j) refer to the same good.

If yi is a bundle associated with Γ (denoted yi ∼ Γ), then yi ∈ R|M |≥0 . If yi is a bundle associated

with R(Γ) (denoted yi ∼ R(Γ)), then yi ∈ R|R
g(M)|

≥0 .

We will use j to represent issues in M and ` to represent goods in Rg(M). We also use yi(ikj) to

denote yi` when ` = (i, k, j).

In order to purchase α units of issue j in the PDM, agent i will need to purchase at least α units

of all of her pairwise goods for issue j. Formally, agent i’s utility for a bundle yi ∈ R|R
g(M)|

≥0 is

ui

 min
k∈N :
ai1 6=ak1

yi(ik1), min
k∈N :
ai2 6=ak2

yi(ik2), . . . min
k∈N :

aim 6=akm

yi(ikm)


Agent i’s utility is as if she purchased min

k∈N :aij 6=akj
yi(ikj) probability of each issue j in the PDM Γ.

For example, if agent i’s utility in Γ is linear with weights wij , her utility in R(Γ) would be∑
j∈M

wij

(
min
k∈N :
aij 6=akj

yi(ikj)

)

These utility functions are nested Leontief ; this will be discussed formally in Section 7.4.2.

Figure 7.1 gives a graphical representation of R(Γ) for five agents and a single issue j, where

a1j = a2j = a3j = 0 and a4j = a5j = 1. An edge from an agent to a good indicates that that agent

desires that good. One key aspect of pairwise issue expansion is that on each issue j, each agent

is in competition with everyone she disagrees with, and not in competition with anyone she agrees

with.

We first argue informally for the correctness of the reduction (by “correctness”, we mean that
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1, 4 2, 4 3, 4 1, 5 2, 5 3, 5

p1 p2 p3

p4 p5

Figure 7.1: A graphical representation of the constructed Fisher market R(Γ) for five agents and a single
issue j, where a1j = a2j = a3j = 0 and a4j = a5j = 1.

the equilibria in the Fisher market R(Γ) correspond to equilibria in the PDM Γ). Agent i will only

ever spend money on her pairwise goods, because other goods do not affect her utility. Because of

the nested Leontief structure of the utilities in R(Γ), for a fixed issue j, agent i will buy the same

amount of each of her pairwise goods: buying a larger amount of one of the goods would not increase

her utility (because it would not increase the minimum), so she would be wasting money. Thus for

a fixed issue, agent i buys the same amount of each of her pairwise goods (though this can differ

across issues).

So suppose that for each issue j, agent i buys αij of each of her pairwise goods for that issue.

If R(Γ) is at equilibrium, every agent k who disagrees with agent i on issue j can receive at most

1 − αij of good (i, k, j), since the total supply of each good is 1. As argued above, agent k will

never buy more than 1− αij of any of her pairwise goods on issue j, because of the nested Leontief

structure. Thus every agent k who disagrees with agent i on issue j will buy exactly 1−αij of each

of her pairwise goods for issue j. This leaves exactly αij for everyone who agrees with agent i on

issue j. Thus in equilibrium, everyone who agrees with agent i buys αij of their pairwise goods on

issue j, and everyone who disagrees with agent j buys 1− αij of their pairwise goods on issue j.

This means that when R(Γ) is in equilibrium, whenever two agents agree on an issue, they buy

the same amount of their pairwise goods for that issue, and whenever they disagree, the amounts

they buy sum to 1. Let z be the outcome where zj,aij = αij and zj,1−aij = 1 − αij for all j ∈ M .

Then z is a valid outcome of the PDM. Also, because R(Γ) is a Fisher market, an equilibrium price

vector assigns a single price to each good: this yields a price for each pairwise disagreement on each

issue. This leads to the pairwise pricing equilibrium notion, which z as defined above will satisfy.

Furthermore, we know that any Fisher market equilibrium maximizes Nash welfare. The agents

will have the same utilities in both the PDM and the constructed Fisher market at equilibrium, so

the Fisher market equilibrium will respond to a pairwise pricing equilibrium which maximizes Nash

welfare in the PDM.

Finally, we mention that this reduction can be generalized to d-ary issues under the assumption

that each agent has utility for at most one alternative per issue. Instead of one good for each pair

of agents who disagree, there would be one good for each set of d agents where each agent has a

different preferred alternative, and a similar argument will hold.
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7.4.2 Additional setup and formal theorem statements

Some additional notation will be useful. We define relations R and R← which will map bundles and

prices between Γ and R(Γ).

For a bundle yi ∼ Γ, we define a corresponding bundle Rb(yi) ∼ R(Γ) by

Rb(yi)(kk′j) =

yij if i ∈ {k, k′}

0 if i 6∈ {k, k′}
∀(k, k′, j) ∈ Rg(M)

where Rb(yi)(kk′j) denotes the quantity of good (k, k′, j) in bundle Rb(yi). For a bundle yi ∼ R(Γ),

the corresponding bundle Rb←(yi) ∼ Γ is defined by

Rb←(yi)j = min
k∈N :
aij 6=akj

yi(ikj) ∀j ∈M

where Rb←(yi)j denotes the quantity of issue j in bundle Rb←(yi). Also, for a list of private bundles

y ∼ Γ, we use Rb(y) to refer to the list of private bundles in R(Γ) where agent i’s bundle is Rb(yi).

Similarly, for any y ∼ R(Γ), Rb←(y) is a list of private bundles in Γ where agent i’s bundle is Rb←(yi).

It is important to note that while the equilibria of Γ and R(Γ) coincide, the correspondence is

not always meaningful for non-equilibrium outcomes. In particular, not every yi ∼ R(Γ) satisfies

yi = Rb(Rb←(yi)): for example if yi(kk′j) > 0 when i 6∈ {k, k′}.
Let ui be agent i’s utility function in Γ. Then agent i’s utility function in R(Γ) is given by

uRi (yi) = ui(R
b
←(yi))

This is equivalent to the definition of agent utilities given in Section 7.4.1: simply subtitute the

definition of Rb←(yi). Also note that for any yi ∼ Γ, we have yi = R←(Rb(yi)), and so ui(yi) =

uRi (Rb(yi)).

We would also like to relate prices in Γ and R(Γ). Since R(Γ) is a Fisher market, any price

vector p associated with R(Γ) (denoted p ∼ R(Γ)) assigns a single price to each good ` ∈ Rg(M):

p ∈ R|R
g(M)|

≥0 . We will be considering per-person per-issue prices for the PDM Γ, so any set of prices

p associated with Γ (denoted p ∼ Γ) assigns one price to each person i ∈ N for each issue j ∈ M :

p ∈ Rm×n≥0 .

For a price vector p ∼ R(Γ), we define prices Rp←(p) ∼ Γ by

Rp←(p)ij =
∑
k∈N :
aij 6=akj

p(ikj) ∀i ∈ N, j ∈M

where Rp←(p)ij is the price of issue j for agent i in price vector Rp←(p). In words, Rp←(p)ij is the

sum of agent i’s pairwise prices for issue j. We will also use Rp←(p)i to denote the vector of agent

i’s prices: Rp←(p)i = (Rp←(p)i1...R
p
←(p)im).

Before we stating our theorems, we should verify that the utilities in R(Γ) satisfy the necessary
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requirements. If the utility functions in Γ are in classH (H could be the set of linear utility functions,

for example), the utility functions in R(Γ) will be H-nested Leontief.

Definition 7.4.1. For some agent i, let fi1, fi2...fiL be Leontief utility functions. Then a utility

function ui is H-nested-Leontief if there exists a utility function hi : RL≥0 → R≥0 such that hi ∈ H,

and

ui(yi) = hi

(
fi1(yi), fi2(yi) . . . fiL(yi)

)
for any bundle yi.

In our setting, L = m for all agents, and for each j ∈M , fij(yi) = Rb←(yi)j = min
k∈N :aij 6=akj

yi(ikj).

Then for each agent i, uRi (yi) = ui(R
b
←(yi)) = ui

(
fi1(yi), fi2(yi)...fiL(yi)

)
.

The next lemma states that as long as hi and fi1, fi2...fiL satisfy our assumptions on utility

functions, their composition does as well.

Lemma 7.4.1. Suppose that the functions hi, fi1, fi2 . . . fiL are continuous, normalized, concave,

homogeneous of degree 1, non-decreasing, and non-constant. Then ui = hi(fi1, fi2 . . . fiL) meets the

same conditions.

We will claim that each market equilibrium in R(Γ) corresponds to a pairwise-pricing market

equilibrium (PME) in Γ. The formal definition of a PME appears in Section 7.9.1. Informally, it

is a list of private bundles y and per-person per-issue prices p ∈ Rm×n≥0 generated by pairwise issue

expansion (i.e., p = Rp←(p′) for some p′ ∼ R(Γ)) such that

1. Every agent receives a private bundle in her demand set.

2. Whenever two agents agree on an issue, they purchase the same amount of that issue.

3. Whenever two agents disagree on an issue, they amounts of that issue that they purchase sum

to 1.

This is exactly the definition alluded to via the αij variables in the informal argument given in

Section 7.4.1. This leads to the following theorem:

Theorem 7.4.1. For an allocation y ∼ R(Γ) and prices p ∼ R(Γ), (y, p) is a ME of the market

R(Γ) if and only if (Rb←(y), Rp←(p)) is a PME of the PDM Γ.

Finally, we wish to claim the maximum Nash welfare outcomes in Γ and R(Γ) correspond. We

will actually prove this correspondence for all welfare functions, not just the Nash welfare, and even

for approximations of welfare functions.

Formally, let Ψ : Rn≥0 → R be a function. When the n inputs to Ψ are understood to

be the n agent utilities for a particular outcome (of a pubic or private instance), we call Ψ a

welfare function. Because Ψ depends only on the agent utilities, we will use this terminology

and notation for both the public and private settings. With slight abuse of types, we will write

Ψ(z) = Ψ(u1(z), u2(z), ...un(z))18.

18Throughout most of the chapter, we use z to refer to the outcome of a public decisions instance and x to refer to
the outcome of a private goods instance. In this discussion, the welfare functions are the same for both public and
private instances, so we will use z to denote outcomes for both.
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Common welfare functions include the utilitarian welfare function, Ψ(z) =
∑
i∈N ui(z), the egal-

itarian welfare function, Ψ(z) = mini∈N ui(z), and most importantly for us, the (budget-weighted)

Nash welfare function, Ψ(z) =
(∏

i∈N ui(z)Bi
)1/B

. We say that an outcome z is a α-approximation

of Ψ if

Ψ(z) ≥ α ·max
z′∼Γ

Ψ(z′)

If z is an outcome of a public decisions instance, technically Rb(z) does not typecheck, since

z = (z1...zm) is not a list of bundles. We interpret Rb(z) to mean Rb(x1, x2...xn), where xi is agent

i’s public bundle as induced by z.

Theorem 7.4.2. Let Ψ be a welfare function, let Γ be the public decisions instance (N,M) with

budgets B1...Bn, and let α ≥ 0. Then z is an α-approximation of Ψ in Γ if and only if R(z) is an

α-approximation of Ψ in R(Γ).

Note that by the same reasoning, z ∼ R(Γ) is an α-approximation of Ψ if and only if R←(z) ∼ Γ is

also an α-approximation of Ψ. Thus for any welfare function Ψ and any α ≥ 0, the α-approximations

of Γ and R(Γ) correspond exactly.

7.4.3 Lifting Fisher markets results using pairwise issue expansion

In addition to uncovering a surprising conceptual connection, pairwise issue expansion allows us

to immediately lift many results from the Fisher market literature to the public decision-making

setting. In particular, if a result holds for Fisher market with H-nested Leontief utilities, it holds

in the public decisions setting for H utilities. Any Fisher market result regarding the ME can be

lifted using Theorem 7.4.1, and any Fisher market result regarding any approximation of any welfare

function can be lifted using Theorem 7.4.2. The following Fisher market results are known:

1. There exists a strongly polynomial-time algorithm for finding a Fisher market equilibrium with

two agents and any utility functions [43]19.

2. There exists a strongly polynomial-time algorithm for finding a Fisher market equilibrium for

Leontief utilities with weights in {0, 1} [87].

3. There exists a polynomial-time algorithm for a Fisher market with Leontief utilities which

yields a O(log n) approximation simultaneously for all canonical welfare functions (i.e. Nash

welfare, utilitarian welfare, egalitarian welfare, etc) [95].

The first two can be lifted using Theorem 7.4.1, and the third can be lifted using Theorem 7.4.2.

Note that nested Leontief-Leontief functions are just Leontief functions. This yields the following

PDM results:

1. There exists a strongly polynomial-time algorithm for finding a PME with two agents and any

utility functions.

19For completeness, we mention an additional mild condition required for this result: the polytope containing the
set of feasible utilities of the two agents must be able to be described via a combinatorial LP.
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2. There exists a strongly polynomial-time algorithm for finding a PME for Leontief utilities with

weights in {0, 1}.

3. There exists a polynomial-time algorithm for a PDM with Leontief utilities which yields a

O(log n) approximation simultaneously for all canonical welfare functions (i.e. Nash welfare,

utilitarian welfare, egalitarian welfare, etc).

The final result we are interested in lifting is a discrete-time tâtonnement process for finding the

Fisher market equilibrium for nested CES-Leontief utilities that converges in polynomial-time [9].

The next section discusses this in more depth.

As a final comment, there are also results of interest that do not immediately fall under the

framework of Theorems 7.4.1 and 7.4.2, but which we conjecture could be lifted using our reduction.

For example, in Chapter 2 we studied Leontief utilities in the context of price curves. We believe

that pairwise issue expansion could be used to generate pairwise price curves, where there would

be a price curve assigned to each pair of agents who disagree on an issue, instead of a single price.

Pairwise issue expansion seems general enough to apply to this type of non-standard market models,

but we leave this for future work.

7.5 Public market tâtonnements

Public
market
agents

Public to
private

reduction

Private
market

tâtonnement

demands y at time t

prices R←(pt+1)

demands R(y) at time t

prices pt+1

Figure 7.2: R←(T ) illustration using a hidden private market tâtonnement

In this section, we describe how the reduction immediately leads to existence of several public

market tâtonnements. In particular, we show that any Fisher market tâtonnement that works for

H-nested utilities yields a PDM tâtonnement for H utilities.

This does not immediately follow from pairwise issue expansion for several reasons. The first is

that tâtonnement deals with approximate equilibria, and Theorem 7.4.1 only considers exact equilib-

ria. Because this correspondence holds for approximate equilibria as well (see proof of Theorem 5.4),

any Fisher market tâtonnement that works for H-nested utilities immediately yields an algorithm for

computing PDM equilibria for H utilities, but not a tâtonnement. A true PDM tâtonnement would

only have access to agents’ demands in the PDM, but the resulting algorithm would need to elicit

agents’ demands in the constructed Fisher market. We handle this by running the Fisher market

tâtonnement as a hidden subroutine within the PDM tâtonnement, as demonstrated by Figure 7.2.
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Let a Fisher market tâtonnement T be an iterative algorithm that starts at an initial price vector

p0, and then at each time t,

1. Receives demand set Di(p
t)20 from each agent i.

2. Updates prices as some function g of the demands, pt+1 = gT (pt, D(pt)).

As time increases, prices and associated demands approach an approximate equilibrium, for some

notion of approximate. Figure 7.2 illustrates the meta-algorithm for public market tâtonnements.

From a Fisher market tâtonnement T , let R←(T ) be the induced public market tâtonnement that

initializes an initial price vector p0 in the hidden Fisher market and then at each time t,

1. Converts prices pt to public market prices R←(pt) and shows them to agents.

2. Receives demand set Di(R←(pt)) from each agent i.

3. Converts the agent demands to the associated private market demand set yR = {R(yi)}yi∈Di(R←(pt)).

4. Updates prices through the Fisher market tâtonnement function, pt+1 = gT (pt,yR).

We begin with the definitions of approximate equilibria and convergence.

Definition 7.5.1. A δ-equilibrium (x, p) in a Fisher market is an allocation x and prices p where

1. Each agent receives a bundle in her demand set: xi ∈ Di(p).

2. pj > δ =⇒
∑
i∈N

xij > 1− δ

3. ∀j,
∑
i∈N

xij ≤ 1 + δ

Note that this definition is introduced in [9].

Definition 7.5.2. A δ-PME (y, p) is a list of private bundles y and per-person per-issue prices

p ∈ Rm×n≥0 where

1. Each agent receives a private bundle in her demand set: yi ∈ Di(pi).

2. The market approximately clears: there exists a outcome z = (z1...zm) ∈ [0, 1]m×2 where for

every issue j ∈M , all of the following hold:

(a) zj,0 + zj,1 ≤ 1 + δ

(b) For all i ∈ N , yij ≤ zj,aij + δ. If pij > nδ, then yij > zj,aij − δ.

20With strictly concave utility functions, each agent’s demand at a given price is unique. With linear utilities, the
demand set can be expressed as the set of goods that are equally desirable at the given prices. Also, we assume that
agents are price-taking, meaning that they honestly report their demand given a set of prices, and do not anticipate
how prices will change as a result of their actions.
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Definition 7.5.3. A tâtonnement T has converged to a δ-equilibrium at time T if ∃y where (y, pT )

is a δ-equilibrium. Similarly, R←(T ) has converged to a δ-PME at time T if ∃y where (y, R←(pT ))

is a δ-PME.

The definition does not imply that all demands at the equilibrium prices form an approximate

equilibrium, only that there exists an allocation consistent with demands at the equilibrium prices

such that the supply constraints are met. However, note that when utility functions are strictly

concave, demands are unique.

Our first theorem shows that any Fisher market tâtonnement for H-nested Leontief utility func-

tions yields a PDM tâtonnement for H utility functions. Theorem 7.5.1, whose proof appears

in Section 7.10.1, allows one to lift both convergence and convergence rates from Fisher market

tâtonnements.

Theorem 7.5.1. Consider a Fisher market tâtonnement T . Suppose T converges to a δ-equilibrium

for H-nested leontief utilities in O(κ(m,n, δ)) time steps, where n is the number of agents and

m the number of goods. Then R←(T ) converges to a 3δ-PME for the PDM with H utilities in

O(κ(n2m,n, δ)).

One Fisher market tâtonnement that we can lift using Theorem 7.5.1 comes from [9], which gives

a polynomial-time tâtonnement that converges to a δ-equilibrium for CES-Leontief utilities with

ρ ∈ (−∞, 0)∪ (0, 1) in polynomial time. By Theorem 7.5.1, this yields a PDM tâtonnement for CES

utilities.

We would also like a PDM tâtonnement that works for a wider range of utility functions, especially

linear utilities. Section 7.7 presents a stochastic gradient descent style tâtonnement for Fisher

markets which converges asymptotically to an equilibrium for all EG utility functions21, following

the framework of [48]. Combined with Theorem 7.5.1, this tâtonnement implies existence of a PDM

tâtonnement with asymptotic convergence to an equilibrium for all EG utility functions.

7.6 Lindahl Equilibria

In this section, we show how our public decisions setting corresponds to a natural public goods market

in the setting of Lindahl equilibria, and how our reduction can also be used to compute Lindahl

prices for this public goods market. The Lindahl Equilibrium has a long history and, at times, the

term has been used to mean slightly different things [136]. Foley [82] gave general conditions for

the existence of the Lindahl Equilibrium and its correspondence to the core. We first introduce a

simplified definition of Lindahl Equilibria.

Definition 7.6.1 ([82, 136]). A Lindahl Equilibrium with m public goods, 1 private good, n agents,

and entry private good amounts {wi}ni=1 is an (public goods allocation, private goods allocation,

per-person per-issue price) vector (z∗ ∈ Rm+ , {y∗i ∈ R+}ni=1, {p∗i ∈ Rm+}ni=1) such that

1. z∗ is a solution to maxz

(∑n
j=1 p

∗
j

)
z − c(z)

21functions that meet the 5 conditions from Section 7.2.
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2. For each i ∈ {1, . . . , n}, (z∗, y∗i ) is a solution to max(z,yi) ui(z, yi) subject to p∗i z + yi ≤ wi

where c(z) is the cost to produce the public good vector z in terms of the private good and ui is the

participant utility function in terms of the public and private goods.

In a Public Decision Market, the private good is the “influence” of each agent, for which agents

have no utility, i.e., influence not spent is lost. Furthermore, there are 2 public goods per issue, 1

for each alternative, and each with the same price for each agent. Similarly,

c(z) =

{
0 zj,0 + zj,1 ≤ 1 ∀j

∞ else

i.e., if in the case in which each alternative on each issue is implemented with some probability, then

there is no cost of using the entire probability, and no possibility of creating more probability.

Lemma 7.6.1. An equilibrium (z∗ ∈ R2×m
+ , {y∗i ∈ R+}ni=1, {p∗i ∈ R2×m

+ }ni=1) of the PDM with m

issues and agent budgets Bi, where z∗ is the decision vector, p∗ are the per-person per-issue prices

from the Fisher market reduction, and final influence vectors are y∗i = 0, is a Lindahl Equilibrium

with entry private good amounts wi = Bi.

Proof. Condition 2 follows directly from the equilibrium condition that optimal allocation is in

the demand set of each agent at the equilibrium prices. Condition 1 requires a bit more work.

