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Abstract. We initiate the study of the communication complexity of fair division with indivisible
goods. We focus on some of the most well studied fairness notions (envy-freeness, proportionality,
and approximations thereof) and valuation classes (submodular, subadditive, and unrestricted). We
show that for more than two players (and any combination of other parameters), determining whether
a fair allocation exists requires exponential communication (in the number of goods). For two
players, tractability depends heavily on the specific combination of parameters, and most of the
paper is focused on the two-player setting. Taken together, our results completely resolve whether
the communication complexity of computing a fair allocation (or determining that none exists) is
polynomial or exponential, for every combination of fairness notion, valuation class, and number of
players, for both deterministic and randomized protocols.
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1. Introduction. Fair division studies the problem of distributing resources
among competing players in a ``fair"" way, where each player has equal claim to the
resources. There are many different notions of fairness, with the two most promi-
nent being envy-freeness and proportionality. An allocation is envy-free (EF) if each
player's value for her own bundle is at least as much as her value for any other player's
bundle. An allocation is proportional (Prop) if each player's value for her bundle is
at least 1/n of her value for the entire set of items, where n is the number of players.

In discrete fair division, the resources consist of indivisible items: each item must
go to a single player and cannot be split among players. Unfortunately, neither envy-
freeness nor proportionality can be guaranteed in this setting. Consider two players
and a single item: one must receive the item while the other receives nothing, so the
allocation is neither EF nor Prop. We study the problem of finding an EF (or Prop)
allocation, or showing that none exists.

We also consider approximate versions of these properties: for c \in [0, 1], an
allocation is c-EF if each player's value for her own bundle is at least c times her value
for any other player's bundle, and an allocation is c-Prop if each player's value for her
bundle is at least c/n of her value for the entire set of items. Thus 1-EF and 1-Prop are
standard envy-freeness and proportionality, respectively. The same counterexample
of two players and a single item shows that these approximate properties also cannot
be guaranteed for any c > 0.1

From a computational complexity viewpoint, this problem is hard even when
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COMMUNICATION COMPLEXITY OF DISCRETE FAIR DIVISION 207

player valuations are additive, meaning that a player's value for a set of items is the
sum of her values for the individual items. For two players with identical additive
valuations, determining whether a 1-EF or 1-Prop exists is NP-hard, via a simple
reduction from the partition problem [3].

It is arguably even more natural to study fair division from a communication com-
plexity perspective, where there is no centralized authority and each player initially
knows only her own preferences.

When players have combinatorial valuations, their values for a bundle cannot
just be decomposed into their values for the individual items.2 In particular, for
m items, a combinatorial valuation may contain 2m different values. The primary
question is to determine whether players need to exchange an exponential amount
of information to compute a fair allocation or whether the problem can be solved
using only polynomial communication. This question has not been studied previously,
despite the rich literature on communication complexity in combinatorial auctions
(see, e.g., [12, 21, 22]).

Our paper can also be thought of as formally studying the difficulty of eliciting
different classes of valuations from a fair division standpoint. Additive valuations are
typically used in practice (for example, on the nonprofit website SPLIDDIT [15]),
because each player need only report one value for each item to specify the entire
valuation. Richer combinatorial valuations allow for more expressiveness but may be
more difficult to elicit. Our work formally studies the tradeoffs between these factors.

1.1. Our results. We study the following question: Given n players and m
items, a fairness property P \in \{ EF, Prop\} , and a constant c \in [0, 1], how much
communication is required either to find a c-P allocation or to show that none exists?3

In other words, the problem is to determine whether a c-P allocation exists, and if
so, to return one. We are primarily interested in whether this can be done with
communication polynomial in m. The answer to this question will depend on n, P ,
and c. We also consider when player valuations are restricted to be submodular or
subadditive, as well as deterministic vs. randomized protocols.

All in all, we give a full characterization of the communication complexity for
every combination of the following five parameters:

1. number of players n;
2. valuation class: submodular, subadditive, or general;
3. each P \in \{ EF, Prop\} ;
4. every constant c \in [0, 1];
5. deterministic or randomized communication complexity.

1.1.1. The importance of the two-player setting. One of our results (sec-
tion 7) shows that there is no hope for a polynomial communication protocol for more
than two players: exponential communication is required for every n > 2, for either
P \in \{ EF, Prop\} , for any c > 0, even for submodular valuations, and even for ran-
domized protocols. The (very important) two-player case is surprisingly rich, however,
with multiple phenomena occurring across different valuation classes and constants
c. The results for two players in the deterministic setting are summarized in Table 1.
It is also surprising that there is such a chasm between the two- and three-player

2An increasing amount of research in fair division considers such combinatorial valuations (see,
e.g., [1, 14, 23]).

3We only consider a single c-P property at a time: we do not consider satisfying envy-freeness
and proportionality simultaneously. For subadditive valuations, c-EF implies c-Prop, but c-EF and
c-Prop are incomparable for general valuations.
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208 BENJAMIN PLAUT AND TIM ROUGHGARDEN

Table 1
A summary of our results for the two-player deterministic setting. For both c-EF and c-Prop,

we characterize exactly when the problem is easy (i.e., can be solved with communication polynomial
in the number of items) and hard (i.e., requires exponential communication). We note that the
protocol for Theorem 4.1 has communication cost exponential in 1

1 - c
, and the corresponding lower

bound (Theorem 6.1) rules out a protocol with communication cost polynomial in 1
1 - c

. See section

1.1.2 for additional discussion.

c-EF (deterministic) c-Prop (deterministic)
easy when hard when easy when hard when

General valuations never c > 0 (Thm. 9.2) never c > 0 (Thm. 9.1)
Subadditive valuations c \leq 1/2 (Thm. 8.4) c > 1/2 (Thm. 8.6) c \leq 2/3 (Thm. 8.5) c > 2/3 (Thm. 8.7)
Submodular valuations c < 1 (Thm. 4.1) c = 1 (Thm. 6.1) c \leq 1 (Thm. 3.1) never

cases; for example, there is no analogous chasm for maximizing the social welfare in
combinatorial auctions.

Furthermore, in contrast to combinatorial auctions, the two-player setting is fun-
damental in fair division. Indeed, one of the first known mentions of fair division
is in the Bible, when Abraham and Lot use the cut-and-choose method to divide a
piece of land. In modern times, one of the primary applications of fair division for
indivisible items is divorce settlements, which is fundamentally a two-player setting.
Fair Outcomes Inc.,4 a commercial fair division website, only allows for two players.
Other applications of fair division, such as dividing an inheritance and international
border disputes, are also often two-player settings. Unless otherwise mentioned, we
assume that n = 2 throughout the paper.

1.1.2. Submodular valuations. We first consider submodular valuations in
the deterministic setting (for n = 2). We show that full proportionality (1-Prop)
requires only polynomial communication (Theorem 3.1), whereas full envy-freeness
requires exponential communication (Theorem 6.1), exhibiting an interesting differ-
ence between the two properties.

The hardness result for 1-EF leaves open the intriguing possibility of a polynomial-
communication approximation scheme (PAS):5 for any fixed c < 1, is communication
cost polynomial inm sufficient? As one of our main results, we prove that this is indeed
the case, and we prove it using a reduction to a type of graph we call the ``minimal
bundle graph"" (Theorem 4.1). This is our most technically involved argument.

This protocol has communication cost exponential in 1
1 - c , and so this PAS is not a

fully polynomial-communication approximation scheme (FPAS), which would require
polynomial dependence on 1

1 - c . Our lower bound for 1-EF (Theorem 6.1) rules out
an FPAS, so our results are still tight.

1.1.3. Subadditive valuations. The story is different for subadditive valua-
tions, which are treated in section 8. We show that only polynomial communication
is required for c-EF when c \leq 1/2 (Theorem 8.4) and for c-Prop when c \leq 2/3 (Theo-
rem 8.5). Interestingly, the constants 1/2 and 2/3 turn out to be tight: we show that
exponential communication is required for c-EF for every constant c > 1/2 (Theo-
rem 8.6) and for c-Prop for every constant c > 2/3 (Theorem 8.7). This establishes
another interesting difference between the two fairness notions.