Note that ∀j, for each copy of the good, the sub-price pikj = pkij , where aij 6= akj . Then, ∀j, p0
j =∑

i:aij=a

∑
k:akj 6=a pikj =⇒ p0

j = p1
j . Thus, all feasible x are in the solution set in the first condition,

and an equilibrium of the PDM is feasible.

Lemma 7.6.1, alongside Theorem 7.4.1 and the existence of Fisher market equilibria [6] establishes

the existence of a Lindahl equilibrium in our setting.

We note that Lemma 7.6.1 further establishes that the solution is in the core, as Lindahl Equilibria

are in the core [82].

7.6.1 Economies with public goods

The existence of Lindahl Equilibria in Public Good economies (of which Public Decision Markets

are a special case, as we will show) was established by Foley [82]. The chief technique is a reduction

to Private Goods economies. The reduction yields a non-constructive existence proof, and operates

as follows: create a copy of each good for each participant, with equality of the amount of each

good enforced through conic constraints. Then, the proof is finished by invoking the existence of

equilibria satisfying certain conditions in Private Goods economies, after showing that the additional

constraints restricting the cone of production do not violate any assumptions [59]. We note that

existence of Lindahl equilibria of the PDM can also be established non-constructively through the

same technique, by showing that the resulting market satisfies the assumptions in [82].

One natural question is how Foley’s reduction to private goods compares to the reduction in this

work. Equation (7.2) contains the convex program to find MNW through Foley’s reduction. We
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use s ∈ {0, 1} to denote each side of the issue. Equation (7.3) contains our reduction, which has a

nested utility function structure.

max
x∈[0,1](2×m)×n

( ∏
i∈N

ui(xi)
Bi
)1/B

s.t. x0
ij + x1

ij ≤ 1 ∀j ∈M, i ∈ N (7.2)

xsij = xskj ∀j ∈M, i, k ∈ N, s ∈ {0, 1}

max
v∈[0,1]m×n,x∈[0,1]ñ

( ∏
i∈N

ui(vi)
Bi
)1/B

s.t. vij ≤ xi(ikj) ∀j ∈M, i, k ∈ N, aij 6= akj (7.3)

xi(ikj) + xk(ikj) ≤ 1 ∀j ∈M, i, k ∈ N, aij 6= akj

Where ñ is 2(# of disagreement pairs across issues). Both programs can be solved in polynomial

time. However, Foley’s reduction does not obviously resemble a Fisher market due to the extra

equality constraints.

Comment 7.6.1. Program (7.2) does not transform into a Fisher market.

Proof. We write the Lagrangian of the Program (7.2), with the objective function written in log

form.

L(x, p, q) =
∑
i

Bi log(ui(xi))−
∑
i,j

pij(x
0
ij + x1

ij) +
∑
i,j

pij −
∑

i 6=k,j,s

qsikj(x
s
ij − xskj)

s.t. p ≥ 0, x ≥ 0, qsikj ≥ 0

This Lagrangian has per-person per-issue prices qsikj , pij for each side of each issue that cannot

be trivially turned into per-good prices with separate goods not having joint constraints. If one

considers each (i, j, s) tuple a good in the Fisher market, the two goods associated with the two

sides of each issue, x0
ij , x

1
ij are coupled through pij . Similarly, if pair (i, j) corresponds to a good,

goods across individuals xsij , x
s
kj are coupled through qsikj in a way that does not resemble supply

constraints. Merging the goods for each side, such that the good represents the probability on one

of the alternatives for each issue, would violate the non-decreasing constraint for utility functions.

Eliminating or combining either of these variables would amount to eliminating the corresponding

constraints. This coupling prevents a non-trivial mapping to the Fisher market case, which does not

have cross-good constraints but has per-good prices.

Our reduction fills this gap for Public Decision markets, showing that these prices can emerge

from a pure Fisher market with a modification of buyer utilities. In Program (7.3), there is a good

(i, k, j) for each (i, k) pair that disagrees on issue j, with i’s utility function only dependent on the
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amount i buys, xikj . This program thus yields goods with per-good pricing (on the Fisher market

goods) and no cross-goods constraints.

Proposition 7.6.1. Programs (7.2) and (7.3) are equivalent.

Proof. Both are equivalent to Program (7.1), which we repeat below:

max
z∈[0,1]2×m

( ∏
i∈N

ui(z)
Bi
)1/B

s.t. zj,0 + zj,1 ≤ 1 ∀j ∈M

Program (7.2) and (7.1) are immediately equivalent by combining variables. The equivalence of the

reduction (Theorem 7.4.1) establishes that Program (7.3) and PDM Program (7.1) have the same

solution.

7.7 General tâtonnement with asymptotic convergence in

Fisher markets

The prior work discussed in Section 7.5 established deterministic tâtonnements with polynomial

time convergence rates only for certain classes of utility functions, or for those that converge to

weak equilibria. However, we would like a general PDM converges for a wider class of utilities (in

particular, linear utilities). To achieve this, we sacrifice convergence in polynomial time (or any

characterization of convergence rates), which has been the primary focus on prior work such as [9,

48]22. In this section, we present a discrete stochastic gradient descent style tâtonnement for all

Fisher markets that result from PDMs with EG utility functions through the reduction. This can

then be lifted through Theorem 7.5.1 to yield a general PDM tâtonnement.

This section broadly follows the gradient descent framework for Fisher market tâtonnements

from [48], and the tâtonnement can be seen as an asymptotic discretization of their continuous time

tâtonnement. The tâtonnement operates on the dual of the EG convex program, which is a function

of the prices, and whose gradient is the excess demand (Lemma 7.7.1). We first establish that there

exists a bounded, convex region Π in which demands are bounded, with p∗ ∈ Π23. We finish the

proof with a standard SGD convergence technique, Lemma 7.7.3.

Let φ(p) be the objective of the dual of EG convex program. We use DR to denote demands as

the demands are in a Fisher market R(Γ) that is constructed from PDM Γ. The following lemma

from [48] establishes that φ(p) is itself a convex function whose gradient is the excess demand.

Lemma 7.7.1 ([48]). ∇φ(p) = 1−
∑
iD

R
i (pi)

22Those works take great care to show conditions analogous to strong convexity or Lipschitz continuity of the
gradient in the cases of interest.

23It is well known that the primal objective function is strictly concave, and so p∗, the optimal dual solution, is
unique.
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Note that φ(p) refers to the set of sub-gradients, and DR
i (pi) to the set of demands. Even when

demands at a given price are not unique (such as with linear utilities), each combination of demands

yields a sub-gradient of the dual objective function.

Before being able to apply a canonical gradient descent convergence theorem, we need to establish

that there exists a bounded, convex set which contains the optimal price p∗ in its interior. We

construct such a set next.

Lemma 7.7.2. ∃Π ⊂ Rm+ bounded and convex s.t. p∗ ∈ arg maxφ(p) ⊂ Π, and that ∀p ∈ Π,∀i,
DR
i (p) <∞.

Proof. We claim p∗ ∈ [0, 2]m in our setting. Let yi ∈ DR
i (p∗i ), and thus p∗jyij ≤ Bi = 1∀j. By Fisher

market equilibrium conditions, p∗j > 0 =⇒
∑
i yij = 1. In our setting, yij > 0 for at most two

distinct i. Thus, ∃i s.t. yij ≥ 1
2 =⇒ p∗j ≤ 2.

Let pmin be any value such that 0 < pmin < min{j:p∗j>0} p
∗
j . Then, let Π = [p1

min, 2]×· · ·×[pmmin, 2],

where pjmin =

0 p∗j = 0

pmin else
. Π as defined has the desired properties.

Throughout, we use [·]X denote the projection onto a set X . We will also use the following

stochastic gradient descent convergence lemma.

Lemma 7.7.3 ([105]). Consider a convex function f on a non-empty bounded closed convex set

X ⊂ Rm, and use [·]X to designate the projection operator. Starting with some x0 ∈ X , consider the

SGD update rule xt = [xt−1−ηt(∇f(xt)+zt+et)]X , where zt is a zero-mean random variable and et

is a constant. Let Et[·] be the conditional expectation given Ft, the σ-field generated by x0, x1, . . . , xt.

If

f(·) has a unique minimizer x∗ ∈ X

ηt > 0,
∑
t

ηt =∞,
∑
t

η2
t <∞

∃C1 ∈ R <∞ s.t. ‖∇f(x)‖2 ≤ C1,∀x ∈ X

∃C2 ∈ R <∞ s.t. Et[‖zt‖2] ≤ C2,∀ t

∃C3 ∈ R <∞ s.t. ‖et‖2 ≤ C3,∀ t∑
t

ηt‖et‖ <∞ w.p. 1

Then xt → x∗ w.p. 1 as t→∞.

We can now construct a stochastic tâtonnement for a Fisher Market R(Γ) that is constructed

from PDM Γ when agents have any EG utility function in the PDM, as H-nested leontief utility

functions remain EG utility functions.

Lemma 7.7.4. Suppose p∗ ∈ arg minφ(p). Then, ∃y = (y1 . . . yn) s.t. yi ∈ DR
i (p∗), (y, p∗) is a

ME.
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Proof. Follows directly from Part 2 of Lemma 5 in [48], that arg maxx≥0 L(x, p) ⊆ DR(p). The ME

(x∗, p∗) is such that x∗ ∈ arg maxx≥0 L(x, p∗) ⊆ DR(p∗).

Theorem 7.7.1. Let agents i in the PDM Γ have utilities ui ∈ H that are concave, continuous,

non-decreasing, non-constant, and homogeneous of degree 1. Then there exists a stochastic gradient

descent-style tâtonnement for which, as t → ∞, pt → p∗, where p∗ ∈ arg minφ(p), and ∃x s.t.

xi ∈ Di(p
∗) and (x,R←(p∗)) is a PME.

Proof. Construct a Fisher market R(Γ) through the reduction.

Let T be the following descent in the constructed market. Start with prices p0 ∈ Π, where Π as

defined in Lemma 7.7.2. Update prices using the rule pt+1 = [pt−ηt
(

1−
∑
i D̃

R
i (pti)

)
]Π, for ηt = 1

t ,

and D̃R
i (p) = yi,t + bi,t + zi,t, for some yi,t ∈ DR

i (pt). Assume zi,t a zero-mean random variable and

bi,t a constant that follow the conditions of Lemma 7.7.3.

By Lemma 7.4.1, the implied utility functions still yield Eisenberg-Gale markets and by Lemma 7.7.1,

∇φ(p) = 1−
∑
iD

R
i (p). By Lemma 7.7.2, ∃C <∞ s.t. ‖∇φ(p)‖ < C,∀p ∈ Π. Convergence to prices

p∗ ∈ arg minφ(p) follows from Lemma 7.7.3. By Lemma 7.7.4, ∃y, yi ∈ DR
i (p∗) s.t. (y, p∗) is a ME

in the Fisher market. Thus, T converges asymptotically to a ME.

By Theorem 7.5.1, T can be lifted to create a tâtonnement R←(T ) in the PDM that converges

asymptotically to a PME.

Note that Π is not known a priori. However, it can be approximated during the gradient descent

without affecting convergence: for example, if at any point demand goes to infinity, backtrack and

impose a minimum price. Then, if demand goes to 0 with a positive price, lower this minimum price.

Theorem 7.7.1 and Theorem 7.5.1 together create a tâtonnement with asymptotic convergence

for Public Decision Markets for general concave, continuous, non-constant, non-decreasing, and

homogeneous of degree 1 utility functions.

7.8 Conclusion

In this chapter, we studied adaptations of markets to the public decision-making setting. In Sec-

tion 7.3, we showed that issue pricing in the public decisions setting can yield very poor equilibria:

for linear utilities, the Nash welfare can be a factor of O(n) worse than optimal. This is in contrast

to private goods, where per-good pricing is the accepted standard, and yields optimal equilibria.

We showed in Section 7.4 that pairwise issue expansion reduces any public decisions market to an

equivalent Fisher market, how optimal equilibria can be constructed using this reduction. We used

pairwise issue expansion to lift various Fisher market results to the public decision-making context,

including tâtonnement, which we discussed in Section 7.5.

Most importantly, our reduction uncovers a powerful connection between the private goods and

public decision-making settings that we believe has many possible applications. For example, suppose

we had a mechanism for private goods which computes some desirable outcome other than maximum

Nash welfare (maybe it computes the allocation which maximizes the minimum utility, for example).
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If that algorithm works for nested H-Leontief utilities for private goods, we imagine that it could be

immediately lifted to work for H utilities in for public-decisions. More generally, it seems like more

or less any result that applies to H-Leontief utilities for private goods would apply for H utilities

for public decisions. We believe this merits more study.

7.9 Omitted definitions and proofs from Section 4

Section 7.9.1 contains the formal definitions of the pairwise pricing model. Section 7.9.2 contains

the formal analysis of R and R←, leading to Theorems 7.4.1 and 7.4.2.

7.9.1 Pairwise pricing

In the issue pricing model of Section 7.3, the price for an issue was the same for all agents, and the

amount of probability put on alternative a on issue j in the outcome (denoted zj,a) was the sum of

the agents’ purchases. Formally, Section 7.3 defined zj,a =
∑

k∈N : aij=a

yij where yij is the probability

that agent i purchased on issue j (yi is agent i’s private bundle).

The definition of zj,a will be different here. This section describes a model where agents may

have different prices for the same issue. This will allow us to enforce that in equilibrium, all agents

who agree on issue j will purchase the same amount of issue j. For every i ∈ N and j ∈ M where

agent i’s price for issue j is nonzero, at equilibrium24 we will have

zj,aij = yij

The key consequence is that each agent’s private and public bundles will be the same in equilibrium,

and so ui(yi) = ui(xi(z)). Thus each agent’s utility can be written as a function of only her private

bundle: this will enable the reduction to private goods.

We now formally describe the personalized pricing model. For prices p ∈ Rm×n≥0 , let pij be the

price for agent i for issue j, and let pi = (pi1...pim). Formally, a private bundle yi is affordable if

yi · pi =
∑
j∈M yijpij ≤ Bi. Because we will have ui(yi) = ui(xi) in equilibrium, we can define agent

i’s demand to be independent of other agents’ private bundles25:

Di(p) = arg max
yi∈Rm≥0

: yi·pi≤Bi
ui(yi)

A personalized-pricing market equilibrium (PME) (y, p) is a list of private bundles y and per-

sonalized prices p ∈ Rm×n≥0 where

1. Each agent receives a private bundle in her demand set: yi ∈ Di(pi).

24The outcome will not be well-defined for a list of private bundles not at equilibrium, since agents may have
incompatible demands. This will not be important; we mention it only for completeness.

25We assume that agents truthfully report their demands according to this definition: recall that we do not consider
strategic behavior.
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2. The market clears: there exists an outcome z = (z1...zm) ∈ [0, 1]m where for every issue j ∈M ,

all of the following hold:

(a) zj,0 + zj,1 = 1

(b) For all i ∈ N , yij ≤ zj,aij . If pij > 0, then yij = zj,aij .

The market clearing condition (Condition 2) is different than in traditional private goods markets.

Instead of the sum of the agent’s demands being equal to the supply, the condition here is that there

is a single outcome that is consistent with every agent’s demand. Roughly speaking, this means that

whenever two agents agree on an issue, they demand the same quantity of that issue, and whenever

two agents disagree, the sum of their demands equals the supply. This can be thought of as all

agents buying the “same” private bundle, modulo their preferred alternatives.

At equilibrium, z is treated as the outcome of the public decisions instance. However, z may not

be unique: if yij < zj,aij for some i, j, there may be multiple outcomes compatible with the list of

agent demands. The following proposition shows that all outcomes compatible with y are more or

less the same.

Proposition 7.9.1. Let (y, p) be a PME. Then for any outcome z satisfying the market clearing

condition, ui(z) = ui(yi) for all i ∈ N .

Proof. Fix some agent i ∈ N , and let y′i be the private bundle where y′ij = zj,aij for all j ∈M . For

every issue j where yij 6= zj,aij , we have pij = 0. Thus yi and y′i have the same cost. Since yi is in

agent i’s demand set, yi is affordable. Thus y′i is also affordable. Suppose ui(z) = ui(y
′
i) > ui(yi):

then yi would not be in agent i’s demand set, which is a contradiction.

Since each agent’s private and public bundles are the same at equilibrium in this model, we

mostly omit “private” and “public” and just use the term “bundle”. We reserve z for denoting the

overall outcome of the PDM, and just use yi to denote agent i’s bundle.

7.9.2 Formal analysis of pairwise issue expansion

We begin with Lemma 7.9.1, which states that as long as agents only buy their pairwise goods, the

cost of a bundle yi ∼ R(Γ) at prices p is the same as the cost of bundle R←(yi) ∼ Γ at prices R←(p).

The proof primary consists of arithmetic and substituting definitions.

Lemma 7.9.1. Given prices p ∼ R(Γ) and a bundle yi ∼ R(Γ),

1. R←(yi) ·R←(p)i ≤ yi · p

2. Suppose that (1) for any j ∈ M and k, k′ ∈ N\{i} where yi(kk′j) 6= 0, we have p(kk′j) = 0,

and (2) for any j ∈ M and k ∈ N where yi(ikj) 6= min
k∈N :
aij 6=akj

yi(ikj), we have p(ikj) = 0. Then

R←(yi) ·R←(p)i = yi · p.
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Proof. Suppose yi is a bundle in R(Γ). The cost of yi at prices p is

yi · p =
∑

`∈R(M)

yi`p` (by definition)

=
∑
j∈M

∑
k,k′∈N :
akj 6=ak′j

yi(kk′j)p(kk′j) (rewriting each good ` ∈ R(M) as a triple (i, k, j))

≥
∑
j∈M

∑
k∈N :
aij 6=akj

yi(ikj)p(ikj) (only including agent i’s pairwise goods in the sum)

≥
∑
j∈M

∑
k∈N :
aij 6=akj

p(ikj) min
k′∈N :
aij 6=ak′j

yi(ik′j) (replacing each yi(ikj) with min
k′∈N :
aij 6=ak′j

yi(ik′j))

=
∑
j∈M

∑
k∈N :
aij 6=akj

p(ikj)R←(yi)j (by definition)

=
∑
j∈M

R←(yi)j
∑
k∈N :
aij 6=akj

p(ikj) (moving R←(yi)j out of the inner sum)

=
∑
j∈M

R←(yi)jR←(p)ij (by definition)

= R←(yi) ·R←(p)i (by definition)

Furthermore, the first inequality holds with equality if for any j ∈ M and k, k′ ∈ N\{i} where

yi(kk′j) 6= 0, p(kk′j) = 0. Similarly, the second inequality holds with equality if for any j ∈ M

and k ∈ N where yi(ikj) 6= min
k∈N :
aij 6=akj

yi(ikj), p(ikj) = 0. Therefore under those two assumptions,

R←(yi) ·R←(p)i = yi · p.

Lemma 7.9.2 is a simple application of Lemma 7.9.1.

Lemma 7.9.2. For prices p ∼ R(Γ) and a bundle yi ∼ Γ, we have yi ·R←(p)i = R(yi) · p.

Proof. By definition of R(yi), we have (1) yi(kk′j) = 0 for all j ∈ M and k, k′ ∈ N\{i}, and (2)

yi(ikj) = min
k∈N :
aij 6=akj

yi(ikj) for all j ∈M and k ∈ N . Then by Lemma 7.9.1, yi ·R←(p)i = R(yi) · p.

Lemma 7.9.3 states that if a bundle yi ∼ R(Γ) is agent i’s demand set DR
i (p), then (1) yi contains

only agent i’s pairwise goods, and (2) for a fixed issue j, yi contains the same amount of each of her

pairwise goods. The proof is based on the informal argument given before: violating either (1) or

(2) wastes money that could be spend to increase her utility.

Lemma 7.9.3. Given prices p ∼ R(Γ), suppose a bundle yi ∼ R(Γ) is in DR
i (p). Then (1) for any

j ∈M and k, k′ ∈ N\{i} where yi(kk′j) 6= 0, we have p(kk′j) = 0, and (2) for any j ∈M and k ∈ N
where yi(ikj) 6= min

k∈N :
aij 6=akj

yi(ikj), we have p(ikj) = 0.
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Proof. First, suppose for sake of contradiction that there exists j ∈ M and k, k′ ∈ N\{i} where

p(kk′j) > 0 and yi(kk′j) > 0. Consider the bundle y′i ∼ R(Γ) which is identical to yi, except

that y′i(kk′j) = 0. Since R←(yi) = R←(y′i), we have uRi (yi) = uRi (y′i). But since pj > 0, the

yi · p− y′i · p = yi(kk′j)p(kk′j). Consider the bundle y′′i ∼ R(Γ) where for all ` ∈ R(M),

y′′i` = y′i` +
yi(kk′j)p(kk′j)∑

`′∈R(M) p`′

Then we have y′′i · p = y′i · p + yi(kk′j)p(kk′j) = yi · p. Since yi ∈ DR
i (p), yi is affordable at prices p.

Thus y′′i is affordable at prices p.

Finally, we show that uRi (y′′i ) > uRi (yi). We have y′′i` > y′i` for all ` ∈ R(M). Thus for all `,

there exists a constant α` > 1 where y′′i` = α`y
′
i`. Let α = min`∈R(M) α`. Then y′′i` ≥ αy′i` for all

` ∈ R(M). Because uRi is homogenous of degree 1 and monotone, we have uRi (y′′i`) ≥ α · uRi (y′i`) >

uRi (y′i`) = uRi (yi).