1.1.4. General valuations. The story is again different for general valuations,
which we consider in section 9. In the deterministic setting, c-EF and c-Prop each

4http://fairoutcomes.com
5This is the same idea as a PTAS, but here we are interested in communication, not time.
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require exponential communication for every c > 0 (Theorems 9.2 and 9.1). This
resolves the deterministic setting.

It is interesting that hardness (for two players and deterministic protocols) turns
out to be monotonic with respect to c, i.e., increasing c cannot make the problem
easier. This makes sense intuitively, but we do not have a simple proof of this.

1.1.5. Randomized communication complexity. The c-Prop lower bound
for general valuations also holds in the randomized setting for any c > 0. However,
c-EF admits an efficient randomized protocol for any c \leq 1 and general (and hence
also subadditive and submodular) valuations. This randomized protocol is based on
a reduction to the Equality problem (testing whether two bit strings are identical),
which is known to have an efficient randomized protocol. Our randomized protocol
for c-EF also carries over to c-Prop for any c \leq 1 in the special case of subadditive
(and hence also submodular) valuations. This resolves the randomized setting.

One may wonder why we care about deterministic protocols, when randomized
protocols do so well. Aside from the technical goal of handling every combination of
parameters, in fair division settings with considerable value (e.g., inheritance, divorce
settlements), players may be wary of allowing randomization.

Last, we briefly consider the maximin share property in section 10 and prove
exponential lower bounds in that setting as well.

1.2. Ideas behind our protocols. Since the problem is always hard when
n > 2, all of our upper bounds are in the two-player setting. All of our positive
results require the following condition: for any partition of the items into two bundles
A1 and A2, each player must be happy with at least one of A1 and A2. This is always
true for envy-freeness: a player is always happy with whichever of A1 and A2 she has
maximum value for (she could be happy with both bundles if they have equal value
to her). This is not satisfied for proportionality in general, for example, if a player
has value zero for each of A1 and A2 but positive value for A1 \cup A2. However, it is
satisfied for subadditive valuations.

All of our deterministic protocols have the same first step: if there is any allocation
where player 1 would be happy to receive either bundle, she specifies that allocation
to player 2, and player 2 selects her preferred bundle. Player 2 is guaranteed to be
happy with at least one of the bundles by the above condition, and player 1 is happy
with either bundle in this allocation, so she is happy as well.

The key to the analysis is what happens when there is no allocation such that
player 1 is happy with either bundle. It will turn out that the absence of such an
allocation implies certain structure in the valuations. The exact structure, and the
way the structure is exploited, depends on the setting (valuation class, property P ,
and constant c).

For example, consider the case of subadditive valuations and 1
2 -EF. We show that

if there is no allocation where player 1 is happy with either bundle, then there must
exist a single item that player 1 values more than the rest of the items combined.
Then player 1 can simply specify that item to player 2. If player 2 is happy with
the rest of the items, we have found a satisfactory allocation. Otherwise, there is
no satisfactory allocation, since players 1 and 2 both care about that particular item
more than the rest of the items combined.

Furthermore, this protocol gives an additional guarantee. If a c-P allocation is not
returned, the protocol will return the fairest allocation possible, i.e., a c\prime -P allocation
where no allocation is c\prime \prime -P for any c\prime \prime > c\prime . For brevity, we will use c\ast to refer to
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210 BENJAMIN PLAUT AND TIM ROUGHGARDEN

the maximum c\prime such that a c\prime -P allocation exists.6 If player 2 determines that a c-P
allocation does not exist, then there is a single item g that both players care about
more than all of the other items together. One player will have to not receive item
g, and the protocol gives g to the player who will be most unhappy otherwise. This
yields a c\ast -P allocation. In fact, all of our deterministic protocols give this guarantee,
although slightly more work is required to achieve it in other settings.

1.2.1. Minimal bundles. The reasoning described above is actually a special
case of analyzing what we call minimal bundles. We say that a bundle is minimal
for some player if that player is happy with the bundle but is not happy with any
strict subset of that bundle.7 The minimal bundles represent the most a player is
willing to compromise. If a player does not receive one of her minimal bundles (or a
superset thereof), she cannot be happy, by definition. On the other hand, if a player
receives one of her minimal bundles (or a superset thereof), she is guaranteed to be
happy.8 Thus it is both necessary and sufficient for each player to receive one of her
minimal bundles (or a superset thereof). By this reasoning, it is sufficient for player 1
to specify all of her minimal bundles to player 2: player 2 can then determine whether
there is an allocation which satisfies her (player 2), while still giving player 1 one of
player 1's minimal bundles.

The general Minimal Bundle Protocol (Protocol 4.1) is as follows. If there is an
allocation where player 1 is happy with either bundle, she specifies that allocation to
player 2, and we are done. Otherwise, player 1 specifies all of her minimal bundles to
player 2, who searches for a satisfactory allocation. If player 2 fails to find one, she
declares that no satisfactory allocation exists. There is a final step that is used to
guarantee that a c\ast -P allocation is returned if no c-P allocation is found; this will be
described later.

The key is proving that the number of minimal bundles is polynomial in m, and
this analysis varies based on the context. For example, for subadditive valuations and
1
2 -EF, we discussed above how if there is no allocation where player 1 is happy with
either bundle, there must be a single item g that she values more than all of the other
items together. This means that player 1 has a single minimal bundle: \{ g\} .

We also use the protocol to give a PAS for EF in the submodular setting: we show

that for every fixed c < 1, the number of minimal bundles is at most 2(m+1)
8

1 - c , and
thus the protocol uses polynomial communication for any fixed c. The analysis for
this case is technically involved and involves constructing what we call the ``minimal
bundle graph"" for player 1's valuation. The vertices in this graph are the minimal
bundles, and two vertices share an edge if the corresponding bundles overlap by exactly
one item (it will be impossible for two minimal bundles to overlap by more than one
item). For some of these edges, moving the overlapping item between bundles will
cause a large change in value: these special edges will play an important role. We will
show that the only way to have a large number of minimal bundles is for there to be
a large number of these special edges, but submodularity will imply an upper bound
on how many special edges can be incident on a single vertex, and hence an upper
bound on the total number of special edges.

The Minimal Bundle Protocol is correct for any valuation class, property P ,
or constant c. However, in some contexts, the number of minimal bundles may be

6It is possible that c\ast = 0 (for example, in the case of two players and one item), but our protocol
at least certifies that this is the best possible.

7A similar notion of ``minimal bundles"" features prominently in [4].
8We assume monotonicity: adding items to a bundle cannot decrease its value.
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exponential. Our lower bound constructions all involve valuations with an exponential
number of minimal bundles.

1.3. Related work. Fair division has a long history, and a full survey of this
field is outside of the scope of this paper; see, e.g., [6, 5, 18] for further background.

There are several approaches for handling the fundamental asymmetry of indivis-
ible items, where neither envy-freeness nor proportionality can be guaranteed. One
possibility is to allow for randomized allocations and search for allocations that are fair
in expectation [2, 9]. Another natural approach is to search for other compelling prop-
erties that can be guaranteed, the most popular candidates being envy-freeness up to
a single good (EF1) [8, 10, 17] and envy-freeness up to any good (EFX) [10, 23]. It is
known that EF1 allocations are guaranteed to exist and can be found with polynomial
computation (and thus polynomial communication), even for general valuations [17].
In contrast, it is not known whether EFX allocations are guaranteed to exist, which
makes studying the communication complexity of EFX difficult (at least as a decision
problem).

Although EF and Prop allocations do not always exist, they often do. For exam-
ple, the authors of [11] showed that when the number of items is at least a logarithmic
factor larger than the number of players, EF allocations are likely to exist.9 If a fully
FE or Prop allocation does exist in a particular instance, it may be preferable to
choose that allocation before resorting to weaker properties or randomization. In this
paper, we address the question of determining whether a c-EF or a c-Prop allocation
exists, and if so, finding one.