Thus we have uRi (y′′i`) > uRi (yi`) and y′′i · p = y′i · p. But then yi cannot be in agent i’s demand

set, which is a contradiction.

The second case is similar. Suppose that there exists j ∈ M and k ∈ N where p(ikj) > 0 and

yi(ikj) > min
k′∈N :
aij 6=ak′j

yi(ik′j). Define the bundle y′i ∼ R(Γ) to be identical to yi, except that yi(ikj) =

min
k′∈N :
aij 6=ak′j

yi(ik′j). Define the bundle y′′i ∼ R(Γ) by

y′′i` = y′i` +

(
yi(ikj) − min

k′∈N :
aij 6=ak′j

yi(ik′j)

)
p(ikj)

∑
`′∈R(M) p`′

Then uRi (y′′i ) > uRi (y′i) = uRi (yi), and y′′i · p = yi · p. Thus yi cannot be in agent i’s demand set,

which is a contradiction.

Lemma 7.9.4 is a straightforward combination of the previous two lemmas.

Lemma 7.9.4. Given prices p ∼ R(Γ), suppose a bundle yi ∼ R(Γ) is in DR
i (p). Then R←(yi) ·

R←(p)i = yi · p.

Proof. By Lemma 7.9.3, we have (1) for any j ∈ M and k, k′ ∈ N\{i} where yi(kk′j) 6= 0, we have

p(kk′j) = 0, and (2) for any j ∈ M and k ∈ N where yi(ikj) 6= min
k∈N :
aij 6=akj

yi(ikj), we have p(ikj) = 0.

Therefore by Lemma 7.9.1, we have R←(yi) ·R←(p)i = yi · p.

Lemma 7.9.5 states that yi is in agent i’s demand set in R(Γ) if and only if R←(yi) is in agent

i’s demand set in Γ. This will not only play an important role in the proof of Theorem 7.4.1, but

also later on in tâtonnement.

224



The majority of the proof of Lemma 7.9.5 is devoted to proving that

max
y′i∼Γ:

y′i·R←(p)i≤Bi

ui(y
′
i) = max

y′i∼R(Γ):

y′i·p≤Bi

uRi (y′i)

The intuitive argument for the above equality is that the utilities and costs of bundles are the

same in both Γ and R(Γ). Slightly more formally, for any bundle yi ∼ Γ, R(yi) ∼ R(Γ) has

the same utility (by definition) and the same cost (by Lemma 7.9.2). For any bundle yi ∼ R(Γ),

uRi (yi) = ui(R←(yi)) is also true by definition, but yi and R←(yi) do not necessarily have the same

cost. That is where Lemma 7.9.4 will be important.

Lemma 7.9.5. Given prices p ∼ R(Γ) and a bundle yi ∼ R(Γ), yi ∈ DR
i (p) if and only if R←(yi) ∈

Di(R←(p)).

Proof. Lemma 7.9.2 states that y′i · R←(p)i = R(y′i) · p for any bundle y′i ∼ Γ. This implies the

following set equivalence:

{y′i | y′i ∼ Γ and y′i ·R←(p)i ≤ Bi} = {y′i | y′i ∼ Γ and R(y′i) · p ≤ Bi}

Next, recall that for any bundle y′i ∼ Γ, R←(R(y′i)) = y′i, so

{y′i | y′i ∼ Γ and y′i ·R←(p)i ≤ Bi} = {R←(R(y′i)) | y′i ∼ Γ and R(y′i) · p ≤ Bi}

For every bundle y′i ∼ Γ, R(y′i) is a bundle in R(Γ). Therefore we can replace R(y′i) with y′i and get

{R←(R(y′i)) | y′i ∼ Γ and R(y′i) · p ≤ Bi} ⊆ {R←(y′i) | y′i ∼ R(Γ) and y′i · p ≤ Bi}

Note that the relationship is now subset instead of equality. This is because there may be some

y′i ∼ R(Γ) that does not equal R(y′′i ) for any y′′i ∼ Γ. Combining this subset relationship with the

previous equality gives us

{y′i | y′i ∼ Γ and y′i ·R←(p)i ≤ Bi} ⊆ {R←(y′i) | y′i ∼ R(Γ) and y′i · p ≤ Bi}

Since ui(R←(y′i)) = uRi (y′i) by definition, we have

{ui(y′i) | y′i ∼ Γ and y′i ·R←(p)i ≤ Bi} ⊆ {uRi (y′i) | y′i ∼ R(Γ) and y′i · p ≤ Bi}

Taking the max gives us

max
(
{ui(y′i) | y′i ∼ Γ and y′i ·R←(p)i ≤ Bi}

)
≤ max

(
{uRi (y′i) | y′i ∼ R(Γ) and y′i · p ≤ Bi}

)
which we can rewrite as

max
y′i∼Γ:

y′i·R←(p)i≤Bi

ui(y
′
i) ≤ max

y′i∼R(Γ):

y′i·p≤Bi

uRi (y′i)
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Consider an arbitrary y′′i ∈ DR
i (p): then

uRi (y′′i ) = max
y′i∼R(Γ):

y′i·p≤Bi

uRi (y′i)

and y′′i · p ≤ Bi. Then by Lemma 7.9.4, R←(y′′i ) · R←(p)i = y′′i · p ≤ Bi. Since R←(y′′i ) ∼ Γ and

R←(y′′i ) ·R←(p)i ≤ Bi, we have

max
y′i∼Γ:

y′i·R←(p)i≤Bi

ui(y
′
i) ≥ ui(R←(y′′i ))

By definition, uRi (y′′i ) = ui(R←(y′′i )), so

max
y′i∼R(Γ):

y′i·p≤Bi

uRi (y′i) = uRi (y′′i ) = ui(R←(y′′i )) ≤ max
y′i∼Γ:

y′i·R←(p)i≤Bi

ui(y
′
i) ≤ max

y′i∼R(Γ):

y′i·p≤Bi

uRi (y′i)

Therefore,

max
y′i∼Γ:

y′i·R←(p)i≤Bi

ui(y
′
i) = max

y′i∼R(Γ):

y′i·p≤Bi

uRi (y′i)

Finally, suppose yi ∈ DR
i (p): then yi · p ≤ Bi, and by Lemma 7.9.4 we have R←(yi) · R←(p)i =

yi · p ≤ Bi. Also,

ui(R←(yi)) = uRi (yi) = max
y′i∼R(Γ):

y′i·p≤Bi

uRi (y′i) = max
y′i∼Γ:

y′i·R←(p)i≤Bi

ui(y
′
i)

so R←(yi) ∈ Di(R←(p)). Suppose R←(yi) ∈ Di(R←(p)): then R←(yi) · R←(p)i ≤ Bi. Since

yi = R(R←(yi)), we have yi · p = R←(yi) ·R←(p)i ≤ Bi. Also,

uRi (yi) = ui(R←(yi)) = max
y′i∼Γ:

y′i·R←(p)i≤Bi

ui(y
′
i) = max

y′i∼R(Γ):

y′i·p≤Bi

uRi (y′i)

Therefore yi ∈ DR
i (p).

Recall that for any bundle yi ∼ Γ, R←(R(yi)) = yi. Thus by Lemma 7.9.5, R(yi) ∈ DR
i (p) if

and only if yi = R←(R(yi)) ∈ Di(p). This is expressed by Corollary 7.9.5.1, which will be useful in

Section 7.5 when considering tâtonnement processes in the PDM.

Corollary 7.9.5.1 (of Lemma 7.9.5). Given prices p ∼ R(Γ) and a bundle yi ∼ Γ, yi ∈ Di(R←(p)) if

and only if R(yi) ∈ DR
i (p).

Theorem 7.4.1. For an allocation y ∼ R(Γ) and prices p ∼ R(Γ), (y, p) is a ME of the market

R(Γ) if and only if (Rb←(y), Rp←(p)) is a PME of the PDM Γ.
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Proof. ( =⇒ ) Suppose (y, p) is a ME of the Fisher market R(Γ): then yi ∈ DR
i (p) for all i ∈ N ,

and
∑
i∈N

yi` = 1 or p` = 0 for all ` ∈ R(M). By Lemma 7.9.5, we have R←(yi) ∈ Di(R←(p)).

We define x = (x1...xm) ∈ [0, 1]m×2 as follows:

xj,0 = max
i∈N :aij=0

R←(yi)j (7.4)

xj,1 = 1− xj,0

for all j ∈M . We claim that for all i ∈ N and j ∈M , R←(yi)j ≤ xj,aij , and that R←(yi)j = xj,aij

if R←(p)ij > 0.

We first show that R←(yi)j ≤ xj,aij for all i, j. When aij = 0, this is true by definition, so

assume aij = 1. Since (y, p) is a ME of R(Γ), for any ` ∈ R(M), we have
∑
k′∈N yk′` ≤ 1. Thus for

any k ∈ N where aij 6= akj (i.e. akj = 0), we have
∑
k′∈N yk′(ikj) ≤ 1.

Also, recall that by definition, R←(yi)j = mink∈N :aij 6=akj yi(ikj). Thus R←(yi)j ≤ yi(ikj) for all

k. Similarly, R←(yk)j ≤ yk(ikj). Therefore

R←(yi)j +R←(yk)j ≤ yi(ikj) + yk(ikj) ≤
∑
k′∈N

yk′(ikj) ≤ 1 ∀k ∈ N : akj = 0 (7.5)

R←(yi)j + max
k∈N :akj=0

R←(yk)j ≤ 1 (7.6)

R←(yi)j ≤ 1− max
k∈N :akj=0

R←(yk)j = xj,1 (7.7)

Thus R←(yi)j ≤ xj,aij for all i ∈ N . It remains to show that R←(yi)j = xj,aij whenever R←(p)ij > 0.

Suppose for sake of contradiction there exists i ∈ N and j ∈ M where R←(yi)j < xj,aij and

R←(p)ij > 0. Since R←(yi)j = min
k∈N :aij 6=akj

yi(ikj), there must exist k ∈ N where aij 6= akj and

yi(ikj) < xj,aij . Since R←(p)ij =
∑

k′∈N :aij 6=ak′j
p(ik′j), there must exist k′ where p(ik′j) > 0.

If yi(ik′j) > yi(ikj), we have p(ik′j) = 0 by Lemma 7.9.3. Thus assume yi(ik′j) ≤ yi(ikj) < xj,aij .

We showed above that R←(yk′)j ≤ xj,ak′j = 1 − xj,aij : thus yk′(ik′j) ≤ 1 − xj,aij . Therefore

yi(ik′j) +yk′(ik′j) < xj,aij +1−xj,aij = 1. If there exists i′ 6∈ i, k′ where yi′(ik′j) > 0, then p(ik′j) = 0,

which is a contradiction. Therefore
∑
`∈R(M) yi` = yi(ik′j) + yk′(ik′j) < 1.

But then by the definition of a ME, we have p(ik′j) = 0, which is again a contradiction. Therefore

R←(yi)j = xj,aij whenever R←(p)ij > 0. This shows that (R←(y), R←(p)) is a PME of Γ.

( ⇐= ) Suppose (R←(y), R←(p)) is a PME of the PDM Γ. Then R←(yi) ∈ Di(R←(p)) for all

i ∈ N , so yi ∈ DR
i (p) by Lemma 7.9.5. Also, there exists x = (x1...xm) ∈ [0, 1]m×2 where for all

i ∈ N and j ∈M ,

1. xj,0 + xj,1 = 1

2. R←(yi)j ≤ xj,aij

3. R←(yi)j = xj,aij whenever R←(p)ij = 0.
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It remains to show that for all ` ∈ R(M), either
∑
i∈N yi` = 1 or p` = 0. Suppose for sake of

contradiction that there exists ` = (i, k, j) ∈ R(M) where
∑
k′∈N yk′(ikj) < 1 and p(ikj) > 0. If there

exists k′ 6∈ {i, k} where yk′(ikj) > 0, then p(ikj) = 0 by Lemma 7.9.3. Thus∑
k′∈N

yk′(ikj) = yi(ikj) + yk(ikj) < 1

Furthermore, if either yi(ikj) 6= R←(yi)j or yk(ikj) 6= R←(yk)j , we have p(ikj) = 0 again by

Lemma 7.9.3. Thus yi(ikj) = R←(yi)j and yk(ikj) = R←(yk)j , so

R←(yi)j +R←(yk)j < 1

Recall that R←(yi)j ≤ xj,aij and R←(yk)j ≤ xj,akj , and that xj,aij + xj,akj = 1 since aij 6= akj .

Thus in order for R←(yi)j + R←(yk)j < 1 to be true, either R←(yi)j < xj,aij or R←(yk)j < xj,akj .

By symmetry, suppose R←(yi)j < xj,aij without loss of generality. Then because (R←(y), R←(p))

is a PME, we have R←(p)ij = 0.

By definition, R←(p)ij =
∑

k′∈N :aij 6=ak′j
p(ik′j). Since p(ik′j) ≥ 0 for all i, k′, j, we have p(ik′j) for

all k′ ∈ N where aij 6= ak′j . But then p(ikj) = 0, which is a contradiction. Thus for all ` ∈ R(M),

either
∑
i∈N yi` = 1 or p` = 0. Therefore (y, p) is a ME of R(Γ).

Theorem 7.4.2. Let Ψ be a welfare function, let Γ be the public decisions instance (N,M) with

budgets B1...Bn, and let α ≥ 0. Then z is an α-approximation of Ψ in Γ if and only if R(z) is an

α-approximation of Ψ in R(Γ).

Proof. We first claim that R(x) is a valid allocation in R(Γ), meaning that
∑
i∈N R(xi)` ≤ 1 for

all ` ∈ R(M). By definition of R(xi), R(xi)(kk′j) = 0 whenever i 6∈ {k, k′}, and R(xi)(kk′j) = xij

whenever i ∈ {k, k′}. Therefore, for all ` ∈ R(M),∑
i∈N

R(xi)` =
∑

i,k,k′∈N

R(xi)(kk′j) = R(xi)(ikj) +R(xk)(ikj) = xij + xkj

By definition of R(M), the fact that good (i, k, j) exists implies that aij 6= akj . Since x is a

valid outcome of Γ, for all j ∈ M we must have xij + xkj ≤ 1 whenever aij 6= akj . Therefore∑
i∈N R(xi)` ≤ 1. Since this holds for all ` ∈ R(M), R(x) is a valid allocation in R(Γ).

By definition of R← and uRi , we have uRi (xi) = ui(R←(xi)). Since Ψ depends only on the agents’

utilities, we have Ψ(x′) = Ψ(R(x′)) for any outcome x′ ∼ Γ. Similarly, recall that ui(x
′
i) = uRi (R(x′i))

for any bundle x′i ∼ Γ, so Ψ(x′) = Ψ(R←(x′)) for any outcome x′ ∼ R(Γ).

Thus for every possible outcome of Γ, there is an outcome of R(Γ) which has the same value of

Ψ, and for every possible outcome of R(Γ), there is an outcome of Γ which has the same value of Ψ.

Therefore we have the numeral equality

max
x′∼Γ

Ψ(x′) = max
x′∼R(Γ)

Ψ(x′)
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Finally, because Ψ(x) = Ψ(R(x)), we have Ψ(x) ≥ α · max
x′∼Γ

Ψ(x′) if and only if Ψ(R(x)) ≥ α ·
max

x′∼R(Γ)
Ψ(x′). Therefore x is an α-approximation of Ψ in Γ if and only if R(x) is an α-approximation

of Ψ in R(Γ).

7.10 Other omitted proofs

7.10.1 Omitted proofs from Section 7.3

Theorem 7.3.1. For a PDM (N,M,B) with linear utilities given by weights wij ≥ 0, for every list

of private bundles y and list of prices p, (y, p) is an IME if and only (y, p) is a ME for the Fisher

market (N,M,B) with linear utilities given by the same weights.

Proof. Let Γ be the PDM (N,M,B) with linear utilities ui given by weights wij , and Γ̃ be the Fisher

market (N,M,B) with linear utilities ũi given by the same weights.

Let (y, p) be an IME of Γ: then yi ∈ Di(p, y−i) for all i. Let xi be agent i’s public bundle in y,

let y′ = (y−i, y
′
i) for an arbitrary private bundle y′i, and let x′i be agent i’s public bundle for private

bundles y′. Then we have

ui(y−i, yi) = max
y′i: y

′
i·p≤Bi

ui(y−i, y
′
i)∑

j∈M
wijxij = max

y′i: y
′
i·p≤Bi

∑
j∈M

wijx
′
ij

∑
j∈M

wij
∑
k∈N :
akj=aij

ykj = max
y′i: y

′
i·p≤Bi

(∑
j∈M

wijy
′
ij +

∑
j∈M

wij
∑

k∈N\{i}:
akj=aij

ykj

)

∑
j∈M

wijyij +
∑
j∈M

wij
∑

k∈N\{i}:
akj=aij

ykj = max
y′i: y

′
i·p≤Bi

(∑
j∈M

wijy
′
ij +

∑
j∈M

wij
∑

k∈N\{i}:
akj=aij

ykj

)

∑
j∈M

wijyij +
∑
j∈M

wij
∑

k∈N\{i}:
akj=aij

ykj = max
y′i: y

′
i·p≤Bi

(∑
j∈M

wijy
′
ij

)
+
∑
j∈M

wij
∑

k∈N\{i}:
akj=aij

ykj

∑
j∈M

wijyij = max
y′i: y

′
i·p≤Bi

∑
j∈M

wijy
′
ij

ũi(yi) = max
y′i: y

′
i·p≤Bi

ũi(y
′
i)

Also, the total price of yi is yi · p in both Γ and Γ̃. Let D̃i(p) be agent i’s demand set for prices

p in Γ̃: then by the above chain of equations, if yi ∈ Di(p, y−i) for any y−i, we have yi ∈ D̃i(p).

Furthermore, the exact same chain of equations in reverse order shows that if yi ∈ D̃i(p), then

yi ∈ Di(p, y−i) for all y−i.

Since yi ∈ D̃i(p), the allocation y in Γ̃ gives each agent a bundle in her demand set given prices

p. Also, because (y, p) is an IME of Γ, we have that
∑
i∈N yij ≤ 1, and

∑
i∈N yij = 1 whenever

pj > 0. Therefore (y, p) is a ME of Γ̃.
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Now let (y, p) be a ME of Γ̃. Since yi ∈ D̃i(p) implies yi ∈ Di(p, y−i), we have that y in Γ

gives each agent a bundle in her demand set. By the definition of ME, we have
∑
i∈N yij ≤ 1, and∑

i∈N yij = 1 whenever pj > 0. Therefore (y, p) is an IME of Γ.

Theorem 7.3.2. For any ε > 0, Φ(n, 1 + ε) with linear utilities has a unique equilibrium (y, p),

where
max
z′

NW (z′)

NW (y)
≥ n− 1

1 + ε

Proof. Let Φ′(n, 1+ ε) be the Fisher market with the same agents, goods, and weights as Φ(n, 1+ ε),

also with linear utilities. Let (y, p) be a ME of Φ′(n, 1 + ε). Then yi · p = Bi = 1 for all i, and so∑
j∈M pj = B = n.

We next observe for a Fisher market with linear utilities, any (private) bundle in an agent’s

demand set maximizes her “bang-per-buck” ratio: wij/pj . To see this, consider agent i moving δ

of her budget to a good that does not maximize her bang-per-buck: this would decrease her utility,

and so that bundle cannot be in her demand set.

Suppose for sake of contradiction that there exists ` where p` 6= 1. Since
∑
j∈M pj = n, there

must exist ` where p` < 1. Let ` = minj∈M pj . Since w`` > w`j for all j 6= `, only issue ` maximizes

agent `’s bang-per-buck. Thus there is a single bundle yi in her demand set, and it consists of her

spending her entire budget on issue `. But since p` < 1 = B`, agent ` purchases more of good ` than

exists in the supply, and so the market cannot clear. Thus any ME of Φ′(n, 1 + ε) must have pj = 1

for all j.

Now assume that pj = 1 for all j. Since for each agent i, wii = w > 1 = wij for all j 6= i, the only

bundle that maximizes agent i’s bang-per-buck consists of her spending her entire budget on issue

i. Thus the unique ME is (y, p) where yii = 1 for all i, and yij = 0 whenever i 6= j. Furthermore,

by Theorem 7.3.1, (y, p) is the unique IME of Φ(n, 1 + ε).

The Nash welfare of y in Φ(n, 1 + ε) is

NW (y) =
( ∏
i∈N

∑
j∈M

wijyij

)1/n

=
( ∏
i∈N

1 + ε
)1/n

= 1 + ε

Now consider the outcome z where zj,0 = 0 and zj,1 = 1 for all j ∈ M . Let xij be agent i’s public

bundle, as usual. Then

NW (z) =
( ∏
i∈N

∑
j∈M

wijxij

)1/n

=
( ∏
i∈N

∑
j∈M\{i}

1 · xij
)1/n

=
( ∏
i∈N

(n− 1)
)1/n

= n− 1

and therefore
max
z′

NW (z′)

NW (y)
≥ n− 1

1 + ε

We now present the proofs of Theorems 7.3.3 and 7.3.4, which state that issue-pricing equilibria

can be inefficient for Cobb-Douglas and CES utilities, respectively.
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We first prove a lemma motivated by the following concept. In Section 7.3.2, we described how for

linear utilities, the bundles in an agent’s demand set maximize her bang-per-buck, in both the public

and private settings. This is not true in general for other utilities, since goods are not independent.

However, the same concept still applies: agent i will not spend any money on issue j if there is

another issue ` where she has a higher marginal utility per dollar spent on issue `. This concept

will be made formal by examining
∂(ui(xi))

∂xij
, which is the partial derivative of agent i’s utility with

respect to xij . Although these derivatives may be complicated in general, they are well-behaved for

Cobb-Douglas and CES utilities with ρ ∈ (−∞, 0) ∪ (0, 1).

We will use this concept to show that for Cobb-Douglas utilities, xijpj = min`∈M xi`p` for any

issue j that agent i is spending any money on. For CES utilities with ρ ∈ (−∞, 0) ∪ (0, 1), we will

show that x1−ρ
ij pj = min`∈M x1−ρ

i` p` (note that 1 − ρ > 0 since ρ ∈ (−∞, 0) ∪ (0, 1)). Using these

two properties, the following lemma will imply that xij = 1/2 for all j, which allows us to compute

the Nash welfare.

Lemma 7.10.1. Let (y, p) be an IME of Φ(n, 1) and let xi be agent i’s public bundle as induced by

y. Suppose that there exists c > 0 such that for every issue j that agent i spends any money on,

xcijpj = min
`∈M

xci`p`. Then xij = 1/2 for all i and j.

Proof. The majority of the proof will be dedicated to showing that for every agent i, there must

exist an issue j where xcijpj ≤ 1/2c. Suppose for sake of contradiction that there exists an agent i

where xcijpj > 1/2c for every issue j.

We first show that there must exist an agent k and issue j where xckjpj < 1/2. Because (y, p)

is an IME, all agents exhaust their budgets, so
∑
j∈M pj =

∑
k∈N Bk = n. Because |M | = n here,

there must exist j ∈ M where pj ≤ 1. Since xcijpj > 1/2c, we have xij > 1/2. Let k be any agent

where akj 6= aij : then xkj < 1/2, and so xckjpj < 1/2c.

We know by definition of Φ(n, 1), agents i and k agree on all issues other than i and k: ai` = ak`

whenever ` 6∈ {i, k}. Thus for all issues ` 6∈ {i, k}, xck`p` > 1/2c > xckjpj . By assumption, agent k

only spends money on issues ` which minimize xck`p`. Thus agent k does not spend money on any

issues besides i and k (note that either j = i or j = k).

Therefore amount of money agent k spends in total is
∑
`∈M yk`p` = ykkpk + ykipi. Since agent

k exhausts her budget, we have ykkpk + ykipi = Bk = 1. Thus there must exist ` ∈ {k, i} where

yk`p` ≥ 1/2. Therefore xk`p` ≥ 1/2.

Since akk 6= aik and aki 6= aii, we have ak` 6= ai`. Because (y, p) is an IME, we have xi` = 1−xk`.
Also, since agent k spends money on issue `, we have xck`p` ≤ xckjpj < 1/2c by assumption. Therefore

xck`p` < 1/2c < xci`p`

xck`p` < (1− xk`)cp`
xck` < (1− xk`)c

xk` < (1− xk`)

xk` < 1/2
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Since agent k exhausts her budget, we have ykkpk + ykipi = Bk = 1, and so xkkpk +xkipi = 1. Thus

there must exist ` ∈ {i, k} where yk`p` ≥ 1/2. Because xck`p` < 1/2c, we have x1−c
k` /2c > xk`p` ≥ 1/2.

Therefore

x1−c
k`

2c
>

1

2

(1/2)1−c

2c
>

1

2

1 > 1

which is a contradiction. Therefore for every agent i, there exists an issue j where xcijpj ≤ 1/2c.

By assumption, if xcijpj > min
`∈M

xci`p`, then agent i spends no money on issue j. Since there

exists an issue j where xcijpj ≤ 1/2c, we have that agent i spends no money on any issue j where

xcijpj > 1/2c.

Suppose for sake of contradiction that an agent i and issue j exist where xcijpj > 1/2c: then some

agent k where akj = aij is spending money on issue j. But since akj = aij , we have xckjpk > 1/2c,

so agent k cannot be spending any money on issue j. Therefore for every agent i and every issue j,

xcijpj ≤ 1/2c.

Suppose for sake of contradiction that there exists an issue j where pj 6= 1. Since
∑
`∈M p` = n,

there must exist an issue ` where p` > 1. Let k be any other agent other than `: then ak` 6= a``.

Since xk` + x`` = 1, we have max(xk`, x``) ≥ 1/2. Therefore (max(xk`, x``))
cp` > 1/2c, which is a

contradiction. Therefore pj = 1 for all j.

Finally, suppose there exists an agent i and issue j where xij 6= 1/2, there must exist an agent

k where xkj > 1/2. Then xckjpj > 1/2c, which is again a contradiction. Therefore for every agent i

and issue j, xij = 1/2.

We are now ready to prove Theorems 7.3.3 and 7.3.4.

Theorem 7.3.3. For any IME (y, p) of Φ(n, 1) with Cobb-Douglas utilities,

max
z′

NW (z′)

NW (y)
≥ 2− 2/n

(n− 1)1/n

Proof. Let xi be agent i’s public bundle as induced by y. Recall that a Cobb-Douglas utility is given

by

ui(y) = ui(xi) =
( ∏
j∈M

x
wij
ij

)1/
∑
j∈M wij

which for Φ(n, 1), simplifies to

ui(xi) =
( ∏
j∈M

xij

)1/n
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Thus for all j, we have

1

pj

∂(ui(y))

∂xij
=
x

1
n−1
ij

pjn

( ∏
`∈M\{j}

xi`

)1/n

=
1

xijpjn

( ∏
`∈M

xi`

)1/n

=
1

xijpjn
ui(xi)

We are going to invoke Lemma 7.10.1 with c = 1. Suppose that there exists an agent i and issues

j, ` such that agent i is spending on issue j, but xijpj > xi`p`. Then

1

pj

∂(ui(y))

∂xij
<

1

p`

∂(ui(y))

∂xi`

Thus there exists some δ > 0 such that if agent i spent δ less on issue j and δ more on issue `,

agent i’s utility would increase. But xi is in agent i’s demand set, so it cannot be possible for

her to increase her utility while staying within her budget. This is a contradiction, so therefore

xijpj = min`∈M xi`p` for all i, j.

Therefore by Lemma 7.10.1, we have xij = 1/2 for all i and j. So the Nash welfare of y is

NW (y) =
( ∏
i∈N

( ∏
j∈M

xij

)1/n)1/n

=
( ∏
i∈N

( ∏
j∈M

1/2
)1/n)1/n

=
( ∏
i∈N

1/2
)1/n

= 1/2

Consider the outcome z′ where x′ii(z
′) = 1/n for all i, and x′ij(z

′) =
n− 1

n
whenever j 6= i. Then

NW (z′) =
( ∏
i∈N

( ∏
j∈M

x′ij

)1/n)1/n

=
( ∏
i∈N

(
1

n

(
n− 1

n

)n−1)1/n)1/n

=
(

1

n

(
n− 1

n

)n−1)1/n

=
( 1

n− 1

(n− 1

n

)n)1/n

=
1

(n− 1)1/n

n− 1

n
=

1− 1/n

(n− 1)1/n

Therefore
max
z′

NW (z′)

NW (y)
≥ 2− 2/n

(n− 1)1/n

Theorem 7.3.4. For any IME (y, p) of Φ(n, 1) with CES utilities for parameter ρ ∈ (−∞, 0)∪(0, 1),

max
z′

NW (z′)

NW (y)
≥ 2(1− 1/n)1/ρ

Proof. Let xi be agent i’s public bundle as induced by y. Recall that a CES utility is given by

ui(y) = ui(xi) =
( ∑
j∈M

wρijx
ρ
ij

)1/ρ

=
( ∑
j∈M

xρij

)1/ρ
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and so we have

1

pj

∂(ui(y))

∂xij
=

1

pj

1

ρ
ρxρ−1

ij

( ∑
j∈M

xρij

) 1
ρ−1

=
1

x1−ρ
ij pj

ui(xi)
ρ( 1
ρ−1)

This time, we are going to invoke Lemma 7.10.1 with c = 1−ρ (note that since ρ ∈ (−∞, 0)∪ (0, 1),

we have 1−ρ > 0). Suppose that there exists an agent i and issues j, ` such that agent i is spending

on issue j, but x1−ρ
ij pj > x1−ρ

i` p`. Then

1

pj

∂(ui(y))

∂xij
<

1

p`

∂(ui(y))

∂xi`

So again there exists some δ > 0 such that if agent i spent δ less on issue j and δ more on issue `,

agent i’s utility would increase. But xi is in agent i’s demand set, so this is a contradiction for the

same reason as in the previous proof. Thus xijpj = min`∈M xi`p` for all i, j.

Therefore, by Lemma 7.10.1, we have xij = 1/2 for all i and j, so the Nash welfare of y is

NW (y) =
( ∏
i∈N

( ∑
j∈M

xρij

)1/ρ)1/n

=
( ∏
i∈N

( ∑
j∈M

(1/2)ρ
)1/ρ)1/n

=
( ∏
i∈N

n1/ρ

2

)1/n

=
n1/ρ

2

Consider the outcome z′ where x′ii(z
′) = 0 for all i and x′ij(z

′) = 1 whenever j 6= i. Then

NW (z′) =
( ∏
i∈N

( ∑
j∈M

xρij

)1/ρ)1/n

=
( ∏
i∈N

( ∑
j∈M\{i}

1
)1/ρ)1/n

=
( ∏
i∈N

(n− 1)1/ρ
)1/n

= (n− 1)1/ρ

Therefore
max
z′

NW (z′)

NW (y)
≥ (n− 1)1/ρ

n1/ρ/2
= 2
(n− 1

n

)1/ρ

= 2(1− 1/n)1/ρ

7.10.2 Omitted proofs from Section 7.5

Theorem 7.5.1. Consider a Fisher market tâtonnement T . Suppose T converges to a δ-equilibrium

for H-nested leontief utilities in O(κ(m,n, δ)) time steps, where n is the number of agents and

m the number of goods. Then R←(T ) converges to a 3δ-PME for the PDM with H utilities in

O(κ(n2m,n, δ)).

Proof. By the reduction defined in Section 7.4, the hidden private market has O(n2m) goods (1 copy

of each good for each pair of agents who disagree on the issue) and n agents.

We next show the tâtonnement T is being run correctly, i.e., the sequence of prices (p0, p1, p2...),

alongside some demands (yti ∈ DR
i (pt)) converges to a δ-equilibrium. This is not trivial since T is run

with a detour through the PDM. By Corollary 7.9.5.1, given prices p ∼ R(Γ) and a bundle yi ∼ Γ,

yi ∈ Di(R←(p)) ⇐⇒ R(yi) ∈ DR
i (p). Thus at each step, pt+1 is being calculated by gT based
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on valid demands in DR
i (pt), so the sequence of prices (p0, p1, p2...) converges to a δ-equilibrium.

Then, by supposition, there exist demands y ∼ R(Γ) at time T such that (y, pT ) ∼ R(Γ) form a

δ-equilibrium in the hidden Fisher market, for T = O(κ(n2m,n, δ)).

Recall Theorem 7.4.1: (y, p) is a Fisher market equilibrium if and only if (R←(y), R←(p)) is a

PME. The rest of the proof involves showing that Theorem 7.4.1 holds for approximate equilibria

as well, as defined. Recall that R←(yi)j = min
k∈N :
aij 6=akj

yi(ikj) ∀j ∈ M , and R←(p)ij =
∑
k∈N :
aij 6=akj

p(ikj)

∀i ∈ N, j ∈M . We claim (R←(y), R←(pt)) forms a 3δ-PME:

1. yi ∈ DR
i (pt) =⇒ R←(yi) ∈ Di(R←(pt)). (Lemma 7.9.5)

2. We define z = (z1...zm) ∈ [0, 1]m×2 as follows, analogously to Equation (7.4) in the proof of

Theorem 7.4.126:

zj,0 = max
i∈N :aij=0

R←(yi)j

zj,1 = max(1− zj,0, 0)

Then, ∀j ∈M ,

(a) zj,0 + zj,1 ≤ 1 + δ follows from the definition and from y part of a δ-equilibrium of a

Fisher market.

(b) For all i ∈ N , R←(yi)j ≤ zj,aij + δ follows from Equations (7.5)-(7.7), with 1 replaced

with 1 + δ and the = in line (7.7) replaced with ≤. Finally,

R←(p)ij > nδ =⇒ ∃k̃ s.t. p(ikj) > δ

=⇒ yi(ik̃j) + yk̃(ik̃j) > 1− δ (Condition 2 of Fisher δ-equilibrium)

By Lemma 7.9.3, p(ik̃j) > 0 =⇒ yi(ik̃j) = min
k∈N :
aij 6=ak̃j

yi(ik̃j) = R←(yi)j , and yk̃(ik̃j) =

R←(yk̃)j . Then

R←(yi)j > 1−R←(yk̃)j − δ

> 1− zj,ak̃j − 2δ (First part of Condition (b)

> zj,aij − 3δ definition of zj,aij )

Thus, R←(p)ij > nδ =⇒ R←(yi)j > zj,aij − 3δ

26In the proof of Theorem 7.4.1, the definition of zj,1 was simply 1−zj,0. It is necessary to use max(1−zj,0, 0) here
instead: because this is an approximate equilibrium, it is possible that zj,0 > 1, which would make 1− zj,0 negative.
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Chapter 8

A new fairness axiom for public

decision-making: equality of power

Ronald Dworkin’s equality of resources [71], and the closely related concept of envy-freeness, are two

of the fundamental axiomatic ideas behind fair allocation of private goods. The appropriate analog

to these concepts in a public decision-making environment is unclear, since all agents consume the

same “bundle” of resources (though they may have different utilities for this bundle). Drawing

inspiration from equality of resources and the Dworkin quote below, we propose that equality in

public decision-making should allow each agent to cause equal cost to the rest of society, which we

model as equal externality. We term this equality of power. The first challenge here is that the

cost to the rest of society must be measured somehow, and it is generally impossible to elicit the

scale of individual utilities (in the absence of monetary payments). Again drawing inspiration from

foundational literature for private goods economies, we normalize each agent’s utility so that every

agent’s marginal utility for additional power is the same. We show that for quadratic utilities, in

the large market limit, there always exists an outcome that simultaneously satisfies equal power,

equal marginal utility for additional power, and utilitarian welfare maximization with respect to the

normalized utilities.

“
Equality of resources supposes that the resources devoted to each person’s life

should be equal. That goal needs a metric. The auction proposes what the envy

test in fact assumes, that the true measure of the social resources devoted to the

life of one person is fixed by asking how important, in fact, that resource is for

others. It insists that the cost, measured in that way, figure in each person’s

sense of what is rightly his and in each person’s judgment of what life he should

lead, given that command of justice. ”
Ronald Dworkin, What is Equality? Part II: Equality of Resources, 1981
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8.1 Introduction

In settings where monetary payments are not allowed, it is generally impossible to elicit the absolute

scale of agents’ utilities. This makes most welfare objectives 1 difficult to maximize. Instead, it is

common to focus on some notion of equality or fairness. In the context of pure private goods

economies, this is commonly represented, in both analytic philosophy and economics, by the closely

related ideas of the envy-freeness [85], competitive equilibrium from equal incomes [169] and equality

of resources [71]. There has been a recent surge of interest in these topics – and more generally,

axiomatic fair division of resources – in the computational economics community as well.

It is not immediately clear how to adapt these concepts to the public decision-making setting. For

example, envy-freeness is not meaningful in such an economy, since all agents “consume” the same

outcome; they simply receive different utility from that outcome. In this chapter we propose and

analyze a potential solution in a continuous public decision-making environment (i.e., an outcome

is a point in Rm, where each of the m dimensions represents a public issue) that we call equality of

power.

The idea at the foundation of equality of power is that each individual’s opinion should be

given equal weight. This is widely considered by political theorists to be the defining feature of

democracy [55] if not of justice more generally [2, 4, 163]. As Dahl puts it, “The moral judgement

that all human beings are of intrinsically equal worth...(requires) that the good or interests of each

person must be given equal consideration.” Despite this progress on the political theory front, no

version of the equal power concept has been formalized technically. How do we formally define

“equal weight” of opinions? In this chapter, we propose a formal definition of equality of power,

and show that for quadratic utility functions2 and a large number of agents3, there always exists an

outcome satisfying this definition.

8.1.1 Our contribution

Ronald Dworkin’s seminal work in private goods economies suggests that each agent should be

allowed to impose equal cost on the rest of society [71]. We model this as externality. The externality

of an agent is the decrease in welfare (we focus on utilitarian welfare in this chapter) for everyone

else caused by the existence of that agent. That is, consider the outcome that would be chosen in

the absence of that agent, versus the outcome chosen when that agent is included: the externality

is the difference in utilitarian welfare for the rest of the agents between those two outcomes. We

define an agent’s power to be her externality, and so equal power requires all agents to have the

same externality.

However, we cannot define utilitarian welfare in the standard sense, because we do not know the

scale of the individual utilities. To define a common scale, we follow the spirit of Dworkin [71] and

measure utilities by a metric where the marginal value of additional power for every agent is equal.

1Indeed, this applies to any CES welfare function other than Nash welfare: see Section 1.5.
2See Section 8.1.1 for a definition.
3Specifically, we show that for any finite number of agents, we achieve an approximate version of this equal power

outcome, and the approximation error goes to 0 as the number of agents goes to infinity.
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This is tightly analogous to the definition of equality of resources in terms of equal units of an artificial

auction currency, which is exactly the concept of competitive equilibrium from incomes concept from

Varian [169]. For additional intuition, imagine that the social planner has a finite amount of power to

allocate. In order to maximize utilitarian welfare, the marginal value of additional power should be

the same for each agent: otherwise, moving power from agents with lower marginal value to agents

with higher marginal value would increase the utilitarian welfare. We emphasize that the above

discussion is not a technical statement, nor is it representative of our actual mathematical model;

we include it solely for intuition behind choosing a common scale which equalizes the marginal value

of additional power. That said, our choice of common scale is not without drawback, and we think

it would be interesting for future work to consider other ways of defining a common utility scale.

Informal statement of results

Our full mathematical model is given in Section 8.2, but we give an informal description here. We

assume agents have quadratic utilities: each agent i has an ideal point yi ∈ Rm, along with a weight

wij for each issue j. Agent i’s utility for an outcome x ∈ R is defined as

ui(x) = −
m∑
j=1

wij(yij − xj)2

where yij and xj are the jth coordinates of yi and x, respectively. Note that ui(x) is maximized at

x = yi.

To define “marginal value for additional power”, we use the following elicitation scheme. Consider

an outcome x for the public decision-making problem. We ask each agent to move the outcome

towards her ideal point, under the constraint that the externality she imposes on the rest of society

is at most some constant γ. When γ is uniform across all agents, this satisfies equality of power.

Our goal, then, is the following. We desire a scaling of utilities c and a public decision-making

outcome x4 such that all of the following hold:

1. Each agent has equal power. This is achieved by having γ be uniform across agents.

2. Each agent has equal marginal utility for additional power with respect to the elicitation

scheme described above (allowing each agent to move the outcome towards their ideal point).

3. The net movement in each direction in the above elicitation scheme is 0.

4. The outcome x maximizes utilitarian welfare with respect to c.

For quadratic utilities, we are able to prove existence of such an x and c in the limit as the

number of agents approaches infinity. This leads to Theorem 8.4.2, whose formal statement comes

later. Here δij(x) ∈ R represents the amount agent i chooses to move from the current point on

issue j. We will often simply denote this by δij , and denote the desired shift vector of agent i by δi.

4This scaling, which we denote c, will be a vector assigning a scaling factor to each agent. The outcome x will be
a vector in Rm, where m is the number of issues.
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Note that we do not need to explicitly require that all agents have equal power, as this is ensured

by the elicitation scheme (as long as γ is uniform).

Theorem 8.4.2 (Informal). When agent utilities are quadratic, there exists an outcome x and a

scaling of agent utilities c such that as the number of agents goes to infinity, all of the following

hold:

1. The net movement along each issue (i.e.,
∑
i δij(x)) is 0.

2. Every agent has the same marginal utility for additional power.

3. The outcome x maximizes utilitarian welfare with respect to c.

The technical statement of the theorem can be found in Section 8.4. Our proof is quite technically

involved. Along with some standard (though involved) Lagrangian duality techniques, we use a fixed

point argument whereby we show that a particular infinite-dimensional function admits “almost-

fixed” points, i.e., points z where z and f(z) are arbitrarily close (we will end up choosing our

scaling c to be an almost-fixed point of this particular function). Our primary technical contribution

is a novel technique for proving existence of approximate fixed points; see Section 8.4.1 for a more

in-depth discussion.

Dependence of marginal utility and utilitarian welfare on the utility scaling

Both the marginal utilities and the utilitarian welfare are computed with respect to the utility scale

c. The reader may be worried that this makes Theorem 8.4.2 circular, but it is important to recognize

three things. First, the scaling c is not a free parameter: it is tied down by our requirement that the

marginal value for additional power be equal. Second, as mentioned above, this is strongly inspired

by the definition of equality of resources in terms of equal amounts of an artificial currency (see

Varian [169]).