Communication complexity was first studied in [25]. The paper most relevant
to our work is [22], which shows that maximizing social welfare requires exponen-
tial communication, even for two players with submodular valuations. Furthermore,
they show that for general valuations, any constant factor approximation of the so-
cial welfare requires exponential communication to compute. Although they do not
mention envy-freeness, proportionality, or fair division, some of their arguments can
be adapted to prove exponential lower bounds for some (but not all) of the cases that
we study.

A recent and complementary line of work is presented in [7]. They study the
communication complexity of fair division with divisible goods (also known as ``cake
cutting""), where each resource can be divided into arbitrarily small pieces. Their
paper complements ours with no overlap. Together, our papers give a comprehensive
picture of the communication complexity of fair division in both the indivisible and
divisible models.

The organization of the rest of the paper is as follows. Section 2 formally presents
the model. Section 3 presents our 1-Prop protocol for submodular valuations. In
section 4, we discuss the PAS for 1-EF for submodular valuations. Section 5 describes
our general lower bound approach and proves a lemma that we will use to prove
lower bounds later on in a standardized way. Section 6 uses that lemma to prove
hardness for 1-EF for submodular valuations, which shows that the PAS from section
4 is optimal. Section 7 shows that the problem is always hard for more than two
players, even for submodular valuations and even in the randomized setting. The rest
of the paper is focused on resolving the two-player case. Section 8 presents the upper
and lower bounds for subadditive valuations. Section 9 considers general valuations
and also handles the randomized two-player setting. Table 1 will be complete after

9This result holds only for additive valuations, which are not our focus in this paper. However,
we believe the conceptual message still holds.
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212 BENJAMIN PLAUT AND TIM ROUGHGARDEN

this section. Finally, we consider the maximin share property (to be defined later) in
section 10.

2. Model. We formally introduce the discrete fair division model in section 2.1
and the communication complexity model in section 2.2.

2.1. Fair division. Let [k] denote the set \{ 1, . . . , k\} . Let N = [n] be the set
of players, and let M be the set of items, where | M | = m. We assume throughout
the paper that items are indivisible, meaning that an item cannot be split among
multiple players. Player i's value for each subset of M is specified by a valuation
vi : 2

M \rightarrow \BbbR \geq 0. We refer to a subset of M as a bundle.
We assume throughout the paper that valuations obey monotonicity (adding items

to a bundle cannot decrease the value of the bundle) and normalization (vi(\emptyset ) = 0),
and that vi(M) > 0. We refer to set of the valuations constrained only by these three
properties as ``general valuations.""

There are many commonly studied subclasses of valuations, such as subadditive
and submodular. A valuation v is subadditive if for all bundles S and T , v(S \cup T ) \leq 
v(S)+v(T ). Submodular valuations represent ``diminishing returns"": v is submodular
if v(T\cup \{ g\} ) - v(T ) \leq v(S\cup \{ g\} ) - v(S) whenever S \subseteq T . Every submodular valuation is
subadditive, but not every subadditive valuation is submodular. Thus a problem that
is hard for subadditive valuations may become tractable if valuations are restricted
to be submodular. Similarly, problems that are hard for general valuations may be
easier for subadditive valuations.

An allocation is a partition ofM into n disjoint subsets (A1, A2, . . . , An), where Ai

is the bundle allocated to player i. The goal is to find a ``fair"" allocation. The two most
prominent fairness notions for indivisible items are envy-freeness and proportionality.
Envy-freeness states that no player strictly prefers another player's bundle to her own,
and proportionality states that every player receives at least 1/n of her value for the
entire set of items. We can also define approximate versions of these properties.

Definition 2.1. An allocation A = (A1, . . . , An) is c-EF for some c \in [0, 1] if
for all i, j \in N ,

vi(Ai) \geq c \cdot vi(Aj).

Definition 2.2. An allocation A = (A1, . . . , An) is c-Prop for some c \in [0, 1] if
for all i \in N ,

vi(Ai) \geq c \cdot 
vi(M)

n
.

Thus 1-EF is standard envy-freeness, and 1-Prop is standard proportionality.
We will say that a player is (c, P )-happy with an allocation A if property c-P is

satisfied from her viewpoint. Specifically, when P = EF, we will say that player i is
(c, P )-happy with allocation A if vi(Ai) \geq c \cdot vi(Aj) for all j. For P = Prop, we will

say a player i is (c, P )-happy if vi(Ai) \geq c

n
vi(M). We will typically leave P implicit

and just say that player i is c-happy. We sometimes also leave c implicit and just say
that player i is happy.

An instance of Fair Division consists of a set of players N , a set of items M ,
player valuations (v1, . . . , vn), a fairness property P \in \{ EF, Prop\} , and a constant
c \in [0, 1]. The goal is to find an allocation satisfying c-P or show that none exists.

2.1.1. Two players. We use the following additional terminology when n = 2.
For a player i, we will use i to denote the other player. For an allocation A = (A1, A2),
let A be the allocation (A2, A1). Also, when n = 2, knowing player i's bundle uniquely
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determines the overall allocation, since player i simply has every item not in player i's
bundle. Therefore, with slight abuse of notation, we say that player i is c-happy with
bundle S if player i is c-happy with the allocation A where Ai = S and Ai = M\setminus S.

2.2. Communication complexity. We assume that each player knows only
her own valuation vi and does not know anything about other players' valuations. In
order to solve an instance of Fair Division, players will need to exchange information
about their valuations. We assume that all players know N,M,P , and c. Since there
are 2m subsets of M , specifying a bundle requires m bits. We will use vsize to refer
to the number of bits required to represent a value vi(S). We assume that vsize is
polynomial in m; otherwise, sending even a single value would rule out a polynomial
communication protocol.

A (deterministic) protocol \Gamma specifies which player should speak (and what she
should say) as a function of the messages sent so far, and terminates when a player
declares that an allocation A satisfies c-P , or when a player declares that no c-P
allocation exists. For fixed N,M,P , and c, we define the communication cost of a
protocol \Gamma to be the maximum number of bits \Gamma sends across all player valuations
v1, . . . , vn. Formally, let C\Gamma (N,M, (v1, . . . , vn), P, c) be the number of bits that \Gamma com-
municates when run on the Fair Division instance (N,M, (v1, . . . , vn), P, c). Then
the communication cost of \Gamma is max(v1,...,vn) C\Gamma (N,M, (v1, . . . , vn), P, c).

We define the deterministic communication complexity D(n,m,P, c) as the mini-
mum communication cost of any protocol \Gamma which correctly solves Fair Division for
n players, m items, property P , and constant c. Formally,

D(n,m,P, c) = min
\Gamma 

max
(v1,...,vn)

C\Gamma ([n], [m], (v1, . . . , vn), P, c),

where \Gamma ranges over all correct deterministic protocols.
In a randomized protocol \Gamma R, each player also has access to an infinite stream of

random bits. The protocol should correctly solve Fair Division with probability 2/3
(say) over these random bits. Like the deterministic setting, the communication cost
of \Gamma R is the number of bits \Gamma R communicates for a worst-case choice of v1, . . . , vn. We
can similarly define the randomized communication complexity R(n,m,P, c) as the
minimum communication cost of any randomized protocol \Gamma R which correctly solves
Fair Division with probability at least 2/3. Formally,

R(n,m,P, c) = min
\Gamma R

max
(v1,...,vn)

C\Gamma R
([n], [m], (v1, . . . , vn), P, c),

where \Gamma R ranges over all correct randomized protocols. If valuations are restricted
to be subadditive or submodular, the problem may become easier, so D(n,m,P, c)
and R(n,m,P, c) may be affected. We use Dsubadd(n,m,P, c) and Dsubmod(n,m,P, c)
to denote the deterministic communication complexity when valuations are restricted
to be subadditive and submodular, respectively (and similarly for Rsubadd(n,m,P, c)
and Rsubmod(n,m,P, c)). The following relationships are immediate for all n,m,P,
and c:

R(n,m,P, c) \leq D(n,m,P, c),

Dsubmod(n,m,P, c) \leq Dsubadd(n,m,P, c) \leq D(n,m,P, c),

Rsubmod(n,m,P, c) \leq Rsubadd(n,m,P, c) \leq R(n,m,P, c).