Third, and most importantly, we argue that it is not meaningful to ask for equal marginal utilities

or welfare maximization with respect to the “true” utilities. This is because, in our model, “true”

utilities do not really exist: it is not meaningful for ask for the absolute scale of an agent’s utility

(since there are no monetary payments). The model is not that we are given agents’ true utilities

and we are scaling them, the model is that we are defining a scale of agents’ utilities, since some

scale is needed in order to maximize utilitarian welfare. Inspired by [71], we are choosing a scale

that equalizes the marginal utilities.

For some intuition, in the one dimensional case, the outcome specified by Theorem 8.4.2 turns out

to be the median of the agents’ ideal points (see Section 8.3). Furthermore, we argue in Section 8.10

that our solution concept is not trivial, by showing that an “obvious” choice for c (specifically, giving

each agent the same scaling factor ci) does not work.

Finally, we briefly discuss incentives and computation. Our query to agents – to provide a

desired shift from the current point, under the equal power constraint – is an elicitation method,

not a mechanism. Consequently, our result should be thought of only as an existence result. We do

not consider mechanism design in a formal sense in this chapter, and leave that for future work. We
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are optimistic about the possibility of an iterative procedure for computing x and c, where on each

step, each agent provides a δi(x), and we use δ1 . . . δn to compute the next iterate.

8.1.2 Connections to quadratic voting

It will turn out that our equal power constraint will reduce to a simple quadratic constraint of the

form
∑
j qjδ

2
ij ≤ γ, where each qj is a positive constant and each j is an issue. Quadratic voting

is an increasingly promising voting scheme, both in theory [14, 13, 49, 102, 115, 116, 146, 174] and

practice [89, 147, 155]. The fact that our equal power outcome can be implemented with (weighted)

quadratic voting leads to a host of promising directions for future work.

In particular, we are optimistic about the possibility of an iterative protocol for computing our

desired outcome (x∗, c). As suggested above, consider an iterative algorithm where on each step,

we ask each agent for their desired shift δi(x) from the current point x, and use those shifts to

compute the next iterate. This algorithm was first studied by Hylland and Zeckhauser in 1979 [102],

although instead of the externality constraint (which reduces to
∑
j qjδ

2
ij ≤ γ), they subjected each

agent to the dimension-symmetric quadratic voting constraint of
∑
j δ

2
ij ≤ γ5. They show that their

procedure converges to a Pareto optimum.

However, we desire something stronger than just a Pareto optimum. Intuitively, by using a

dimension-symmetric constraint, their algorithm ignores the fact that some issues are more important

to the population than others. The more the rest of society cares about an issue, the more difficult it

should be for an individual to affect the outcome on that issue. This is what Dworkin’s quote from

the beginning of our work captures, and what inspires our equal externality constraint. As discussed

above, our equal externality constraint will reduce to a constraint of the form
∑
j qjδ

2
ij ≤ γ. Each

qj should be interpreted as the aggregate weight society places on issue j.

The distinction between these two constraints is not simply technical. Since each issue is unitless

in this model, it not clear what the “right” description of the issue space is, i.e., the right scale

for each issue6. Our equal externality constraint will be invariant to such rescaling, as intuitively

should be the case: if some issue j is rescaled, qj will simply rescale accordingly. This means

that regardless of the representation of the issue space, the outcome described by Theorem 8.4.2

will be the same. However, Hylland and Zeckhauser’s algorithm dimension-symmetric algorithm is

extremely vulnerable to this: their outcome will depend dramatically on the precise description of

the decision space.

For future work, we are interested in the variant of their algorithm where their dimension-

symmetric constraint is replaced with our equal power constraint. This leads to another complica-

tion: the right scale for each issue (i.e., qj) is not known a priori. However, we believe that the

right scaling can be discovered as the algorithm progresses based on agents’ desired shifts. This is

similar to how iterative algorithms for computing private goods market equilibria7 slowly discover

the right prices based on agent demands. All in all, we conjecture that this will lead to an iterative

algorithm for public decision-making that both maximizes utilitarian welfare, and is consistent with

5The dimension-symmetric version of this algorithm has also been studied in [14, 13, 49, 89].
6Note that rescaling of the issue space is independent of our scaling c of the agent utility functions.
7Such algorithms are often known as tâtonnements.
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the spirit of equality of resources and envy-freeness studied by economics and philosophy giants such

as Ronald Dworkin, Hal Varian, and many more.

Further connections to quadratic voting and second order methods

For the expert reader, we include a brief discussion of some more technical aspects of these con-

nections. Going back to Dworkin [71], he suggests the use of an auction based on equal initial

endowments; while he is not explicit about the auction theory involved, he seems to appeal to the

idea of a Walrasian auction to which many auction designs converge in large replications of private

goods economies with a fixed number of goods [54, 154]. However, the structure of power and

quadratic voting is fundamentally different than the linear pricing of a Walrasian auction. For a

large population, each agent is only able to suggest a very small shift δi from the current point. In

particular, the second and higher derivatives of her utility function with respect to δi vanish as the

number of agents goes to infinity. In order to capture the remaining first derivative, the “pricing”

of the δi (i.e., the externality constraint on δi) should therefore be a quadratic form rather than a

linear function, so that the first derivatives of the constraint are linear.

8.1.3 Other related work

There has been significant recent progress on the theory of public decision-making, some of which

with close ties to our work, and some of which using very different approaches. An iterative algorithm

which elicits a desired shift from each agent on each step has been studied in [14, 13, 49, 89] and

shown to converge under certain assumptions. Furthermore, most of this work does focus specifically

on quadratic constraints on the desired shifts. However, none of this work addresses the “weighting”

or “rescaling” of dimensions that is crucial to our work (and handled by the qj constants, as discussed

above). For example, [89] focuses on the case where each agent cares about all of the dimensions

the same amount.

One can think of the equal power constraint as a pricing mechanism, in the sense that the amount

of externality caused (which is equal to
∑
j qjδ

2
ij) is the “price”, and each agent has γ units of power

to spend. One famous result regarding pricing for public decision-making is that when arbitrary

personalized prices are allowed (i.e., the central authority can give agents different prices for the

same issue with no restrictions), any Pareto optimal point can be a market equilibrium [82]. (This

was also discussed in Chapter 7). Instead of using personalized prices, we subject each agent to

exactly the same equal power constraint. In this way, our work is arguably more consistent with the

spirit of equality of resources.

We briefly mention several non-market approaches. Storable Votes [41] considers a repeated

voting context, and permits agents to store their votes for future meetings. In [52], the authors

adapt traditional private goods fairness axioms (such as a proportionality) to the public decision-

making context for the case where only a discrete set of outcomes are allowed for each issue. The

discrete public decision-making problem is also studied by [76], which considers approximate versions

of the core, since the (exact) core is not guaranteed to exist in the discrete version of the problem.
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The chapter proceeds as follows. Section 8.2 presents the formal model. Section 8.3 considers

the one-dimensional case8; this serves as a “warm-up” for the main proof. Since the proof of our

main result (Theorem 8.4.2) is quite involved, we use Section 8.4 to set up the main result and

provide a detailed roadmap of the proof. We then move on to the formal proof. Section 8.5 contains

the fixed point argument that we use to identify our desired outcome x and scaling c. Section 8.6

provides some additional setup before embarking on the rest of the proof. Section 8.7 proves several

properties that will be important throughout the proof, such a technical version of the statement

“each agent is a small fraction of a large population”. Section 8.8 characterizes each agent’s desired

shift δi, and show that under the choice of x and c from Section 8.5, (almost all) the agents have

(almost) the same marginal value for additional power. Section 8.9 handles the last requirement of

Theorem 8.4.2, which is that
∑
j δij(x) is (almost) 0 for each issue j. Finally, Section 8.10 shows

that an “obvious” choice of c (specifically, giving every agent the same scaling factor) is not sufficient

for our purposes; this section is solely for intuition.

8.2 Model

As in all chapters of the thesis, we use the same basic resource allocation model: we have a set of n

agents with preferences over m resources. In this case, each resource represents a public issue. We

assume that an outcome for a particular issue is a scalar in R, so an outcome for the overall problem

is a vector in Rm. A group of agents need to choose an outcome for this decision-making problem.

We assume that each agent is drawn i.i.d. from an integrable probability distribution p : N → R≥0

over possible agent types, where N is the set of agent types. We assume that the distribution is

not concentrated too strongly anywhere: specifically, we assume that there exists pmax > 0 such

that p(i) ≤ pmax for all i. We will use “agents” and “agent types” interchangeably. Since we are

holding m fixed and taking n to infinity, we will think of m as a constant (in that we suppress it in

asymptotic notation).

Each agent type is specified by an ideal outcome yi ∈ Rm and a weight vector wi ∈ Rm. The

weight vector represents how much the agent cares about different issues. Let yij ∈ R and wij ∈ R≥0

denote agent i’s ideal outcome and weight for issue j, respectively. Then agent i’s utility for an

arbitrary point x ∈ Rm is

ui(x) = −ci
∑
j∈M

wij(xj − yij)2

where ci ∈ R>0 is the scaling of agent i’s utility that we choose. Note that agent i’s utility is

maximized at x = yi.

Recall that χ denotes the set of feasible outcomes, so in this model, χ ⊂ Rm. We assume in this

chapter that χ is bounded and convex. Define dmax by

dmax = sup
a,b∈χ

||a− b||2

8Recall that our desired outcome turns out to be the median of the agents’ ideal points in this case.
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where ||a− b||2 =
√∑

j∈M (aj − bj)2 is the L2 norm.

We also assume all agents’ weights are bounded above and below. Specifically, we assume there

exists wmin, wmax > 0 such that wmin ≤ wij ≤ wmax for all i, j9. The assumptions of boundedness

of χ and boundedness of wij for all i, j together imply that the set N is bounded.

Equality of power

Let n be the number of agents sampled from p, and let Ns be the random variable representing this

set of sampled agents. Rather than focusing on the welfare of the actual set of agents sampled, we

use the expected utilitarian welfare with respect to the distribution p. However, since the agents are

drawn i.i.d., the law of large numbers implies that the two coincide in the limit as n→∞ anyway.

Specifically, for x ∈ χ, the expected utilitarian welfare U(x) (which depends on the chosen ci’s) is

defined by

U(x) = ENs∼p

[∑
i∈Ns

ui(x)

]
= n

∫
i∈N

p(i)ui(x) di

For our equal power (i.e., equal externality) constraint, we define externality with respect to the

expected utilitarian welfare U , not with respect to the welfare of the actual sampled agents Ns.

Formally, given a current point x ∈ χ, we define the externality of a desired shift δ ∈ Rm to be

U(x)−U(x+ δ)10. Thus given a current point x and a small power constant γ > 0, we present each

agent i with the following convex program:

max
δ∈Rm

ui(x+ δ) (8.1)

s.t. U(x)− U(x+ δ) ≤ γ

Let δi(x) ∈ Rm be the optimal solution to Program 8.1 starting from point x ∈ Rm, and let λi(x) ∈ R
be the value of the Lagrange multiplier in the optimal solution. These variables refer only to the

optimal solution of agent i’s copy of Program 8.1, not any sort of global optimal solution. Also note

that this program implicitly depends on the scaling factors c (through U).

For a convex program with a differential objective function (such as Program 8.1), the Lagrange

multiplier represents how much we could improve the objective value if the constraint were relaxed11.

In our case, the objective function here is agent i’s utility for outcome x + δ, and the constraint is

enforcing that the power used by agent i is at most γ. Thus the Lagrange multiplier λi(x) is exactly

agent i’s marginal value for additional power, and this is what we wish to equalize across agents.

9This is really only one assumption, actually: ci will be invariant to wi in the sense that if agent i doubles wi, ci
will halve. This means that only the relative weights matter anyway, so we are essentially assuming that the ratio of
each agent’s maximum weight dividing by minimum weight is bounded above, i.e., wi is “well-conditioned”.

10The careful reader may notice that externality is usually defined as the impact on the welfare of everyone else,
excluding the agent in question. However, since we assume agents to be drawn i.i.d., this distinction is not important.

11See Chapter 5 of [23] for an introduction to this type of perturbation analysis.
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Our solution concept

Our solution concept – an equal-power equal-λ ε-equilibrium – asks us to chose an outcome x ∈ Rm

and agent scaling factors c ∈ RN>0 (along with a power constant γ and a particular Lagrange

multiplier λ) that satisfies three requirements. First, the expected net movement (the sum of δi(x)’s)

from the current point is smaller than ε. We use the L2 norm to express the size of
∑
i δi(x). The

second requirement is that all agents except an ε fraction have the same value of λi(x), up to an

ε error. Finally, the selected outcome x ∈ Rm must maximize welfare with respect to the chosen

agent scaling factors c ∈ RN>0. Since N is a (continuous) distribution over agent types, c will be an

infinite-dimensional vector.

Definition 8.2.1. An equal-power equal-λ ε-equilibrium is a outcome x ∈ Rm, agent scaling factors

c ∈ RN>0, power constant γ, and marginal utility λ > 0 such that

1. ENs∼p
[
||
∑
i∈Ns δi(x)||2

]
< ε.

2. The expected number of agents i with (1− ε)λ ≤ λi(x) ≤ λ is at least (1− ε)n.

3. The outcome x maximizes welfare with respect to c, i.e., x ∈ arg maxx′ U(x′).

We will usually leave x implicit and just write δi (which is a vector), δij (which is a scalar), and

λi (which is a scalar). Note that we are only asking for ||
∑
i∈Ns δi||2 to be small in expectation,

but the law of large numbers ensures that the realized value will converge to the expectation with

probability 1 as |Ns| → ∞.

Our goal will be to show that for any ε > 0, there exists a large enough n (number of agents)

such that an equal-power equal-λ ε-equilibrium exists (for some choice of λ). Specifically, we will

choose a fixed x and c based on the underlying distribution p, agnostic to the set of agents that are

actually sampled. We then show that the approximation error goes to 0 as n→∞.

In the next section, we show that in the one-dimensional case, our desired outcome is the median

of the agents’ ideal points.

8.3 Warm-up: one dimension

We view the one-dimensional case as a warm-up in the sense that the result of this section (Theo-

rem 8.3.1) will be subsumed by our result for the m-dimensional case (Theorem 8.4.2). Although

the proof of Theorem 8.4.2 is much more technically involved, the general flow of the proof for the

one-dimensional case is similar, so we find it instructive to present first. The main difference is that

for the m-dimensional case, the equilibrium point is identified as an approximate fixed point of a

particular (somewhat complicated) function. In contrast, for the one-dimensional case, we are able

to “guess” that the equilibrium point should be the median. There are several additional small dif-

ferences, such as the specific bound on λi. If the reader is confident and wishes to skip this warm-up,

we encourage them to proceed directly to Section 8.4.

Since we are working with a single dimension, we have wi, yi ∈ R, and agent i’s utility function

is ui(x) = −ciwi(x− yi)2. Define x to be the median of the agents’ ideal points. Specifically, choose
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x ∈ R such that ∫
i∈N

p(i) sgn(x− yi) di = 0

That is, the probability of sampling an agent i with yi ≤ x is equal to the probability of sampling

an agent i with yi ≥ x. Since p is continuous, such an x must exist (if there are multiple, choose

one arbitrarily).

For each i ∈ N with yi 6= x, we define ci to be inversely proportional to her weight wi and the

distance between yi and x. Agents with yi = x will turn out to not matter (because this set has

measure 0), so we set ci = c for those agents, where c can be any constant.

ci =


1

wi|x− yi|
if yi 6= x

c if yi = x

This definition will imply that the outcome is scale-invariant: doubling wi results in halving ci,

which leads to the same final utility function of ui(x) = − (x− yi)2

|x− yi|
= −|x − yi|. Also, let q =

n
∫
k∈N p(k)|x− yk|−1 dk.12 Since

∫
k∈N p(k)|x− yk|−1 dk is just some constant (i.e., independent of

n), q is Θ(n).

Theorem 8.3.1. For x, c as defined above, there exists a power constant γ such that the following

all hold:

1. |n
∫
i∈N p(i)δi(x) di| goes to 0 as n→∞.

2. For each agent i except a vanishing fraction13, λi goes to 1/
√
qγ as n→∞.

3. The outcome x maximizes welfare with respect to c, i.e., x ∈ arg maxx′ U(x′).

Note that rather than converging to a specific value, λi is approaching 1/
√
qγ, and q is Θ(n).

However, since we are interested in multiplicative differences in λi, this is not a problem. For the m-

dimensional case, one product of our more complicated setup will be that λi converges to a specific

value: specifically, 1/
√
γ.

Since the point of this section is to give intuition for the main proof (and not to actually prove

an interesting result), we are less formal and rigorous than we will be in the proof of the main result.

There are also a few (uninformative) parts of the proof that we defer entirely until the proof of the

main result.

To start, we consider welfare maximization.

Lemma 8.3.1. The outcome x as defined above maximizes welfare with respect to c.

Proof. Since U is concave and differentiable, and we are maximizing over an unrestricted domain,

x maximizes U if and only if derivative of U at x is 0:

d

dx
U(x) =

d

dx
n

∫
i∈N

p(i)ui(xi) di = −2

∫
i∈N

p(i)ciwi(x− yi) di = −2

∫
i∈N

p(i)
wi(x− yi)
wi|x− yi|

12Note that although |yi − x|−1 is undefined at x = yi, its integral is indeed well-defined.
13That is, the fraction of agents for whom this does not hold should go to 0 as n→∞.
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By definition of x, we have
∫
i∈N p(i) sgn(x− yi) di =

∫
i∈N p(i)

x− yi
|x− yi|

di = 0. Thus
d

dx
U(x) = 0, so

x ∈ arg maxx′ U(x).

Next, we obtain an expression for δi in terms of λi.

Lemma 8.3.2. For each i ∈ N , we have δi =
(yi − x)

|x− yi|(|x− yi|−1 + λiq)
.

Proof. We begin by writing the Lagrangian of Program 8.1 for an arbitrary agent i:

L(δi, λi) = ui(x+ δi)− λi
(
U(x)− U(x+ δi)− γ

)
The KKT conditions imply that the derivative of L with respect to δi should be zero for the optimal

δi:

d

dδi
L(δi, λi) =

d

dδi
ui(x+ δi) + λi

d

dδi
U(x+ δi)

= − 2(x+ δi − yi)
|x− yi|

− λin
∫
k∈N

p(k)
2(x+ δi − yk)

|x− yk|
dk

= − 2δi
|x− yi|

− 2(x− yi)
|x− yi|

− n
∫
k∈N

p(k)
2λiδi
|x− yk|

dk − 2nλi

∫
k∈N

p(k)
x− yk
|x− yk|

dk

By the definition of x, we have
∫
k∈N p(k) sgn(x− yk) dk =

∫
k∈N p(k)

x− yk
|x− yk|

dk = 0, so

d

dδi
L(δi, λi) = − 2δi

|x− yi|
− 2(x− yi)
|x− yi|

− n
∫
k∈N

p(k)
2λiδi
|x− yk|

dk

= − 2δi

(
|x− yi|−1 + λin

∫
k∈N

p(k)|x− yk|−1 dk
)
− 2(x− yi)
|x− yi|

Since d
dδi
L(δi, λi) = 0, we get

δi =
(yi − x)

|x− yi|
(
|x− yi|−1 + λin

∫
k∈N p(k)|x− yk|−1 dk

) =
(yi − x)

|x− yi|(|x− yi|−1 + λiq)

We will now use Lemma 8.3.2 to derive explicit bounds on λi. Let N̂ = {i ∈ N : |x−yi| ≥ 1/n1/4}.
Clearly as n goes to∞, the fraction of agents not in N̂ goes to 0. Furthermore, we can always choose

the power constant γ to be small enough such that every agent in N̂ exhausts her power. Thus for

each i ∈ N̂ , U(x)− U(x+ δi) = γ.

Lemma 8.3.3. For each i ∈ N̂ ,
1
√
q

(
1
√
γ
−

1

Ω(n1/4)

)
≤ λi ≤

1
√
qγ

.
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Proof. Using arithmetic (we prove this for the more general setting later: see Lemma 8.8.1), U(x)−
U(x+ δi) = δ2

i q. Therefore δ2
i = γ/q. Also using Lemma 8.3.2, for each i ∈ N̂ we have

(yi − x)2

(yi − x)2(|x− yi|−1 + λiq)2
= γ/q

|x− yi|−1 + λiq =
√
q/γ

λi =
1
√
qγ
− 1

q|x− yi|

Clearly we have λi ≤ 1/
√
qγ. Since |x − yi| ≥ 1/n1/4 for i ∈ N̂ , we have λi ≥

1
√
q

(
1
√
γ
− n1/4

√
q

)
=

1
√
q

(
1
√
γ
− 1

Ω(n1/4)

)
. Therefore for each i ∈ N̂ ,

1
√
q

(
1
√
γ
− 1

Ω(n1/4)

)
≤ λi ≤

1
√
qγ

.

Finally, we need the expected net movement to be small:
∫
i∈N p(i)δi(x) di goes to 0 as n→∞.

Lemma 8.3.4. As n→∞, |
∫
i∈N p(i)δi(x) di| goes to 0.

The proof for Lemma 8.3.4 is fairly tedious, even for one dimension. Thus we defer this part of

the proof until later, when we formally prove this for the general case.

Lemmas 8.3.1, 8.3.3, and 8.3.4 together imply Theorem 8.3.1.

8.4 Main theorem setup

In this section, we state our main theorem (and one variant of the theorem), and provide a roadmap

of the proof. Informally, our main result is:

Theorem 8.4.2 (Informal). As the number of agents goes to infinity, there exists an outcome x

and a scaling of agent utilities c such that all of the following hold:

1. The expected net movement – ||n
∫
i∈N p(i)δi(x) di||2 – is 0.

2. Every agent has the same marginal utility for additional power.

3. The outcome x maximizes expected welfare with respect to c.

This implies that for any ε > 0 and large enough n, there exists an equal-power equal-λ ε-equilibrium.

We state two theorems in this section. The theorem statements refer to a function f that will

be defined in Section 8.5. The variable α is a parameter of f that is used to ensure continuity of f ,

and will be chosen as a function of n.

Most of the chapter is devoted to proving Theorem 8.4.1, which assumes an exact fixed point of f ,

and presents approximation bounds on our quantities of interest (i.e, λi and ||n
∫
i∈N p(i)δi(x) di||2)

as a function of α and n. An intermediate lemma (Lemma 8.6.1), which appears in Section 8.6, shows

that there is a choice of α (specifically, α = n−7/8) such that the approximation error vanishes as n

goes to ∞, also assuming an exact fixed point of f .
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In reality, we are not able to prove that f has an exact fixed point. Instead, we show in Section 8.5

that f has an ε-fixed point for each ε > 0 (where ε = 0 would denote an exact fixed point).

Theorem 8.4.2 states that we can pick ε small enough that using an ε-fixed point of f is good

enough.

Theorem 8.4.1. Suppose f as defined in Section 8.5 has an exact fixed point c for any choice of

α and n. Let xj =
(∫
i∈N p(i)ciwij di

)−1 ∫
i∈N p(i)ciwijyij di. Let α be chosen as a function of n so

that limn→∞ n3/2α =∞ and limn→∞ αm/2nm/4 = 0. Then for any ε, there exists α and n such that

(x, c, γ, 1/
√
γ) is an equal-power equal-λ ε-equilibrium. Specifically:

1. ||n
∫
i∈N p(i)δi(x) di||2 ≤

γ +
√
γ

O(n2α2)
+O(αm/2nm/4+1).

2. For all i except an expected O(αm/2nm/4) fraction, O
(√

n3/2α

n3/2α+ 1

) 1
√
γ
≤ λi(x) ≤

1
√
γ

.

3. The outcome x maximizes welfare with respect to c.

The assumptions of limn→∞ n3/2α =∞ and limn→∞ αm/2nm/4 = 0 in Theorem 8.4.1 are neces-

sary for a few parts of the proof to work.

Using Theorem 8.4.1 and Lemma 8.6.1, we get our final result:

Theorem 8.4.2. Let c be an ε-fixed point of f and let xj =
(∫
i∈N p(i)ciwij di

)−1 ∫
i∈N p(i)ciwijyij di.

Let α = n−7/8 and m ≥ 6. Then there exists a small enough ε such that all of the following hold:

1. ||n
∫
i∈N p(i)δi(x) di||2 ≤ (γ +

√
γ)O(n−1/4) +O(n−1/8).

2. For all i except an expected O(n−3/4) fraction, O
(√

n5/8

n5/8 + 1

) 1
√
γ
≤ λi(x) ≤

1
√
γ

.

3. The outcome x maximizes welfare with respect to c.

8.4.1 Proof roadmap

In this section, we state and describe the key lemmas in our proof. The proofs of some of these

lemmas involve additional lemmas, but we only include the most important lemmas.

Section 8.5 is devoted to showing that the function f satisfies the approximate fixed-point property

(AFPP) [16]: for every ε > 0, f admits an ε-fixed point14. In our opinion, this is the most interesting

part of the overall proof, and constitutes a novel approach for proving existence of approximate fixed

points.

The function f will actually be infinite-dimensional, and it turns out (perhaps unsurprisingly)

to be challenging to prove fixed point existence for infinite-dimensional functions. Instead, we will

analyze a finite-dimensional variant denoted by gA (A will be any finite set of agents).

We first show that gA has an exact fixed point for any finite set A (Lemma 8.5.1). In the following

lemma statement, α and s1 . . . s|A| are parameters of gA.

14See Section 8.5 for a formal definition.
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Lemma 8.5.1. For any α ∈ (0,
√
nw2

maxd
2
max

wmin
], any finite set A ⊂ N , and any nonnegative s1 . . . s|A|

that sum to 1, the function gA has a fixed point c∗ ∈
[

wmin

w2
maxd

2
max

,
√
n

α

]|A|
.

We then show that for any ε > 0, there exists an A large enough that any exact fixed point

of g can be transformed into an ε-fixed point of f . This part of the argument is quite involved,

and uses the following steps: (1) Partition the agent space into arbitrarily small hypercubes. (2)

Choose a “representative” from each hypercube in a careful way. (3) Let A be the set of those

representatives, let s` be the measure of p in the `th hypercube, and let c be an exact fixed point

of gA with parameters s1 . . . s|A|. (4) Assign each agent not in A to have the same scaling factor as

her representative. (5) Show that for small enough hypercubes, this is an ε-fixed point of f . This

results in the following lemma:

Lemma 8.5.3. The function f satisfies AFPP.

Throughout the rest of the chapter after Section 8.5, we use x and c to specifically refer to the

outcome and agent scaling factors defined in Theorem 8.4.1, not arbitrary outcomes/agent scaling

factors. This is primarily for simplicity and brevity.

In Section 8.7, we establish some important properties we will use along the way. First, we show

that x as defined in the statement of Theorem 8.4.1 maximizes welfare with respect to the agent

scaling factors c defined in that theorem statement.

Lemma 8.7.1. The outcome x maximizes the utilitarian welfare U(x) with respect to c.

Next, we define N̂ as the set of “normal” agents (“normal” will be defined later), and show that

the measure of N \ N̂ is small (i.e., almost all the agents are “normal”). Since we treat m as a

constant, the right hand side is O(αm/2nm/4); everything else is a constant.

Lemma 8.7.2. We have

∫
i 6∈N̂

p(i) di ≤ αm/2nm/4 π
m/2pmax

Γ(m
2

+ 1)

(√
wmax

wmin

)m
.

Lemma 8.7.4 states that each agent is a small fraction of the overall population, in terms of

weight ciwij on any issue. Note that the left hand side is an integral over the whole population, and

the right hand side is a multiple of ciwij .

Lemma 8.7.4. For any agent i ∈ N ,

∫
k∈N

p(k)ckwkj dk ≥ w2
min

4w3
maxd

2
max

√
nαciwij.

Section 8.8 to devoted to analyzing properties of δi and λi. First, we show that δi obeys a

particular expression in terms of λi.

Lemma 8.8.2. For every agent i and issue j, δij =
ciwij(yij − xj)
ciwij + λiqj

.

We will define an approximation variable τi such that λi =
1

√
τi + γ

, and show that τi is small.

This holds for every “normal” agent, i.e., the agents in N̂ .

Lemma 8.8.5. For each agent i ∈ N̂ , τi ≤
2γ3/2mwmax

n3/2αβwmin − 2
√
γmwmax

.

249



We will also show that τi > 0 (this part will be easy). This will allow us to upper- and lower-bound

the value of λi for each i ∈ N̂ . The variable η will be defined later, but we will have η = Θ(n3/2α);

by assumption of Theorem 8.4.1, limn→∞ n3/2α =∞. This means that limn→∞ η =∞ as well, and

this range of allowable λi shrinks to a single point (specifically, 1/γ).

Lemma 8.8.6. For all i ∈ N̂ ,
√

η

η + 1
· 1
√
γ
≤ λi ≤

1
√
γ

.

Finally, Section 8.9 proves an upper bound on
∣∣∣∣n ∫

i∈N p(i)δi(x) di
∣∣∣∣

2
: the expected net movement

with respect to the current point. Note that ENs∼p[||
∑
i∈Ns δi(x)||2] = n||

∫
i∈N p(i)δi(x) di||2.

Lemma 8.9.5. We have

∣∣∣∣∣∣∣∣n∫
i∈N

p(i)δi(x) di

∣∣∣∣∣∣∣∣
2

≤ γ+
√
γ

Ω(n2α2) +O(αm/2nm/4+1).

Lemmas 8.7.1, 8.8.6, and 8.9.5 will together imply Theorem 8.4.1.

8.5 The fixed point argument

We will choose our agent scaling factors c to be an (approximate) fixed point of a particular function

f (defined below). This section is devoted to constructing this function and showing that it satisfies

the approximate fixed point property (defined in Definition 8.5.1).

Defining the function f .

Let RN>0 be the set of functions c : N → R>0. We can think of each function c as assigning a scaling

factor c(i) > 0 to each agent type i. For this section of the chapter, we will use the function notation

c(i) instead of ci.

For brevity, for each j ∈M define xj(c) by

xj(c) =
(∫

i∈N
p(i)c(i)wij di

)−1
∫
i∈N

p(i)c(i)wijyij di

This is a continuous average of all agents’ ideal points yij weighted by c(i) and wij . We show later

that this choice of x maximizes welfare with respect to c (Lemma 8.7.1).

The function f : RN>0 → RN>0 will take as input a function c : N → R>0, and returns a another

function f(c) : N → R>0. Just as c(i) ∈ R>0 is the scaling factor that c assigns to agent i, we use

[f(c)](i) ∈ R>0 to denote the scaling factor that f(c) assigns to agent i. For a small α > 0 to be

chosen later, we define [f(c)](i) by

[f(c)](i) =

√
n

max
(
α,
√∑

j∈M w2
ij(yij − xj(c))2

( ∫
k∈N p(k)c(k)wkj dk

)−1
)

Intuition behind f

Since we will be choosing c to be an (approximate) fixed point of f , each ci will end up approximately

equal to [f(c)](i). Consequently, the structure of f gives us a qualitative interpretation of the agent

scaling factors c.
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Ignore α and
√
n for now. First, notice that f is invariant to the scale of individual utilities.

Specifically, if an agent scales up her weights by a constant factor κ, [f(c)](i) ≈ c(i) decreases by a

factor of κ: w2
ij becomes κ2w2

ij , then pull κ out of the square root (still ignoring α). The consequence

is that our “common utility scale” defined by c is invariant to individuals scaling up or down their

utility functions, as it should be.

Next, think of
∫
k∈N p(k)c(k)wkj dk is the aggregate weight placed by society on issue j. Thus

each term w2
ij(yij − xj(c))2

( ∫
k∈N p(k)c(k)wkj dk

)−1
is equal to agent i’s weight for issue j (i.e.,

wij) times her utility loss on issue j (i.e., wij(yij − xj(c)), as a fraction of society’s total weight

on that issue. Thus the summation in the denominator can be thought of as expressing how much

agent i “disagrees” with the rest of society, with respect to the current point x(c). More intense

disagreement leads to a larger denominator, and smaller overall value for c(i).

That said, the real reason for this choice of f is technical: in order for (almost) all agents to

have (almost) the same value of λi, we will need c(i)2 to be proportional to the expression under

the square root for (almost) all agents. This is exactly what a fixed point of f gives us (ignoring α).

Finally, the purposes of
√
n and α are purely technical. The maximization with α is to ensure

that there is no discontinuity in f when the expression under the square root is zero (continuity is

required for our fixed point analysis). We will show that α can be chosen so that the properties

we desire are not affected. The
√
n is simply to help certain aspects of the math later on work out

smoothly.15

Approximate fixed points

Ideally, we would like to show that f has a fixed point. As the reader might expect, showing existence

of fixed points in infinite-dimensional spaces can be challenging. Instead, we will show that f admits

approximate fixed points:16

Definition 8.5.1. Let X be a set. We say that a function f : RX>0 → RX>0 satisfies the approximate

fixed point property (AFPP) if for every ε > 0, there exists c such that |[f(c)](i) − c(i)| < ε for all

i ∈ X. We call such a c an ε-fixed point.

The rest of this section is devoted to showing that f satisfies AFPP. To do this, we define a

function gA for any finite set of agents A which serves a finite-dimensional approximation of f . We

will show that gA admits an exact fixed point for any set A. To complete the proof, we will show

that picking A to be arbitrarily large allows us to approximate f arbitrarily well.

8.5.1 Showing that f satisfies AFPP

Let A = {i1, i2 . . . i|A|} be a finite set of agents with nonnegative coefficients s1 . . . s|A| that sum

to 1.With slight abuse of notation, we will use sik and sk interchangeably. We define a function

15It is worth noting that f does depend on n (both explicitly in the numerator, and implicitly through α, which
will end up depending on n); this is not a problem, however. Since x(c) is a weighted average of the agents’ ideal
points, scaling all c(i) by the same amount (which is what

√
n does) will not affect x(c), the equilibrium outcome.

With regards to α, we will need α to go to zero n→∞ so that the error introduced goes to 0. One can think of this
as the impact of α going to zero as n→∞, so that we achieve an exact equal-power equal-λ equilibrium in the limit.

16In general, the approximate fixed point property can be defined for any metric space.
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gA : R|A|>0 → R|A|>0 by

[gA(c)](i) =

√
n

max
(
α,
√∑

j∈M w2
ij(yij − xj(c))2

(∑
k∈A skc(k)wkj

)−1
)

for all i ∈ A. That is, gA takes as input a function c : A→ R>0 that assigns c(i) to each i ∈ A, and

it returns a vector gA(c) ∈ Ra>0 that assigns [gA(c)](i) each i ∈ A. When c has a finite domain (such

as in the definition of gA), xj(c) is defined to be the discrete average of yi for i ∈ A, weighted by c(i),

wij , and si. Formally, xj(c) = (
∑
i∈A siwij)

−1
∑
i∈A siwijyij . When c has a continuous domain as

in the definition of f , xj(c) is defined to be the continuous weighted average defined previously.

Lemma 8.5.1 states that for any set A and any small enough α, gA has a fixed point. The proof

uses Brouwer’s fixed point theorem:

Theorem 8.5.1 (Brouwer’s fixed point theorem). Let ` be a positive integer, let S ⊂ R` be convex

and compact, and let f : S → S be continuous. Then there exists c∗ ∈ S such that f(c∗) = c∗.

Lemma 8.5.1. For any α ∈ (0,
√
nw2

maxd
2
max

wmin
], any finite set A ⊂ N , and any nonnegative s1 . . . s|A|

that sum to 1, the function gA has a fixed point c∗ ∈
[

wmin

w2
maxd

2
max

,
√
n

α

]|A|
.

Proof. Let S =
[

wmin
w2
maxd

2
max

,
√
n
α

]|A|
. Since c(i) > 0 for all i for all c ∈ S,

∑
k∈A skc(k)wkj is strictly

positive. Thus we have
∑
j∈M w2

ij(yij − xj(c))2
(∑

k∈A skc(k)wkj
)−1 ≥ 0, so the denominator of

[gA(c)](i) is always real. Furthermore, since α > 0, the denominator is always positive, so the

function is well-defined and continuous on S. It is also clear that S is convex and compact (and

nonempty as long as α ≤
√
nw2

maxd
2
max

wmin
).

It remains to show that gA(c) ∈ S for all c ∈ S. First, since the denominator is always at least

α, [gA(c)](i) ≤
√
n/α for all c and all i. Next, since c(i) ≥ wmin

w2
maxd

2
max

for all i ∈ N (because c ∈ S),

√∑
j∈M w2

ij(yij − xj(c))2
(∑

k∈A skc(k)wkj
)−1 ≤

√∑
j∈M w2

ij(yij − xj(c))2
(∑

k∈A sk
wmin

w2
maxd

2
max

wkj
)−1

=
wmaxdmax√

wmin

√∑
j∈M w2

ij(yij − xj(c))2
(∑

k∈A skwkj
)−1

=
wmaxdmax√

wmin

√∑
j∈M w2

max(yij − xj(c))2
(∑

k∈A skwmin
)−1

≤ w2
maxdmax

wmin

√∑
j∈M (yij − xj(c))2

≤ w2
maxd

2
max

wmin

Therefore the denominator of [gA(c)](i) is at most
w2
maxd

2
max

wmin
, which implies that [gA(c)](i) ≥

√
nwmin

w2
maxd

2
max

for all c ∈ S. Since n ≥ 1, we have [gA(c)](i) ≥
√
nwmin

w2
maxd

2
max
≥ wmin

w2
maxd

2
max

, as required.

Therefore gA(c) ∈ S for every c ∈ S. Thus by Brouwer’s fixed point theorem, there exists an

c∗ ∈ S such that gA(c∗) = c∗.
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8.5.2 Using g to approximate f

We next show that for certain choices of A, fixed points of gA are approximate fixed points of f .

The proof approach is as follows:

1. Partition the space of agent types into arbitrarily small hypercubes (Lemma 8.5.2 shows that

this is possible). Thus all agents within a given hypercube will have arbitrarily similar values

of yij and wij .

2. Choose a “representative” from each hypercube. The representative for the `th hypercube will

be chosen such that for each j ∈ M , her ideal point yij and wij are equal to the weighted

average (within the hypercube) of ideal points and weight vectors, respectively. Such an agent

is guaranteed to exist within the same hypercube.

3. Let A be the set of representatives, let s` be the measure of p in the `th hypercube, and let

cA be a fixed point of gA for coefficients s1 . . . s|A|.

4. Define c : N → R>0 so that each agent’s scaling factor c(i) is equal to the scaling factor of her

representative under cA(i). Since every agent is in some hypercube, this fully specifies c.

5. Show that |[f(c)](i)− c(i)| is small.

Lemma 8.5.2. For some q > 0, let S ⊂ Rq be a hybercube. Then for any ε, there exists a partition

of S into hypercubes S1 . . . SL such that for any ` ∈ {1 . . . L}, for all z, z′ ∈ S`, ||z − z′||∞ < ε17.

Proof. If S is a hypercube, then we can bisect it along every coordinate to create many hypercubes,

each with side length half of the original. Starting with N , continue halving the side length in this

way until the side length of every hypercube is less than ε. That implies that for any vectors z, z′

in the same hypercube, ||z − z′||∞ < ε.

By assumption, χ ⊂ Rm is bounded, so let χ̄ represent the smallest hypercube that contains χ.

Without loss of generality, we can use χ̄ instead, and simply set p(i) = 0 for all yi 6∈ χ. The set of

weight vectors wi = (wi1 . . . wim) with wmin ≤ wij ≤ wmax for all i, j is also a hypercube in Rm.

Since each agent i is a pair (yi, wi), we can write i ∈ N ⊂ Rm2

, and N too is a hypercube.

Lemma 8.5.3. The function f satisfies AFPP.

Proof. Recall the definition of AFPP: we need to show that for any ε′ > 0, there exists an ε′-fixed

point c of f . Specifically, we need |[f(c)](i)− c(i)| < ε′ for all i ∈ N .

Part 1: Defining the approximate fixed point c. Fix an ε > 0; later on we will choose ε as

a function of ε′. Using Lemma 8.5.2, let S1 . . . SL be a partition of N into hypercubes such that for

any ` ∈ {1 . . . L}, for all i, k ∈ S`, ||i−k||∞ < ε. This means that for any i, k in the same hypercube

and and any j ∈M , we have

|yij − ykj | < ε and |wij − wkj | < ε (8.2)

17We use || · ||∞ to denote the L∞ norm, which is defined to be the maximum coordinate.
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For each ` ∈ {1 . . . L}, let s` =
∫
i∈S` p(i) di be the measure of S`. For each S`, we will carefully

pick a representative i`. For each `, and each j, define wavg`j and yavg`j by

yavg`j =
( ∫

i∈S` p(i)wij di
)−1 ∫

i∈S` p(i)wijyij di and wavg`j =
1

s`

∫
i∈S` p(i)wij di

Thus for each j ∈ M , yavg`j is a weighted average of yij for i ∈ S`, and wavg`j is a weighted average

of wij for i ∈ S`. In particular, mink∈S` ykj ≤ yavg`j ≤ maxk∈S` ykj , and mink∈S` wkj ≤ wavg`j ≤
maxk∈S` wkj . Thus since each S` is a hypercube, each S` contains an agent i` with wi`,j = wavg`j and

yi`j = yavg`j for all j ∈M .

Define A = {i1, i2 . . . iL}, and let cA be a fixed point of gA with coefficients s1 . . . s` (which is

guaranteed to exist, by Lemma 8.5.1). Define c : N → R>0 so that for each i ∈ S`, c(i) = cA(i`). In

words, we define each agent’s scaling factor c(i) to be the same as that of her representative.