Another factor that may affect the communication complexity is how the players
gain access to random bits. In the public-coin model, the players can also see other
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214 BENJAMIN PLAUT AND TIM ROUGHGARDEN

players' streams of random bits; in the private-coin model, each player sees only her
own stream. This distinction is not significant in our setting, however, due to the
following theorem from [19].

Theorem 2.3 (see [19]). Suppose there exists a public-coin randomized protocol
with communication cost C on \ell bits of input. Then there exists a private-coin ran-
domized protocol with communication cost O(C + log \ell ).

Thus we will assume all randomized protocols to be public-coin for the rest of the
paper.

Finally, we mention the multiparty (i.e., n > 2) communication complexity model.
There is more than one such model: for example, do players communicate in a peer-
to-peer fashion, or is each message broadcast for all of the players to see? We discuss
in section 7 how this turns out not to matter in our setting.

3. An upper bound for 1-Prop with submodular valuations. This section
presents our first result: a deterministic protocol for 1-Prop when there are two players
and when valuations are submodular. The protocol will communicate just m + 1
values and a single bundle. Our protocol finds either a 1-Prop allocation or a c\ast -Prop
allocation. Recall that c\ast is the maximum c such that a c-P allocation exists.10 We
prove the following theorem.

Theorem 3.1. For two players with submodular valuations, Protocol 3.1 has com-
munication cost at most (m+1)vsize +m and returns either a 1-Prop allocation or a
c\ast -Prop allocation. This also implies that for any c \in [0, 1],

Dsubmod(2,m,Prop, c) \leq (m+ 1)vsize +m.

To see that the theorem also implies Dsubmod(2,m,Prop, c) \leq (m + 1)vsize +m
for any c, suppose that the protocol returns a c\ast -Prop allocation where c\ast < 1: then
we know that no allocation is c\prime -Prop for any c\prime > c\ast , so a c-Prop allocation exists if
and only if c\ast \geq c. Thus Protocol 3.1 either finds a c-Prop allocation or shows that
none exists for any c \in [0, 1].

It will be important that the following condition is satisfied in this setting.

Condition 3.1. For every allocation A, each player is happy with at least one of
A and A.

Recall that for an allocation A = (A1, A2), A = (A2, A1). This condition is
satisfied for proportionality with subadditive valuations (and hence also satisfied for
submodular valuations):

max
\bigl( 
vi(A1), vi(A2)

\bigr) 
\geq 1

2

\bigl( 
vi(A1) + vi(A2)

\bigr) 
\geq 1

2
vi(A1 \cup A2) =

1

2
vi(M) \geq c

2
vi(M)

for all c \in [0, 1]. If she receives the bundle argmax
\bigl( 
vi(A1), vi(A2)

\bigr) 
, then player i

is always happy. Also, we assume in this section that v1(M) = 1, without loss of
generality: were this not the case, we could simply rescale v1 as needed.

Let M = (g1, g2, . . . , gm) be an arbitrary ordering of the items. We assume that
this ordering is publicly known. Consider starting from the empty set and adding the
items in M one at a time in this order. We define \delta Mk as player 1's marginal value
of adding gk in this process: \delta Mk = v1(g1, g2, . . . , gk - 1, gk) - v1(g1, g2, . . . , gk - 1). Note

10Technically, our protocol always returns a c\ast -Prop allocation, since we only consider c \in [0, 1].
We state the 1-Prop case separately in the theorem, because it is handled separately in the protocol.
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Table 2
An example of a possible valuation v1 over three goods and the corresponding values for \delta Sk .

k 1 2 3
v1(g1, . . . , gk) 2 2 3

\delta Mk 2 0 1

that \delta Mk is not equal to vi(\{ gk\} ) in general, because of submodularity. See Table 2
for an example.

The protocol is as follows. The first step is common to all of our deterministic
protocols: player 1 checks whether there is an allocation A where she is happy with
both A and A. If so, player 2 can choose whichever she prefers, and we are done by
Condition 3.1. If this fails, the following condition is satisfied.

Condition 3.2. There is no allocation A for which player 1 is happy with both
A and A.

In this case, player 1 sends the values (\delta M1 , \delta M2 , . . . , \delta Mm ) to player 2. For every
bundle S, player 2 needs to be able to figure out whether player 1 likes S or M\setminus S.
To do this, player 2 simply pretends that player 1's valuation is additive where \delta Mk
is the value of item gk. Formally, let \chi (S) =

\sum 
gk\in S \delta Mk : player 2 pretends that

v1(S) = \chi (S). This will not be a perfect estimate of v1, of course, but player 2 does
not need to know the exact value of v1(S): she only needs to know whether player 1
is happy with S.

Lemma 3.2 shows that this actually works: assuming Condition 3.2, v1(S) \geq 
1/2 if and only if \chi (S) \geq 1/2. We informally argue why this is case. Crucially,
submodularity implies that \chi (S) will be an underestimate of v1(S): v1(S) \geq \chi (S) for
all S. Since \chi (S) + \chi (M\setminus S) =

\sum m
k=1 \delta 

M
k = v1(M), either \chi (S) \geq 1/2 or \chi (M\setminus S) \geq 

1/2. Say \chi (S) \geq 1/2: then v1(S) \geq \chi (S) \geq 1/2, so player 1 is happy with S. Then
by Condition 3.2, we know that player 1 is not happy with M\setminus S. Therefore, for any
bundle S, player 2 can correctly use \chi as a proxy for v1 to determine which of S
and M\setminus S player 1 is happy with. Thus \chi is sufficient for her to determine whether
or not a 1-Prop allocation exists, and if so, to find one. This lemma is the heart of
Protocol 3.1.

Step 4, S\ast (vi), and ci(S
\ast (vi)) are necessary only for finding a c\ast -Prop allocation

if no 1-Prop allocation is found. For a bundle S and property P , let cPi (S) be the

maximum c\prime \leq 1 such that player i is c\prime -happy with S. For example, cProp
i (S) =

min
\bigl( 
1, 2vi(S)

vi(M)

\bigr) 
= min(1, 2vi(S)), since we assumed vi(M) = 1. Although this section

considers only proportionality, we allow for either P \in \{ EF, Prop\} in our definitions,
since we will use this terminology again in later sections. We will typically leave P
implicit and write ci(S).

For each player i, we define a special bundle

S\ast (vi) = argmax
S\subseteq M : \bfc i(S)<c

ci(S).

In words, S\ast (vi) is the bundle that player i is the most happy with, out of all of the
bundles she is not fully happy (i.e., c-happy) with.11

11Although incentives are not the focus of this paper, we mention that step 4 makes Protocol 3.1
easily manipulable. Specifically, it is a dominant strategy for player 1 to report c1(S\ast (v1)) = 0 (i.e.,
if I am not fully happy, I am not happy at all, so you should make me fully happy). The same
reasoning applies to Protocol 4.1, which has the same step 4.
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Protocol 3.1 Protocol for two players with submodular valuations to find either a
1-Prop allocation or a c\ast -Prop allocation.

Private inputs: v1, v2
Public inputs: the ordering of M = \{ g1, g2, . . . , gm\} 

1. If there exists an allocation A where player 1 is happy with both A and A,
player 1 sends that allocation to player 2. If player 2 is happy with A, she
declares that A is 1-Prop; otherwise, she declares that A is 1-Prop.

2. If there is no such allocation A, player 1 sends the values (\delta M1 , \delta M2 , . . . , \delta Mm )
to player 2, along with S\ast (v1) and the value c1(S

\ast (v1)).
3. Player 2 first checks whether there exists any bundle S where \chi (S) \geq 1/2 and

v2(M\setminus S) \geq 1/2. If so, she declares that the allocation (S,M\setminus S) is 1-Prop.
4. If not, player 2 computes S\ast (v2), c2(S

\ast (v2)), and i =
argmaxi\prime \in \{ 1,2\} ci\prime (S

\ast (vi\prime )). Let A be the allocation where Ai = S\ast (vi)
and Ai = M\setminus S\ast (vi). Player 2 then declares that A is ci(S

\ast (vi))-Prop and
that c\ast = ci(S

\ast (vi)).

It will be useful for the analysis to define \delta Si for an arbitrary bundle S. First, let

S\leq k = \{ gj \in S | j \leq k\} .

For example, S\leq 0 = \emptyset and S\leq m = S for all S. Also, whenever gk \in S, we have S\leq k =
S\leq k - 1 \cup \{ gk\} . Let \delta Sk = v1(S\leq k) - v1(S\leq k - 1). Note that for all S, v1(S) =

\sum m
k=1 \delta 

S
k .

Lemma 3.2. Assuming Condition 3.2, for any bundle S, v1(S) \geq 1/2 if and only
if \chi (S) \geq 1/2.

Proof. We first claim that for any bundle S and any item gk \in S, \delta Sk \geq \delta Mk . We
have

\delta Sk = v1(S\leq k) - v1(S\leq k - 1) = v1(S\leq k - 1 \cup \{ gk\} ) - v1(S\leq k - 1)

and
\delta Mk = v1(M\leq k) - v1(M\leq k - 1) = v1(M\leq k - 1 \cup \{ gk\} ) - v1(M\leq k - 1).

Since S\leq k - 1 \subseteq M\leq k - 1, we have v1(S\leq k - 1 \cup \{ gk\} ) - v1(S\leq k - 1) \geq v1(M\leq k - 1 \cup \{ gk\} ) - 
v1(M\leq k - 1) by submodularity. Thus \delta Sk \geq \delta Mk for all k and S. Therefore, for any
bundle S,

v1(S) =
\sum 
gk\in S

\delta Sk \geq 
\sum 
gk\in S

\delta Mk = \chi (S),

so v1(S) \geq \chi (S) for all S \subseteq M .
Suppose \chi (S) \geq 1/2: then we immediately have v1(S) \geq 1/2 by the above

argument. Suppose v1(S) \geq 1/2. Then, by Condition 3.2, v1(M\setminus S) < 1/2. Therefore
\chi (M\setminus S) < 1/2. Next, we have

\chi (S) + \chi (M\setminus S) =
\sum 
gk\in S

\delta Mk +
\sum 

gk\in M\setminus S

\delta Mk =

m\sum 
k=1

\delta Mk = v1(M) = 1.

Since \chi (M\setminus S) < 1/2, we have \chi (S) \geq 1/2.

Theorem 3.1. For two players with submodular valuations, Protocol 3.1 has com-
munication cost at most (m+1)vsize +m and returns either a 1-Prop allocation or a
c\ast -Prop allocation. This also implies that for any c \in [0, 1],

Dsubmod(2,m,Prop, c) \leq (m+ 1)vsize +m.

D
ow

nl
oa

de
d 

03
/2

3/
20

 to
 1

28
.1

2.
24

6.
11

2.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

COMMUNICATION COMPLEXITY OF DISCRETE FAIR DIVISION 217

Proof. If the protocol terminates in step 1, just one bundle is communicated (and
zero values), which requires m bits. Thus, in this case, the communication cost is
m \leq (m + 1)vsize + m. If the protocol does not terminate in step 1, then the m
values (\delta M1 , . . . , \delta Mm ) are sent, plus the bundle S\ast (v1), plus the value c1(S

\ast (v1)). By

definition of cProp
1 , c1(S

\ast (v1)) requires a single value to communicate.
Thus, in this case, m + 1 values and one bundle are communicated, so the com-

munication cost is (m + 1)vsize + m. Therefore the communication cost bound is
satisfied.

It remains to prove correctness. Suppose the protocol terminates in step 1. By
Condition 3.1, player 2 is happy with at least one of A and A. Therefore player 2 is
happy with whichever of A and A she declares to be 1-Prop. Player 1 is happy with
both A and A, so she is also happy. Therefore, if the protocol terminates in step 1,
the declared allocation is in fact 1-Prop.

Suppose the protocol does not terminate in step 1. We assume Condition 3.2 for
the remainder of the proof. Suppose player 2 declares that (S,M\setminus S) is 1-Prop in step
3: then

\chi (S) \geq 1/2 and v2(M\setminus S) \geq 1/2.

Thus, by Lemma 3.2, v1(S) \geq 1/2, so (S,M\setminus S) is indeed a 1-Prop allocation.
So suppose the protocol does not terminate until step 4. We first claim that

no 1-Prop allocation exists. Suppose that a 1-Prop allocation A does exist: then
vi(Ai) \geq 1/2 for both i. Since the protocol did not terminate in step 1, we have
Condition 3.2. Thus, by Lemma 3.2, \chi (A1) \geq 1/2. Let S = A1: then

\chi (S) \geq 1/2 and v2(M\setminus S) = v2(A2) \geq 1/2,

so the protocol should have terminated in step 3, which is a contradiction.
Therefore no 1-Prop allocation exists. It remains to show that we return a c\ast -Prop

allocation in this case. Let i = argmaxi\prime \in \{ 1,2\} ci\prime (S
\ast (vi\prime )) as computed by player 2

in step 4. Let A be the allocation returned by the protocol in this case: Ai = S\ast (vi)
and Ai = M\setminus S\ast (vi).

We first claim that A is ci(S
\ast (vi))-Prop. Player i is ci(S

\ast (vi))-happy with A by
definition, and we claim that player i is 1-happy with A. If i were not 1-happy with
A, then she must be 1-happy with A by Condition 3.1. Furthermore, since player i
is not 1-happy with A, she must be 1-happy with A also by Condition 3.1. But then
both players are 1-happy with A, which is a contradiction.

Thus A is ci(S
\ast (vi))-Prop. Suppose that c\ast \not = ci(S

\ast (vi)): then there exists an
allocation A\prime where A\prime is c-Prop for some c > ci(S

\ast (vi)). We know that player i
cannot be happier than ci(S

\ast (vi))-happy without being 1-happy, so player i must
be 1-happy with A\prime . That implies that player 2 is not 1-happy with A\prime , since no
allocation makes both players 1-happy in this case. But then the happiest player
i can be is ci(S

\ast (vi)), and ci(S
\ast (vi)) \leq ci(S

\ast (vi)) by assumption. Thus, for any
allocation, there is a player who is at most ci(S

\ast (vi))-happy. Therefore no allocation
is c-Prop for any c > ci(S

\ast (vi)).

4. PAS for EF with submodular valuations. In this section, we prove our
other positive result for specifically submodular valuations: a deterministic protocol
for c-EF when c < 1 and when there are two players. This is our most technically
involved result. We prove the following theorem.

Theorem 4.1. For two players with submodular valuations and any c < 1, Pro-

tocol 4.1 has communication cost at most 2m(m + 1)
8

1 - c + 2vsize and returns either
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Table 3
An example demonstrating the minimal bundle property for P = Prop and c = 1. This instance

involves a valuation vi over three goods. Since vi(M) = vi(\{ g1, g2, g3\} ) = 10 in this case, player i
is happy with S if and only if vi(S) \geq 10/n = 5. For example, player i is happy with \{ g1, g3\} , but
that bundle is not minimal, since player i is also happy with \{ g3\} . In contrast, \{ g1, g2\} is minimal,
since player i is happy with neither \{ g1\} nor \{ g2\} .

Bundle S vi(S) 1-Prop? Minimal?
\{ g1\} 2 no N/A
\{ g2\} 4 no N/A
\{ g3\} 5 yes yes

\{ g1, g2\} 6 yes yes
\{ g1, g3\} 7 yes no
\{ g2, g3\} 9 yes no

\{ g1, g2, g3\} 10 yes no

a c-EF allocation or a c\ast -EF allocation. This also implies that

Dsubmod(2,m,EF, c) \leq 2m(m+ 1)
8

1 - c + 2vsize

for any c < 1.

This constitutes a polynomial-communication approximation scheme (PAS): the
communication cost approaches infinity exponentially as c goes to 1, but for any fixed
constant c < 1, it is polynomial in m.12

We use much of the same terminology from section 3: in particular, cPi (A), S\ast (vi),
S\leq k, and \delta Sk . Also, recall the following condition.

Condition 3.1. For every allocation A, each player is happy with at least one of
A and A.