Part 2: Properties of c. For any j ∈M ,

xj(c) =
( ∫

k∈N p(k)c(k)wkj dk
)−1 ∫

k∈N p(k)c(k)wkjykj dk (definition of xj(c) for continuous c)

=
(∑L

`=1

∫
k∈S` p(k)c(k)wkj dk

)−1∑L
`=1

∫
k∈S` p(k)c(k)wkjykj dk (summing integral over hypercubes)

=
(∑L

`=1 cA(i`)
∫
k∈S` p(k)wkj dk

)−1∑L
`=1 cA(i`)

∫
k∈S` p(k)wkjykj dk (definition of c(k) for k ∈ S`)

=
(∑L

`=1 cA(i`)
∫
k∈S` p(k)wkj dk

)−1∑L
`=1 cA(i`)y

avg
`j

∫
k∈S` p(k)wkj dk (definition of yavg`j )

=
(∑L

`=1 cA(i`)s`w
avg
`j

)−1∑L
`=1 cA(i`)y

avg
`j s`w

avg
`j (definition of wavg`j )

=
(∑L

`=1 cA(i`)s`wi`,j
)−1∑L

`=1 cA(i`)s`wi`,jyi`,j (definitions of wi`,j and yi`,j)

=
(∑

k∈A skcA(k)wkj
)−1∑L

k∈A skcA(k)wkjykj (definition of A = {i1 . . . iL})

= xj(cA) (definition of xj(c) for discrete c)

Therefore for each j ∈M , we have xj(c) = xj(cA), where the left hand side and right hand side are

continuous and discrete weighted averages, respectively.

In the process of the above sequence of equations, we also showed that
∫
k∈N p(k)c(k)wkj dk =∑

k∈A skcA(k)wkj . Using this, and the fact that cA is a fixed point of gA, for all i ∈ A we have

cA(i) =
√
n
(

max
(
α,

√∑
j∈M w2

ij(yij − xj(cA))2
(∑

k∈A skcA(k)wkj
)−1))−1

=
√
n
(

max
(
α,

√∑
j∈M w2

ij(yij − xj(c))2
( ∫

k∈N p(k)c(k)wkj dk
)−1))−1

= [f(c)](i)

Since c(i) = cA(i) for i ∈ A, we therefore have c(i) = [f(c)](i) exactly when i ∈ A.

Part 3: Showing that |[f(c)](i) − c(i)| is small for every i ∈ N . For i ∈ A, we are done.

For i 6∈ A, recall that for each ` and all i ∈ S`, c(i) = c(i`) by definition, so c(i) = c(i`) = [f(c)](i`).

Therefore it suffices to show that |[f(c)](i)− [f(c)](i`)| is small.
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For brevity, let r(i) =
∑
j∈M w2

ij(yij − xj(c))2
( ∫

k∈N p(k)c(k)wkj dk
)−1

. Then for all i ∈ S`,

|r(i)− r(i`)| =
( ∫

k∈N p(k)c(k)wkj dk
)−1

∣∣∣∑j∈M
(
w2
ij(yij − xj(c))2 − w2

i`,j
(yi`j − xj(c))2

)∣∣∣ (defn of r(i))

≤
( ∫

k∈N p(k)c(k)wkj dk
)−1∑

j∈M
∣∣w2
ij(yij − xj(c))2 − w2

i`,j
(yi`j − xj(c))2

∣∣ (triangle ineq.)

≤
( ∫

k∈N p(k)c(k)wkj dk
)−1∑

j∈M
∣∣w2
ij(yij − xj(c))2 − (wij + ε)2(yij − xj(c) + ε)2

∣∣ (Eq. 8.2)

=
( ∫

k∈N p(k)c(k)wkj dk
)−1∑

j∈M
∣∣ε4 + ε2

(
w2
ij(yij − xj(c))2

)∣∣ (cancel terms)

≤
( ∫

k∈N p(k)c(k)wkj dk
)−1∑

j∈M (ε4 + ε2w2
maxd

2
max) (defn’s of dmax, wmax)

≤
( ∫

k∈N p(k)c(k)wmin dk
)−1

m(ε4 + ε2w2
maxd

2
max) (defn of wmin)

≤
( ∫

k∈N p(k)
wmin

w2
maxd

2
max

wmin dk
)−1

m(ε4 + ε2w2
maxd

2
max) (Lemma 8.5.1)

≤ O(1) ·m · (ε4 + ε2 ·O(1))

= O(ε2)

Our citation of Lemma 8.5.1 is because Lemma 8.5.1 guarantees that every c(k) ≥ wmin
w2
maxd

2
max

. Thus

for each i ∈ S`, |r(i)− r(i`)| ≤ O(ε2).

If [f(c)](i) = [f(c)](i`) = 1/α, then c(i) = [f(c)](i`) = [f(c)](i), and we are done. Thus assume

at least one does not equal 1/α. Suppose f [(c)](i) 6= 1/α (the argument is symmetric for the other

case), and basic algebra gives us

|[f(c)](i)− [f(c)](i`)| =
∣∣∣ √n√

r(i)
−

√
n

max(α,
√
r(i`))

∣∣∣
≤
√
n
∣∣∣ 1√

r(i)
− 1√

r(i`)

∣∣∣
=

√
n√

r(i)r(i`)

∣∣∣√r(i`))−√(r(i)
∣∣∣

=
√
n√

r(i)r(i`)(
√
r(i) +

√
r(i`))

|r(i`)− r(i)|

≤
√
n ·O(ε2)√

r(i)r(i`)(
√
r(i) +

√
r(i`))

Since r(i), r(i`) ≤ α, we have

|[f(c)](i)− [f(c)](i`)| ≤
O(
√
nε2)

α3

and thus |[f(c)](i)− c(i)| ≤ O(
√
nε2)/α3. Now, for a fixed ε, taking n→∞ does make this bound

go to infinity. The key here is that ε can be chosen independently of α and n. That is, for any

instantiation of f (i.e., for a fixed n and α), we can pick ε to be as small as we want. In particular,

since this bound holds uniformly for all i ∈ N (i.e., with the same ε), for any ε′ > 0, there exists ε

such that

|[f(c)](i)− c(i)| < ε′
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for all i ∈ N . We conclude that f satisfies AFPP.

8.6 Two proofs omitted earlier

With Lemma 8.5.3 in hand, the bulk of the remaining work is to prove Theorem 8.4.1. Before

embarking on that task, we provide two quick proofs that were omitted from Section 8.4.

Lemma 8.6.1. Suppose f as defined in Section 8.5 has an exact fixed point c for any choice of α

and n. Let xj =
(∫
i∈N p(i)ciwij di

)−1 ∫
i∈N p(i)ciwijyij di. Let α = n−7/8 and m ≥ 6.

1. ||n
∫
i∈N p(i)δi(x) di||2 ≤ (γ +

√
γ)O(n−1/4) +O(n−1/8).

2. For all i except an expected O(n−3/4) fraction, O
(√

n5/8

n5/8 + 1

) 1
√
γ
≤ λi(x) ≤

1
√
γ

.

3. The outcome x maximizes welfare with respect to c.

Proof. Assume Theorem 8.4.1 holds. We need to show the following:

1. limn→∞ αm/2nm/4 = 0

2. limn→∞ n3/2α =∞

3. limn→∞ αm/2nm/4+1 = 0

4. limn→∞ α2n2 =∞

The first two points are necessary as conditions of Theorem 8.4.1, in addition to being necessary for

vanishing approximation error. Note that the third point implies the first 1.

Since m ≥ 6, O(αm/2nm/4+1) becomes O(n−3m/16+1) = O(n−18/16+1) = O(n−1/8), which does

indeed go to zero as n→∞. This satisfies points 1 and 3.

For the second point, we have O(n3/2α) = O(n3/2−7/8) = O(n5/8). Thus O(n3/2α) does go to

infinity as n→∞.

Finally, α2n2 = n2/8 = n1/4, which goes to infinity as n→∞.

Theorem 8.4.2. Let c be an ε-fixed point of f and let xj =
(∫
i∈N p(i)ciwij di

)−1 ∫
i∈N p(i)ciwijyij di.

Let α = n−7/8 and m ≥ 6. Then there exists a small enough ε such that all of the following hold:

1. ||n
∫
i∈N p(i)δi(x) di||2 ≤ (γ +

√
γ)O(n−1/4) +O(n−1/8).

2. For all i except an expected O(n−3/4) fraction, O
(√

n5/8

n5/8 + 1

) 1
√
γ
≤ λi(x) ≤

1
√
γ

.

3. The outcome x maximizes welfare with respect to c.

Proof. An ε-fixed point is guaranteed to exist by Lemma 8.5.3. The key here is that ε can be chosen

independently of any other parameters (α, n, γ, etc). Furthermore, λi(x) and ||n
∫
i∈N p(i)δi(x) di||2

will be continuous functions of c. Thus for any ε′, there exists ε such that perturbing c by ε′ changes

both ||n
∫
i∈N p(i)δi(x) di||2 and each λi by at most ε. Since the results are only asymptotic anyway,

we can pick ε′ small enough that all of the approximations still hold.
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8.7 Important properties to be used later

The rest of the chapter is devoted to proving Theorem 8.4.1. Throughout, we assume that c is a fixed

point of the function f from Section 8.5, and that xj =
(∫
i∈N p(i)ciwij di

)−1 ∫
i∈N p(i)ciwijyij di.

Recall that we used the function notation of c(i) only for Section 8.5; we use the vector notation ci

for the rest of the chapter.

8.7.1 Welfare maximization for quadratic utilities

Lemma 8.7.1. The outcome x maximizes the utilitarian welfare U(x) with respect to c.

Proof. The welfare of an outcome x′ is

U(x′) = n
∫
i∈N p(i)ui(x

′) di = −n
∫
i∈N p(i)ci

∑
j∈M

wij(x
′
j − yij)2 di

Since U is concave and differentiable, and we are interested in an unconstrained maximization, it

suffices to show that the gradient of U at x is 0. Specifically, the partial derivative with respect to

xj should be zero for each j:

∂

∂xj
U(x) = − 2n

∫
i∈N p(i)ciwij(xj − yij) di

=
∫
i∈N p(i)ciwijxj di−

∫
i∈N p(i)ciwijyij di

= xj
∫
i∈N p(i)ciwij di−

∫
i∈N p(i)ciwijyij di

Substituting in the definition of xj as given in the statement of Theorem 8.4.1:

∂

∂xj
U(x) =

(
(
∫
k∈N p(k)ckwkj dk)−1

∫
k∈N p(k)ckwkjykj dk

) ∫
i∈N p(i)ciwij di−

∫
i∈N p(i)ciwijyij di

=
∫
i∈N p(i)ciwijyij di−

∫
i∈N p(i)ciwijyij di

= 0

Thus x is indeed optimal for U .

8.7.2 The measure of “unusual” agents is small

Let N̂ be the set of agents i for whom ci =
√
n/
√∑

j∈M w2
ij(yij − xj)2

( ∫
k∈N p(k)ckwkj dk

)−1
. In

ways that will become clear later, N̂ is the set of “normal” agents. We need to show that the number

of agents not in N̂ shrinks to zero as α goes to zero. Here Γ denotes the gamma function.

Lemma 8.7.2. We have

∫
i 6∈N̂

p(i) di ≤ αm/2nm/4 π
m/2pmax

Γ(m
2

+ 1)

(√
wmax

wmin

)m
.

Proof. Since c is a fixed point of f , if i 6∈ N̂ , we have α ≥
√∑

j∈M w2
ij(yij − xj)2

( ∫
k∈N p(k)ckwkj dk

)−1
.
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Also, by the definition of f , we have ck ≤
√
n/α for all k ∈ N . Thus for an arbitrary i ∈ N we have

√∑
j∈M w2

ij(yij − xj)2
( ∫

k∈N p(k)ckwkj dk
)−1 ≥

√∑
j∈M w2

ij(yij − xj)2
( ∫

k∈N p(k)
√
n

α
wkj dk

)−1

=

√
α

n1/4

√∑
j∈M w2

ij(yij − xj)2
( ∫

k∈N p(k)wkj dk
)−1

≥
√
α

n1/4

√∑
j∈M w2

min(yij − xj)2
( ∫

k∈N p(k)wmax dk
)−1

=

√
αwmin

n1/4
√
wmax

√∑
j∈M (yij − xj)2

( ∫
k∈N p(k) dk

)−1

≥
√
αwmin

n1/4
√
wmax

√∑
j∈M (yij − xj)2

=

√
αwmin

n1/4
√
wmax

||yi − x||2

Thus if i 6∈ N̂ ,

α ≥
√
α

n1/4
||yi − x||2

wmin√
wmax

||yi − x||2 ≤
√
αwmaxn

1/4

wmin

Therefore i 6∈ N̂ only if ||yi − x||2 ≤
√
αwmaxn1/4

wmin
wmin. Let B denote the ball with radius

√
αwmaxn1/4

wmin
centered at x. Then we have

∫
i 6∈N̂ p(i) di ≤

∫
i:yi∈B p(i) di.

Since p(i) ≤ pmax for all i ∈ N by assumption, we have∫
i:yi∈B p(i) di ≤ pmax

∫
i:yi∈B di

Since
∫
i:yi∈B di is just the volume of the m-dimensional unit ball with radius

√
αwmaxn1/4

wmin
, we have

∫
i:yi∈B

di =
πm/2

Γ(m2 + 1)

(√αwmaxn1/4

wmin

)m

Since we treat m, pmax, wmin and wmax as constants, we can simply write∫
i 6∈N̂ p(i) di = O(αm/2nm/4)

8.7.3 Each agent is a small fraction of the population

In this section, we show that the weight contribution by any single agent on any issue (i.e., ciwij) is

a small fraction of the weight of the internet population. The main result is Lemma 8.7.4; we first
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prove Lemma 8.7.3, which lower bounds the aggregate weight of the whole population on issue j.

Lemma 8.7.3. For all j ∈M ,
∫
k∈N p(k)ckwkj dk ≥ w2

min

4w2
maxd

2
max

n.

Proof. Since c is assumed to be a fixed point of f , for all j ∈M we have∫
k∈N p(k)ckwkj dk ≥ wmin

∫
k∈N p(k)ck dk

= wmin

∫
k∈N̂

√
np(k) dk

max
(
α,

√∑
`∈M w2

k`(yk` − x`)2
( ∫

i∈N p(i)ciwi` di
)−1
)

≥ wmin
√
n

∫
k∈N

p(k) dk√∑
`∈M w2

k`(yk` − x`)2
( ∫

i∈N p(i)ciwi` di
)−1

≥ wmin
√
n

∫
k∈N̂

p(k) dk√∑
`∈M w2

k`(yk` − x`)2
( ∫

i∈N p(i)ciwmin di
)−1

≥ w
3/2
min

√
n
√∫

i∈N p(i)ci di

∫
k∈N̂

p(k) dk√∑
`∈M w2

k`(yk` − x`)2

≥ w
3/2
min

wmax

√
n
√∫

k∈N p(k)ck dk

∫
k∈N̂

p(k) dk√∑
`∈M (yk` − x`)2

≥ w
3/2
min

wmaxdmax

√
n
√∫

k∈N p(k)ck dk
∫
k∈N̂ p(k) dk

By Lemma 8.7.2,
∫
k 6∈N̂ p(k) dk = O(αm/2nm/4), and we know that limn→∞ αm/2nm/4 = 0 by

assumption of Theorem 8.4.1. Thus for large enough n,
∫
k∈N̂ p(k) dk ≥ 1/2, so

wmin
∫
k∈N p(k)ck dk ≥ w

3/2
min

wmaxdmax

√
n
√∫

k∈N p(k)ck dk
∫
k∈N̂ p(k) dk

≥ w
3/2
min

2wmaxdmax

√
n
√∫

k∈N p(k)ck dk

Therefore wmin
∫
k∈N p(k)ck dk ≥ w

3/2
min

2wmaxdmax

√
n
√∫

k∈N p(k)ck dk, so

√∫
k∈N p(k)ck dk ≥ w

1/2
min

2wmaxdmax

√
n∫

k∈N p(k)ck dk ≥ wmin
4w2

maxd
2
max

n

Therefore ∫
k∈N p(k)ckwkj dk ≥ w2

min

4w2
maxd

2
max

n

as required.
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Lemma 8.7.4. For any agent i ∈ N ,

∫
k∈N

p(k)ckwkj dk ≥ w2
min

4w3
maxd

2
max

√
nαciwij.

Proof. Since ci ≤
√
n/α for all i ∈ N and wij ≤ wmax, the right hand side is at most

w2
min

4w2
maxd

2
max

n.

Applying Lemma 8.7.3 completes the proof.

For brevity, let β =
w2
min

4w3
maxd

2
max

. Thus
∫
k∈N p(k)ckwkj dk ≥ β

√
nαciwij .

8.8 Characterizing δi and λi

In this section, we derive an expression for δi in terms of λi, then provide almost tight upper and

lower bounds on λi. Lemma 8.8.2 gives the expression for δi in terms of λi, and Lemma 8.8.6 gives

the upper and lower bounds for λi.

8.8.1 Deriving an expression for δi in terms of λi

First, we show that the equal power constraint of Program 8.1 can be reduced to a simpler form.

Lemma 8.8.1. Then the equal power constraint is equivalent to∑
j∈M

δ2
ij

(
n
∫
k∈N p(k)ckwkj dk

)
≤ γ

Proof. For quadratic utilities, we can rewrite U(x+ δi) as

U(x+ δi) = U(x) + δTi (∇xU)(x) +
1

2
δTi (∇2

xU)(x)δi

where the gradient is just with respect to x. For brevity, we will omit the parentheses and just write

∇xU(x) etc. By Lemma 8.7.1, x maximizes U with respect to c. Therefore ∇xU(x) = 0, so

U(x)− U(x+ δi) = U(x)−
(
U(x) + δTi ∇xU(x) +

1

2
δTi ∇2

xU(x)δi
)

= − 1

2
δTi ∇2

xU(x)δi

This makes the constraint of equal power reduce to

−1

2
δTi ∇2

xU(x)δi ≤ γ

Next, recall that U(x) = n
∫
i∈N p(i)ui(x) di by definition. Therefore

∂

∂xj
U(x) =

∂

∂xj

(
− n

∫
k∈N p(k)

(
ck
∑
j∈M wkj(xj − ykj)2

)
dk
)

= −2n
∫
k∈N p(k)ckwkj(xj − ykj) dk
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which means that
∂2

∂xj∂x`
= 0 whenever j 6= `, for j = ` we have

∂2

∂x2
j

U(x) = −2n
∫
k∈N p(k)ckwkj dk

Thus ∇2
xU(x) is a diagonal matrix with entry n

∫
k∈N p(k)ckwkj dk in the jth row, so the equal

power constraint simplifies to
∑
j∈M δ2

ij

(
n
∫
k∈N p(k)ckwkj dk

)
≤ γ, as required.

For brevity, define qj by

qj = n
∫
k∈N p(k)ckwkj dk

Thus the equal power constraint is equivalent to
∑
j∈M qjδ

2
ij ≤ γ. We can think of qj as how much

the population in aggregate cares about issue j. The expression
∑
j∈M qjδ

2
ij indicates that the more

the population cares about issue j, the more power it required to move on that issue.

Lemma 8.8.2. For every agent i and issue j, δij =
ciwij(yij − xj)
ciwij + λiqj

.

Proof. Define the Lagrangian by

L(δi, λi) = ui(x+ δi)− λi
(
U(x)− U(x+ δi)− γ

)
= − ci

∑
j∈M wij(x+ δi − yij)2 − λi

(∑
j∈M qjδ

2
ij − γ

)
where the second line used Lemma 8.8.1.

For δi = 0, we have U(x)− U(x + δi) = 0 < γ, so we have strong duality by Slater’s condition.

Since the convex is convex, the optimal solution must satisfy the KKT conditions; in particular,

stationarity:

∂

∂δij
L(δi, λi) = 0

for all j ∈M . Therefore for all j,

−2ciwij(xj + δij − yij)− 2λiqjδij = 0

(ciwij + λiqj)δij + ciwij(xj − yij) = 0

δij =
ciwij(yij − xj)
ciwij + λiqj

as required.

8.8.2 Bounding λi

For each agent i, we have m + 1 unknowns: δi1 . . . δim, and λi. The previous section gave us m

equations: one for each δij . For our last equation, we show that we can pick γ small enough such

that for most of the agents, the equal power constraint holds with equality. Specifically, the power
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constraint will hold with equality for every agent in N̂ (and we know N \ N̂ to have small measure

by Lemma 8.7.2).

Lemma 8.8.3. There exists a γ such that the power constraint is tight for all i ∈ N̂ , i.e.,
∑
j∈M qjδ

2
ij =

γ.

Proof. For all agents i ∈ N̂ , we know that

α ≤
√∑

j∈M w2
ij(yij − xj)2

( ∫
k∈N p(k)ckwkj dk

)−1

≤
√∑

j∈M w2
max(yij − xj)2

( ∫
k∈N p(k)

wmin

w2
maxd

2
max

wmin dk
)−1

≤ w2
maxdmax
wmin

√∑
j∈M (yij − xj)2

( ∫
k∈N p(k) dk

)−1

≤ w2
maxdmax
wmin

||yi − x||2

Thus ||yi − x||2 ≥
αwmin

w2
maxdmax

. Suppose for sake of contradiction that for all γ > 0, there is an agent

i ∈ N̂ whose power constraint is not tight. That would imply that there are agents in N̂ arbitrarily

close to x, which we just showed is not true. We conclude that there exists a γ > 0 such that∑
j∈M qjδ

2
ij = γ for all i ∈ N̂ .

Note that if Lemma 8.8.3 holds for some γ > 0, it also holds for any γ′ ∈ (0, γ]. In particular,

later on we will require that γ ≤ 1.

Recall that N̂ is the set of agents i for whom ci =
√
n/
√∑

j∈M w2
ij(yij − xj)2

( ∫
k∈N p(k)ckwkj dk

)−1
.