This is satisfied for c-EF for any c \in [0, 1], even for general valuations: if vi(Ai) \geq 
vi(Ai), player i is happy with A. Otherwise, vi(Ai) \geq vi(Ai), so she is happy with A.

Our PAS protocol will use the minimal bundle analysis discussed in section 1.2.
For a fixed constant c, we say that a bundle S is minimal for a particular player if
that player is c-happy with S, but for all g \in S, she is not c-happy with S\setminus \{ g\} . See
Table 3 for an example. We use \scrS to denote the set of player 1's minimal bundles:
each S \in \scrS is a minimal bundle for player 1. Also, in this section, we assume that
v1(M) = 1.

4.1. The protocol. We now describe Protocol 4.1, also known as the Minimal
Bundle Protocol. Although we only consider envy-freeness in this section, we define
Protocol 4.1 for either P \in \{ EF, Prop\} . We will use this same protocol in section 8.1
to prove upper bounds for both envy-freeness and proportionality in the subadditive
case.

First, if there is an allocation A where player 1 is happy with both A and A, we
are done: player 2 chooses her favorite of A and A, and she is guaranteed to be happy
with at least one them by Condition 3.1. If there is no such allocation A, player 1
sends the set \scrS of all of her minimal bundles to the other player. We will prove that
in our setting, the number of minimal bundles sent in step 2 must be polynomial in

m. Specifically, we will show that | \scrS | < 2(m+ 1)
8

1 - c .
The minimal bundles represent the most player 1 is willing to compromise while

still being happy: she does not require anything more than a minimal bundle, but

12Because the dependence on 1
1 - c

is exponential, this constitutes a PAS but not an FPAS. An

FPAS is ruled out in section 6.
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Protocol 4.1 Protocol for two players to find either a c-P allocation or a c\ast -P
allocation.

Private inputs: v1, v2
Public inputs: P, c

1. If there exists an allocation A where player 1 is happy with both A and A,
player 1 sends that allocation to player 2. If player 2 is happy with A, she
declares that A is c-P ; otherwise, she declares that A is c-P .

2. If there is no such allocation A, player 1 sends the set \scrS of her minimal bundles
to player 2. She also sends the bundle S\ast (v1) and the value c1(S

\ast (v1)).
3. Player 2 first checks whether there exists a bundle S \in \scrS where player 2 is

happy with M\setminus S. If so, she declares that (S,M\setminus S) is c-P .
4. If not, player 2 computes S\ast (v2) and i = argmaxi\prime \in \{ 1,2\} ci\prime (S

\ast (vi\prime )). Let A
be the allocation where Ai = S\ast (vi) and Ai = M\setminus S\ast (vi). Player 2 then
declares that A is ci(S

\ast (vi))-P and that c\ast = ci(S
\ast (vi)).

she is not happy with any strict subset of any of her minimal bundles. In this way,
receiving a minimal bundle is both necessary and sufficient for player 1 to be happy.
Using this reasoning, we will show that knowing \scrS is sufficient for player 2 to find a c-P
allocation or show that none exists. Finally, step 4 is identical to that of Protocol 3.1
and is used to find a c\ast -P allocation when no c-P allocation exists.

4.2. Correctness. We now formally prove the correctness of Protocol 4.1. We
will prove a few helpful lemmas before proving the main correctness lemma (Lemma
4.4).

Lemma 4.1. If Protocol 4.1 declares an allocation to be c-P , the allocation is in
fact c-P .

Proof. The only two steps that can declare an allocation to be c-P are steps 1
and 3. Suppose the protocol declares an allocation to be c-P in step 1. Then, by
assumption, there exists an allocation A where player 1 is happy with both A and A.
If player 2 declares A to be c-P , then both players are happy with A, and the claim
is satisfied. If player 2 declares A to be c-P , then she was not happy with A. By
Condition 3.1, player 2 is happy with A. Thus A is c-P in this case, so the lemma is
satisfied if the protocol terminates in step 1.

Suppose the protocol declares an allocation to be c-P in step 3. Then the alloca-
tion declared can be written as (S,M\setminus S) for some S \in \scrS . Since S is minimal, player
1 is happy with S by assumption, and player 2 only declares an allocation to be c-P
in this step if she is happy with it. Thus the lemma is satisfied in this case too.

Lemma 4.2. Player 1 is happy with a bundle S if and only if there exists a min-
imal bundle T where T \subseteq S.

Proof. ( =\Rightarrow ) Suppose player 1 is happy with bundle S. If S is minimal, we are
done, so assume S is not minimal. Then there exists g \in S where player 1 is happy
with S\setminus \{ g\} . If S\setminus \{ g\} is not minimal, there again exists some g\prime \in S\setminus \{ g\} that we can
remove, and this process can be repeated until we obtain some minimal subset of S.

( \Leftarrow = ) Suppose there exists a minimal bundle T where T \subseteq S. Then, by mono-
tonicity, v1(S) \geq v1(T ). Since T is minimal, player 1 is happy with T . If P = Prop,
this is sufficient to show that player 1 is happy with S. If P = EF, it is also necessary
to note that v1(M\setminus S) \leq v1(M\setminus T ), again by monotonicity. Thus the claim holds for
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220 BENJAMIN PLAUT AND TIM ROUGHGARDEN

both P \in \{ EF, Prop\} .

Lemma 4.3. Protocol 4.1 declares an allocation to be c-P if and only if a c-P
allocation exists.

Proof. If no c-P allocation exists, the protocol does not declare any allocation to
be c-P by Lemma 4.1. Thus assume a c-P allocation A exists. Then player 1 is happy
with A1, so by Lemma 4.2, there exists S \in \scrS , where S \subseteq A1. Then A2 \subseteq M\setminus S, so
by monotonicity, player 2 is happy with M\setminus S. Thus, if the protocol has not already
terminated, player 2 will declare (S,M\setminus S) to be c-P . Then, by Lemma 4.1, the
declared allocation is in fact c-P , so the claim is satisfied in this case.

If the protocol terminated before player 2 considered S in step 3, the protocol
declared some other allocation to be c-P , and the declared allocation is again c-P by
Lemma 4.1 in this case. Thus the claim is satisfied in both cases.

Finally, we show that the protocol correctly returns a c\ast -P allocation if no c-P
allocation exists. Recall the definitions of S\ast (vi) and c(S): ci(S) is the maximum
c\prime \leq 1 where player i is c\prime -happy with S, and S\ast (vi) = argmaxS\subseteq M : \bfc i(S)<c ci(S). In
words, S\ast (vi) is the bundle that makes player i the most happy, out of all the bundles

that do not make her c-happy. For P = EF, ci(S) = min
\bigl( 
1, vi(S)

vi(M\setminus S)

\bigr) 
.

Lemma 4.4. Protocol 4.1 returns either a c-P allocation or a c\ast -P allocation.

Proof. If a c-P allocation exists, Lemma 4.3 implies that the protocol correctly
returns one, so the claim is satisfied in this case.

Suppose no c-P allocation exists: then the protocol does not declare an allocation
to be c-P , again by Lemma 4.3. Thus the protocol does not terminate until step 4.
Let i = argmaxi\prime \in \{ 1,2\} ci\prime (S

\ast (vi\prime )) as computed by player 2 in step 4. Let A be the
allocation returned by the protocol in this case: Ai = S\ast (vi) and Ai = M\setminus S\ast (vi).

First observe that A is ci(S
\ast (vi))-P : this is because player i is ci(S

\ast (vi))-happy
with A, and player i is c-happy with A. Suppose that A is not c\ast -P : then there
exists an allocation A\prime where A\prime is c\prime \prime -P for some c\prime \prime > ci(S

\ast (vi)). We know that
player i cannot be happier than ci(S

\ast (vi))-happy without being c-happy, so player i
must be c-happy with A\prime . That implies that player 2 is not c-happy with A\prime , since no
allocation makes both players c-happy in this case. But then the happiest player i can
be is ci(S

\ast (vi)), and ci(S
\ast (vi)) \leq ci(S

\ast (vi)) by assumption. Thus, for any allocation,
there is a player who is at most ci(S

\ast (vi))-happy. Therefore c\ast = ci(S
\ast (vi)).