This implies ci = 1/
√∑

j∈M w2
ij(yij − xj)2

(
n
∫
k∈N p(k)ckwkj dk

)−1
= 1/

√∑
j∈M w2

ij(yij − xj)2q−1
j .

For each i ∈ N̂ , define τi by

τi =
c2i
λ2
i

∑
j∈M

w2
ij(yij − xj)2q−1

j −
∑
j∈M

qjδ
2
ij

By Lemma 8.8.3,
c2i
λ2
i

∑
j∈M

w2
ij(yij − xj)2q−1

j = τi + γ

We know that ci = 1/
√∑

j∈M w2
ij(yij − xj)2q−1

j for every i ∈ N̂ , so
1

λ2i
= τi + γ, and therefore

λi =
1√
τi + γ

8.8.3 Bounding τi

Our goal is to show that for all i ∈ N̂ , λi is close to 1/
√
γ. To do this, we need to show that τi is

small and nonnegative. Nonnegativity is (much) easier, so we begin with that.
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Lemma 8.8.4. For all i ∈ N̂ , τi > 0.

Proof. Plugging in the expression for δij from Lemma 8.8.2, we have

∑
j∈M

qjδ
2
ij =

∑
j∈M

qjc
2
iw

2
ij(yij − xj)2

(ciwij + λiqj)2

<
∑
j∈M

qjc
2
iw

2
ij(yij − xj)2

(λiqj)2

=
c2i
λ2
i

∑
j∈M

w2
ij(yij − xj)2q−1

j

Therefore

τi >
c2i
λ2
i

∑
j∈M

w2
ij(yij − xj)2q−1

j −
c2i
λ2
i

∑
j∈M

w2
ij(yij − xj)2q−1

j = 0

Next, we prove an upper bound on τi. The upper bound expression in Lemma 8.8.5 appears quite

complicated, but notice that the denominator contains n3/2α, and we know that limn→∞ n3/2α =∞.

Lemma 8.8.5. For each agent i ∈ N̂ , τi ≤
2γ3/2mwmax

n3/2αβwmin − 2
√
γmwmax

.

Proof. We begin the proof with some algebraic manipulations on the definition of τi:

τi =
c2i
λ2
i

∑
j∈M

w2
ij(yij − xj)2q−1

j −
∑
j∈M

qjδ
2
ij

=
c2i
λ2
i

∑
j∈M

w2
ij(yij − xj)2q−1

j −
∑
j∈M

qj

(ciwij(yij − xj)
ciwij + λiqj

)2

= c2i
∑
j∈M

w2
ij(yij − xj)2

( 1

λ2
i qj
− qj

(ciwij + λiqj)2

)
= c2i

∑
j∈M

w2
ij(yij − xj)2

(ciwij + λiqj)
2 − λ2

i q
2
j

λ2
i qj(ciwij + λiqj)2

= c2i
∑
j∈M

w2
ij(yij − xj)2

c2iw
2
ij + λ2

i q
2
j + 2ciwijλiqj − λ2

i q
2
j

λ2
i qj(ciwij + λiqj)2

= c2i
∑
j∈M

w2
ij(yij − xj)2

c2iw
2
ij + 2ciwijλiqj

λ2
i qj(ciwij + λiqj)2

=
c3i
λ2
i

∑
j∈M

w3
ij(yij − xj)2 ciwij + 2λiqj

qj(ciwij + λiqj)2

=
2c3i
λ2
i

∑
j∈M

w3
ij(yij − xj)2 ciwij + 2λiqj

qj(ciwij + λiqj)(2ciwij + 2λiqj)
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≤ 2c3i
λ2
i

∑
j∈M

w3
ij(yij − xj)2 1

qj(ciwij + λiqj)

By Lemma 8.8.1 (and the definition of qj), each agent’s power constraint is
∑
j∈M δ2

ijqj ≤ γ.

This means that for all i ∈ N and j ∈ M ,
√
δij ≤

√
γq
−1/2
j . Also recall that δij =

ciwij(yij − xj)
ciwij + λiqj

(Lemma 8.8.2). Therefore

τi ≤
2c3i
λ2
i

∑
j∈M

w3
ij(yij − xj)2 1

qj(ciwij + λiqj)

=
2c2i
λ2
i

∑
j∈M

w2
ij(yij − xj)δijq−1

j

≤
2c2i
√
γ

λ2
i

∑
j∈M

w2
ij |yij − xj |q

−1/2
j q−1

j

Next, let ∆i = maxj∈M |yij − xj |q−1/2
j . Recall that ci = 1/

√∑
j∈M w2

ij(yij − xj)2q−1
j for every

i ∈ N̂ . Since wij ≥ wmin, we have√∑
j∈M w2

ij(yij − xj)2q−1
j ≥ wmin

√∑
j∈M (yij − xj)2q−1

j ≥ wmin∆i

Thus ci ≤ 1
wmin∆i

for all i ∈ N̂ . Therefore

τi ≤
2ci
√
γ

wmin∆iλ2
i

∑
j∈M

w2
ij∆iq

−1
j =

2ci
√
γ

wminλ2
i

∑
j∈M

w2
ijq
−1
j

Lemma 8.7.4 implies that for all j ∈ M ,
∫
k∈N p(k)ckwkj dk ≥ β

√
nαciwij . Using the definition of

qj , we get qj ≥ βn3/2αciwij , so ciwijq
−1
j ≤ 1

βn3/2α
. Therefore

τi ≤
2
√
γ

wminλ2
i

∑
j∈M

wij(ciwijq
−1
j )

≤
2
√
γ

βwminn3/2αλ2
i

∑
j∈M

wij

≤
2
√
γmwmax

βwminn3/2αλ2
i

= (τi + γ)
2
√
γmwmax

βwminn3/2α

We can now solve for τi:

τin
3/2αβwmin ≤ 2(τi + γ)

√
γmwmax

τi(n
3/2αβwmin − 2

√
γmwmax) ≤ 2γ3/2mwmax
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τi ≤
2γ3/2mwmax

n3/2αβwmin − 2
√
γmwmax

Note that we assumed βwminn
3/2α−2

√
γmwmax > 0 when dividing both sides by that quantity.

This is true as n→∞, since limn→∞ n3/2α =∞ by assumption.

For brevity, let η =
n3/2αβwmin − 2

√
γmwmax

2mwmax
. Thus τ ≤ γ3/2/η. Since we can always pick γ ≤ 1,

we have τ ≤ γ/η. Recall that β is a constant, so η = Θ(n3/2α).

Lemma 8.8.6. For all i ∈ N̂ ,
√

η

η + 1
· 1
√
γ
≤ λi ≤

1
√
γ

.

Proof. By Lemma 8.8.5,

λi =
1√
τi + γ

≥ 1√
γ/η + γ

≥
√
η

√
γ + γη

=

√
η

η + 1
· 1
√
γ

This satisfies the first inequality. The second follows immediately from the fact that τi ≥ 0.

8.9 Bounding the net movement: ||
∫
i∈N p(i)δi(x) di||2

Finally, we need to show that ||
∫
i∈N p(i)δi(x) di||2 is small. Recall that by Lemma 8.8.2,

δi =
ciwij(yij − xj)
ciwij + λiqj

for all i ∈ N . We start by defining two approximations to δi:

δ′i =
ciwij(yij − xj)

λiqj

δ′′i = ciwij(yij − xj)q−1
j

√
γ

We first show that
∣∣∣∣∫

i∈N p(i)δ
′′
i (x) di

∣∣∣∣
2

= 0 exactly. Next, we show that δ′′i approximates δ′i
well, and that δ′i approximates δi well, for each i ∈ N̂ . Finally, we show that the agents not in N̂

do not matter too much, since their combined measure is small (Lemma 8.7.2).

Lemma 8.9.1. ∣∣∣∣∫
i∈N p(i)δ

′′
i (x) di

∣∣∣∣
2

= 0
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Proof.∣∣∣∣∫
i∈N p(i)δ

′′
i (x) di

∣∣∣∣
2

=
∣∣∣∣∫

i∈N p(i)ciwij(yij − xj)q
−1
j

√
γ di

∣∣∣∣
2

=
∣∣∣∣√γq−1

j

∫
i∈N p(i)ciwijyij di−√γq−1

j

∫
i∈N p(i)ciwijxj di

∣∣∣∣
2

=
∣∣∣∣∣∣√γq−1

j

∫
i∈N p(i)ciwijyij di−√γq−1

j

( ∫
i∈N p(i)ciwij di

)
xj

∣∣∣∣∣∣
2

Since xj =
(∫

i∈N p(i)ciwij di
)−1 ∫

i∈N p(i)ciwijyij di, we have∣∣∣∣∫
i∈N p(i)δ

′′
i (x) di

∣∣∣∣
2

=
∣∣∣∣√γq−1

j

∫
i∈N p(i)ciwijyij di−√γq−1

j

∫
i∈N p(i)ciwijyij di

∣∣∣∣
2

= 0

as required.

Lemma 8.9.2. For each i ∈ N̂ ,

||δ′i − δi||2 ≤
2γdmax
β2n3α2

Proof. The expression δ′i − δi reduces to:

ciwij(yij − x)

λiqj
− ciwij(yij − x)

ciwij + λiqj
= ciwij(yij − xj)

ciwij + λiqj − λiqj
λiqj(ciwij + λiqj)

=
c2iw

2
ij(yij − xj)

λiqj(ciwij + λiqj)

Then using Lemmas 8.7.4 and 8.8.6, we have

||δ′i − δi||22 =
c4iw

4
ij(yij − xj)2

λ2
i q

2
j (ciwij + λiqj)2

≤
c4iw

4
ij(yij − xj)2

λ4
i q

4
j

≤ d2
max

λ4
i

·
(ciwij

qj

)4

≤ d2
max

λ4
iβ

4n6α4

≤ γ2

β4n6α4

(η + 1

η

)2

d2
max
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As long as η ≥ 1 (which is of course true as n approaches infinity), we have

||δ′i − δi||22 ≤ 4
γ2

β4n6α4
d2
max

Altogether, this implies that

||δ′i − δi||2 ≤
2γdmax
β2n3α2

as required.

Lemma 8.9.3. For all i ∈ N̂ ,

||δ′i − δ′′i ||2 ≤
√
γdmax

βηn3/2α

Proof. We have

1

λi
−√γ ≤ √γ

(√η + 1

η
− 1
)

=
√
γ
(√η + 1

η
−
√
η

η

)
=
√
γ
(√η + 1

η
−
√
η

η

)
=
√
γ

√
η + 1−√η
√
η

=
√
γ

η + 1− η
√
η(
√
η + 1 +

√
η)

≤
√
γ

η

Thus ||δ′i − δ′′i ||2 is bounded by

||δ′i − δ′′i ||2 ≤
∣∣∣∣ciwij(yij − x)

λiqj
− ci
√
γq−1
j wij(yij − x)

∣∣∣∣
2

≤
∣∣∣∣√γ
η
ciq
−1
j wij(yij − x)

∣∣∣∣
2

≤
√
γ

η
||ciq−1

j wij(yij − x)||2

=

√
γ

η

√
(yij − xj)2(ciwijq

−1
j )2

=

√
γ

η
||yi − x||2ciwijq−1

j

≤
√
γdmax

βηn3/2α
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Lemma 8.9.4. ∣∣∣∣∣∣∫ i 6∈N̂ p(i)(δi − δ′′i ) di
∣∣∣∣∣∣

2
= O(αm/2nm/4)

Proof. For δi, we trivially have ||δi||2 ≤ dmax. For δ′′i , by Lemma 8.7.4 (and the definition of qj) we

have ciwijq
−1
j ≤ 1

βn3/2α
. Therefore

||δ′′i ||2 =
√
γciwijq

−1
j ||yi − x||2 ≤

√
γdmax

βn3/2α

Since limn→∞ n3/2α = ∞ by assumption, we have ||δ′′i ||2 = O(1) (this is a loose bound of course,

but sufficient for our purposes). Therefore∣∣∣∣∣∣∫ i6∈N̂ p(i)(δi − δ′′i ) di
∣∣∣∣∣∣

2
≤
∫
i 6∈N̂ p(i)||δi||2 di+

∫
i 6∈N̂ p(i)||δ

′′
i ||2 di

≤ (dmax +O(1))
∫
i 6∈N̂ p(i) di

By Lemma 8.7.2,
∫
i 6∈N̂ p(i) di = O(αm/2nm/4). Since dmax is also a constant, we have

∣∣∣∣∣∣∫ i 6∈N̂ p(i)(δi − δ′′i ) di
∣∣∣∣∣∣

2
=

O(αm/2nm/4).

Lemma 8.9.5. We have

∣∣∣∣∣∣∣∣n∫
i∈N

p(i)δi(x) di

∣∣∣∣∣∣∣∣
2

≤ γ+
√
γ

Ω(n2α2) +O(αm/2nm/4+1).

Proof. We have ∣∣∣∣∫
i∈N p(i)δi di

∣∣∣∣
2

=
∣∣∣∣∫

i∈N p(i)(δ
′′
i − δ′′i + δi) di

∣∣∣∣
2

=
∣∣∣∣∫

i∈N p(i)δ
′′
i di

∣∣∣∣
2

+
∣∣∣∣∫

i∈N p(i)(δi − δ
′′
i ) di

∣∣∣∣
2

By Lemma 8.9.1,
∣∣∣∣∫

i∈N p(i)δ
′′
i di

∣∣∣∣
2

= 0. Thus

∣∣∣∣∫
i∈N p(i)δi di

∣∣∣∣
2

=
∣∣∣∣∫

i∈N p(i)(δi − δ
′′
i ) di

∣∣∣∣
2

=
∣∣∣∣∣∣∫ i∈N̂ p(i)(δi − δ′′i ) di+

∫
i 6∈N̂ p(i)(δi − δ

′′
i ) di

∣∣∣∣∣∣
2

≤
∣∣∣∣∫

i∈N̂ p(i)(δi − δ
′′
i ) di

∣∣∣∣
2

+
∣∣∣∣∣∣∫ i6∈N̂ p(i)(δi − δ′′i ) di

∣∣∣∣∣∣
2

where the inequality follows from the triangle inequality of norms. By Lemma 8.9.4, we have∣∣∣∣∣∣∫ i6∈N̂ p(i)(δi − δ′′i ) di
∣∣∣∣∣∣

2
= O(αm/2nm/4), so

∣∣∣∣∫
i∈N p(i)δi di

∣∣∣∣
2
≤
∣∣∣∣∫

i∈N̂ p(i)(δi − δ
′′
i ) di

∣∣∣∣
2
+O(αm/2nm/4).

For the next sequence of equations, we will use the triangle inequality, Lemmas 8.9.2 and 8.9.3, and∫
i∈N̂ p(i) di ≤

∫
i∈N p(i) di = 1.∣∣∣∣∫

i∈N̂ p(i)(δi − δ
′′
i ) di

∣∣∣∣
2

=
∣∣∣∣∫

i∈N̂ p(i)(δ
′′
i − δ′i + δ′i − δi) di

∣∣∣∣
2

≤
∣∣∣∣∫

i∈N̂ p(i)(δ
′′
i − δ′i) di

∣∣∣∣
2

+
∣∣∣∣∫

i∈N̂ p(i)(δ
′
i − δi) di

∣∣∣∣
2

≤
∫
i∈N̂ p(i)||δ

′′
i − δ′i||2 di+

∫
i∈N̂ p(i)||δ

′
i − δi||2 di

≤ 2γdmax
β2n3α2

∫
i∈N̂ p(i) di+

√
γ

βηn3/2α
dmax

∫
i∈N̂ p(i) di
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=
2γdmax
β2n3α2

+

√
γ

βηn3/2α
dmax

=
γ

Ω(n3α2)
+

√
γ

Ω(n3α2)

Therefore ∣∣∣∣∫
i∈N p(i)δi di

∣∣∣∣
2
≤ γ

Ω(n3α2)
+

√
γ

Ω(n3α2)
+O(αm/2nm/4)

To obtain the required bound for
∣∣∣∣n ∫

i∈N p(i)δi(x) di
∣∣∣∣

2
, we simply multiply the above expression

by n.

Lemmas 8.7.1, 8.8.6, and 8.9.5 together imply Theorem 8.4.1.

8.10 Non-triviality of our solution concept

As mentioned in Section 8.1.1, our definition of an equal-power equal-λ equilibrium may appear

circular, since we are maximizing welfare and evaluating λi with respect to a utility scale which

we get to choose. In Section 8.1.1, we argued that intuitively, this is analogous to the definition

of equality by allocating equal amounts of an artificial currency. In this section, we argue that our

solution concept is mathematically nontrivial, by (informally) showing that a particular “obvious”

choice for c is not sufficient. Specifically, we show that a uniform c (i.e., ci = c for all i) cannot

lead to an equal-power equal-λ equilibrium in general. Making this argument formal would require

substantial algebra similar to that in Section 8.8.2, which we feel would obscure the primary intuition.

Recall Lemma 8.8.2, where qj = n
∫
k∈N p(k)ckwkj dk:

Lemma 8.8.2. For every agent i and issue j, δij =
ciwij(yij − xj)
ciwij + λiqj

.

Suppose there exists some c > 0 such that ci = c for all i ∈ N . Then δij reduces to

δij =
cwij(yij − xj)

cwij + λicn
∫
k∈N p(k)wkj dk

=
wij(yij − xj)

wij + λin
∫
k∈N p(k)wkj dk

As n goes to infinity, the λin
∫
k∈N p(k)wkj dk term dominates the ciwij term. Thus we can approx-

imate δij by

δij ≈
wij(yij − xj)

λin
∫
k∈N p(k)wkj dk

=
cwij(yij − xj)

λiqj

Recall that for any agent i whose power constraint is not tight, we have λi = 0; this is a standard

property of Lagrange multipliers. Clearly for those agents, we cannot have (1 − ε′)λ ≤ λi ≤ λ for

any λ > 0. An equal-power equal-λ ε′-equilibrium requires that the above hold for at least a 1− ε′

fraction of the agents, so at least a 1− ε′ fraction of the agents must have a tight power constraint.

Thus in order to achieve an exact equal-power equal-λ equilibrium as n → ∞, almost all of the

agents must have a tight power constraint as n→∞.
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Let i be an arbitrary agent with a tight power constraint. By Lemma 8.8.1, this implies that∑
j∈M δ2

ijqj = γ. Thus we have

∑
j∈M

(
cwij(yij − xj)

λiqj

)2

qj ≈ γ

∑
j∈M

c2w2
ij(yij − xj)2q−1

j ≈ λ2
i

c2
∑
j∈M

w2
ij(yij − xj)2q−1

j ≈ λ2
i

We need every pair of agents i, i′ ∈ Ñ to satisfy λi/λk ≈ 1. That means we need∑
j∈M w2

ij(yij − xj)2(
∫
k∈N p(k)ckwkj dk)−1∑

j∈M w2
i′j(yi′j − xj)2(

∫
k∈N p(k)ckwkj dk)−1

≈ 1

Note that (
∫
k∈N p(k)ckwkj dk)−1 is just some constant. Consider a pair of agents i and i′ such that

|yij − xj | > |yi′j − xj | and wij > wi′j for each j ∈M : then this ratio can never approach 1, even as

n → ∞. For an appropriate choice of distribution p, this means that there will always be constant

measure set of agents whose values of λi are not close to the Lagrange multipliers of other agents.

This means that in general, choosing the same scaling factor for each agent will not be sufficient

for an equal-power equal-λ equilibrium. Furthermore, the above reasoning intuitively suggests that

we really do need ci ≈ 1/
√∑

j∈M w2
ij(yij − xj)2q−1

j for (almost) every i ∈ N .

8.11 Conclusion

In this chapter, we proposed and analyzed the concept of equal power for multidimensional continu-

ous public decision-making. Drawing fundamental literature in political philosophy and economics,

we argued that that equality of power is a natural analog of equality of resources and envy-freeness

for public decision-making. Our main result is that for any ε > 0 and a large enough number of

agents, an equal-power equal-λ ε-equilibrium is guaranteed to exist; in other words, we achieve an

exact equal-power equal-λ equilibrium in the limit. In our opinion most interesting part of our proof

is the novel fixed point argument presented in Section 8.5.

There are many possible directions for future work. The first is the possibility of an iterative

algorithm for converging to an equal-power equal-λ equilibrium. As discussed in Section 8.1.2, there

is a good reason to be optimistic about the existence of such an algorithm, especially in conjunction

with the already extensive quadratic voting literature.

It could also be interesting to extend our results to other utility functions beyond quadratic

utilities. A first step could be a “general quadratic utility” of the form ui(x) = −(yi−x)TWi(yi−x)

for some positive definite matrix Wi. When Wi is a diagonal matrix, this reduces to the form of utility

function we studied in this chapter. For a general quadratic utility, we conjecture that the equal

power constraint would be reduce to a constraint of the form δTi Qδi ≤ γ. This would correspond
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to not just a rescaling of the issues, but also a rotation. Our proof does not immediately carry

over to general quadratic utility functions, and we suspect that additional mathematical insights are

needed.

Possibly the most exciting direction – but also the most ambitious – is extending our results

beyond economics that are purely public goods. In general, economies will involve a much richer

mix of public goods at different levels of social organization, which are thus partially private when

viewed from another resolution (e.g. goods that accrue at the national or city level, but do not

spillover beyond these). Efficient, equal budget mechanisms for such societies might offer powerful

insights about economic structures that could outperform existing mixtures of capitalism and states.
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