4.3. Communication cost. It remains to bound the communication cost. This
will primarily consist of proving an upper bound on the number of minimal bundles
player 1 sends to player 2. We will go through a series of helpful lemmas before
proving the final theorem.

The upper bound on the number of minimal bundles will depend on there being
no allocation A for which player 1 is happy with both A and A: recall that if there is
such an allocation, then Protocol 4.1 terminates after step 1 and does not even send
the set of minimal bundles \scrS . This condition was defined in section 3.

Condition 3.2. There is no allocation A for which player 1 is happy with both
A and A.

Let \Delta (S, g) be player 1's marginal value for adding item g to bundle S. Formally,
\Delta (S, g) = v1(S \cup \{ g\} ) - v1(S). Also, let \alpha = 1 - c

2 .
The idea behind Lemma 4.5 is the following. Because of Condition 3.2, we have

c \cdot v1(S) > v1(M\setminus S) whenever player 1 is happy with S. If S is minimal, then moving
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any g \in S to M\setminus S will invert this inequality: v1(S\setminus \{ g\} ) < c \cdot v1
\bigl( 
(M\setminus S) \cup \{ g\} 

\bigr) 
.

Lemma 4.5 uses this to show that at least one of \Delta (S\setminus \{ g\} , g) and \Delta (M\setminus S, g) has to
be fairly large.

Lemma 4.5. Assuming Condition 3.2, for every minimal bundle S and every good
g \in S,

max
\Bigl( 
\Delta (S\setminus \{ g\} , g),\Delta (M\setminus S, g)

\Bigr) 
\geq \alpha .

Proof. Since S is minimal, for every good g \in S, we know that player 1 is not
happy with S\setminus \{ g\} . Specifically,

v1(S\setminus \{ g\} ) < c \cdot v1
\bigl( 
(M\setminus S) \cup \{ g\} 

\bigr) 
,

so by definition of \Delta , we have

v1(S) - \Delta (S\setminus \{ g\} , g) < c \cdot 
\bigl( 
v1(M\setminus S) + \Delta (M\setminus S, g)

\bigr) 
= c \cdot v1(M\setminus S) + c \cdot \Delta (M\setminus S, g).

We also know that player 1 is happy with S. Thus, by Condition 3.2, player 1
is not happy with M\setminus S, so v1(M\setminus S) < c \cdot v1(S). Adding this to the above equation
yields

v1(S) - \Delta (S\setminus \{ g\} , g) + v1(M\setminus S) < c \cdot v1(M\setminus S) + c \cdot \Delta (M\setminus S, g) + c \cdot v1(S),
(1 - c)v1(S) + (1 - c)v1(M\setminus S) < \Delta (S\setminus \{ g\} , g) + c \cdot \Delta (M\setminus S, g),
(1 - c)v1(S) + (1 - c)v1(M\setminus S) < \Delta (S\setminus \{ g\} , g) + \Delta (M\setminus S, g),

(1 - c)
\bigl( 
v1(S) + v1(M\setminus S)

\bigr) 
< \Delta (S\setminus \{ g\} , g) + \Delta (M\setminus S, g),

(1 - c)v1(M) < \Delta (S\setminus \{ g\} , g) + \Delta (M\setminus S, g),

where the last step follows from submodularity (actually just subadditivity).
Since v1(M) = 1 by assumption, we have

\Delta (S\setminus \{ g\} , g) + \Delta (M\setminus S, g) \geq 1 - c,

max
\Bigl( 
\Delta (S\setminus \{ g\} ),\Delta (M\setminus S, g)

\Bigr) 
\geq 1 - c

2
= \alpha .

Next, we define a directed graph G = (V,E) which we call the minimal bundle
graph. The vertex set V is the set of minimal bundles. With slight abuse of notation,
we will use S and T to refer both to minimal bundles and to the corresponding vertices
in V . We define the edge set E by

E =
\bigl\{ 
(S, T ) | \exists g \in S, where T \subseteq (M\setminus S) \cup \{ g\} 

\bigr\} 
.

The next three lemmas establish some useful properties of the minimal bundle
graph.

Lemma 4.6. Assuming Condition 3.2, let (S, T ) \in E, and let g be a good in S
such that T \subseteq (M\setminus S) \cup \{ g\} . Then g \in T .

Proof. Suppose g \not \in T : then S \subseteq M\setminus T . Since S is minimal, player 1 is happy
with S. Thus, by monotonicity, player 1 is also happy with M\setminus T . But player 1 is
also happy with T , because T is minimal. This contradicts Condition 3.2, so we must
have g \in T .
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Lemma 4.7. Assuming Condition 3.2, if (S, T ) \in E, then there is a unique g \in S
where T \subseteq (M\setminus S) \cup \{ g\} .

Proof. Suppose there exist g1, g2 \in S, where g1 \not = g2, T \subseteq (M\setminus S) \cup \{ g1\} , and
T \subseteq (M\setminus S) \cup \{ g2\} . Then, by Lemma 4.6, g1 \in T and g2 \in T . But this contradicts
T \subseteq (M\setminus S) \cup \{ g1\} , because g2 \in S\setminus \{ g1\} , so g2 \not \in (M\setminus S) \cup \{ g1\} . Thus g1 = g2.

Using Lemma 4.7 for each edge (S, T ) \in E, let g(S, T ) be the unique good such
that T \subseteq (M\setminus S) \cup \{ g(S, T )\} .

Lemma 4.8. Assuming Condition 3.2, if (S, T ) \in E, then (T, S) \in E. Further-
more, g(T, S) = g(S, T ).

Proof. Suppose (S, T ) \in E: then T \subseteq (M\setminus S)\cup \{ g(S, T )\} . By Lemma 4.6, we have
g(S, T ) \in T . Since T \subseteq (M\setminus S) \cup \{ g(S, T )\} , we have S\setminus \{ g(S, T )\} \subseteq M\setminus T . Therefore
S \subseteq (M\setminus T ) \cup \{ g(S, T )\} , and so (T, S) \in E and g(S, T ) = g(T, S).

The next lemma is because there are | S| items in S that we could move to M\setminus S.
The proof uses Lemma 4.7 to show that each of them will yield a different minimal
bundle T , so this constitutes | S| distinct edges (S, T ).

Lemma 4.9. The out-degree of each bundle S \in V is at least | S| .
Proof. Let S = \{ g1, g2, . . . , g| S| \} . We first claim that for all gj \in S, there exists

Tj \in V , where Tj \subseteq (M\setminus S) \cup \{ gj\} . Consider some gj \in S. Because S is minimal,
we know that player 1 is not happy with S\setminus \{ gj\} . Therefore player 1 must be happy
with (M\setminus S) \cup \{ gj\} . Then, by Lemma 4.2, there exists Tj \subseteq (M\setminus S) \cup \{ gj\} , where Tj

is minimal. Therefore (S, Tj) \in E.
By Lemma 4.7, gj = g(S, Tj) is unique. Thus, for all g \in S, where g \not = g(S, Tj), we

have g \not \in Tj . This implies that each Tj is distinct. Thus (S, T1), (S, T2), . . . , (S, T| S| )
are all distinct edges in E, so the out-degree of S is at least | S| .

Next, we define a set of edges E+ \subseteq E by

E+ = \{ (S, T ) | \Delta (S\setminus \{ g(S, T )\} , g(S, T )) \geq \alpha \} .

This is the set of ``special edges"" alluded to in section 1.2.
The informal argument for the next lemma is as follows. By Lemma 4.8, we have

(S, T ) \in E if and only if (T, S) \in E. Then Lemma 4.5 (combined with submodularity)
implies that at least one of \Delta (S\setminus \{ g(S, T )\} , g(S, T )) \geq \alpha and \Delta (T\setminus \{ g(S, T )\} , g(S, T )) \geq 
\alpha is true, so at least one of (S, T ) and (T, S) must be in E+.

Lemma 4.10. Assuming Condition 3.2, | E+| \geq | E| /2.
Proof. Let (S, T ) be some edge in E: then, by Lemma 4.8, (T, S) \in E. It suffices

to show that for every edge (S, T ) \in E, at least one of (S, T ) and (T, S) is in E+.
Assume (S, T ) \not \in E+: otherwise, we are done. Then

\Delta 
\bigl( 
S\setminus \{ g(S, T )\} , g(S, T )

\bigr) 
< \alpha .

Thus, by Lemma 4.5,
\Delta 
\bigl( 
M\setminus S, g(S, T )

\bigr) 
\geq \alpha .

Since (T, S) is an edge in the graph, S \subseteq (M\setminus T )\cup \{ g(S, T )\} . Therefore S\setminus \{ g(S, T )\} \subseteq 
M\setminus T . Thus, by submodularity, \Delta (S\setminus \{ g(S, T )\} , g(S, T )) \geq \Delta (M\setminus T, g(S, T )) \geq \alpha .
Therefore (S, T ) \in E+.

Lemma 4.11 follows from a simple counting argument.
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Lemma 4.11. For any integers m and \ell ,
\sum \ell 

j=0

\bigl( 
m
j

\bigr) 
\leq (m+ 1)\ell .

Proof. The left-hand side is the number of subsets of [m] of size at most \ell . The
right-hand side is the number of ways to select \ell elements from [m]\cup \{ d\} , where each
element can be selected multiple times, and including ordering. We think of d as a
dummy element. For each subset S \subseteq [m] counted by

\sum \ell 
j=0

\bigl( 
m
j

\bigr) 
, we represent it in

(m+1)\ell as follows: first select element d \ell  - | S| times, and then select the elements in
S in any order. Thus each subset of [m] counted by the left-hand side is represented

in a unique way by the right-hand side, and so
\sum \ell 

j=0

\bigl( 
m
j

\bigr) 
\leq (m+ 1)\ell .

We are now ready to prove the final theorem. Recall the following definitions
from section 3:

S\leq k = \{ gj \in S | j \leq k\} ,
\delta Sk = v1(S\leq k) - v1(S\leq k - 1).

Theorem 4.1. For two players with submodular valuations and any c < 1, Pro-

tocol 4.1 has communication cost at most 2m(m + 1)
8

1 - c + 2vsize and returns either
a c-EF allocation or a c\ast -EF allocation. This also implies that

Dsubmod(2,m,EF, c) \leq 2m(m+ 1)
8

1 - c + 2vsize

for any c < 1.

Proof. Correctness of Protocol 4.1 follows from Lemma 4.4, so it remains only to
bound the communication cost.

We prove that the number of minimal bundles is (strictly) less than 2(m+1)
8

1 - c =
2(m+ 1)4/\alpha , assuming Condition 3.2. Let \beta = 4/\alpha , and suppose that the number of
minimal bundles is at least 2(m + 1)4/\alpha = 2(m + 1)\beta . By Lemma 4.11, the number
of minimal bundles of size at most \beta is at most (m + 1)\beta . Thus there are at least
(m+ 1)\beta minimal bundles S where | S| > \beta .

So at least half of the minimal bundles have size more than \beta . Let G = (V,E) be
the minimal bundle graph. Then, by Lemma 4.9, at least half of the minimal bundles
in V have out-degree more than \beta . Therefore | E| > \beta | V | /2. Then, by Lemma 4.10,
| E+| > \beta | V | /4 = | V | /\alpha .

For a bundle S, let XS
+ be the set of out-edges from S that are in E+. Formally,

XS
+ = \{ (S, T ) \in E | \Delta (S\setminus \{ g(S, T )\} , g(S, T )) \geq \alpha \} 

and we can define the corresponding goods by g(XS
+) = \{ g \in S | \Delta (S\setminus \{ g\} , g) \geq \alpha \} .

We next show that there must exist a minimal bundle S \in V , where | XS
+| > 1/\alpha .

Suppose that | XS
+| \leq 1/\alpha for all S \in V : then

| E+| \leq | V | /\alpha ,

which contradicts | E+| > | V | /\alpha . Therefore there exists some bundle S with | XS
+| >

1/\alpha . By definitions, we have

v1(S) =

m\sum 
k=1

\delta Sk =
\sum 

k:gk\in S

\delta Sk =
\sum 

k:gk\in S

\Delta (S\leq k - 1, gk) \geq 
\sum 

k:gk\in g(XS
+)

\Delta (S\leq k - 1, gk).

D
ow

nl
oa

de
d 

03
/2

3/
20

 to
 1

28
.1

2.
24

6.
11

2.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

224 BENJAMIN PLAUT AND TIM ROUGHGARDEN

Because S\leq k - 1 \subseteq S and gk \not \in S\leq k - 1, we have S\leq k - 1 \subseteq S\setminus \{ gk\} . Therefore, by
submodularity,13\sum 

k:gk\in g(XS
+)

\Delta (S\leq k - 1, gk) \geq 
\sum 

k:gk\in g(XS
+)

\Delta (S\setminus \{ gk\} , gk) \geq 
\sum 

k:gk\in g(XS
+)

\alpha = \alpha | XS
+| > 1.

But v1(M) = 1, so this is a contradiction. Therefore the number of minimal bundles

is less than 2(m+ 1)
8

1 - c .

Thus the number of minimal bundles is at most 2(m+ 1)
8

1 - c  - 1. If the protocol
terminates in step 1, just one bundle is communicated (and zero values), so the com-
munication cost bound is trivially satisfied. Suppose the protocol does not terminate

in step 1: then player 1 sends at most 2(m + 1)
8

1 - c  - 1 minimal bundles, as well as

S\ast (v1). Thus at most 2(m+ 1)
8

1 - c bundles are sent, each of which requires m bits to
communicate.

Player 1 also sends ci(S
\ast (v1)). By definition of cEF

i , ci(S
\ast (v1)) can be expressed

as the ratio of two values, each of which takes vsize bits to communicate. Therefore
the total communication cost is

2m(m+ 1)
8

1 - c + 2vsize,

as required.

We will show formally in section 6 that Theorem 4.1 is tight, meaning that expo-
nential communication can be required when c = 1. To see why the minimal bundle
argument fails for c = 1, consider an additive (and hence submodular) valuation over
an even number of items, where the value of each item is one. Then a bundle is
minimal if and only if it contains exactly half the items and there are an exponential
number of such bundles.

5. Lower bound approach. In section 6, we will prove a lower bound that
matches the PAS from section 4. Before we do that, we describe our general lower
bound approach in this section. All of our lower bounds will rely on reductions from
two well-known problems in communication complexity: determining whether two bit
strings are equal, and determining whether two bit strings are disjoint. Let xi denote
the bit string held by player i, and let xij denote the jth bit of xi. An input (x1, x2)
is a yes-instance of the Equality problem if and only if x1j \not = x2j for all j. An input
(x1, x2) is a yes-instance of the Disjointness problem if and only if there exists no
j such that x1j = x2j = 1. The following lemma states that Disjointness is hard in
the randomized setting (and thus also in the deterministic setting).

Lemma 5.1 (see [16, 24]). Any randomized protocol which solves Disjointness
for bit strings of length \ell has communication cost \Omega (\ell ).

The following well-known lemma states that Equality is hard in the determin-
istic setting.

Lemma 5.2. Any deterministic protocol which solves Equality for bit strings of
length \ell has communication cost at least \ell .

Perhaps surprisingly, Equality admits a constant communication randomized
protocol, due to [25].

13This is the crucial use of submodularity: that we can add in the items in S one by one, and the
value of the set increases by at least \Delta (S\setminus \{ gk\} , gk) each time. This allows us to pump the value of
S over v1(M).
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Lemma 5.3 (see [25]). There exists a randomized protocol which solves Equal-
ity and has communication cost O(1).

The protocol for Lemma 5.3 asks each player to compute the inner product mod
2 of her bit string and a random string. The protocol then compares those inner
products. The principle of deferred decisions can be used to show that this protocol
arrives at the correct answer with probability at least 3/4. Lemma 5.3 will be a key
element of our randomized upper bound in section 9.3.

All of our lower bounds have the following structure. Given two bit strings x1 and
x2 of length \ell = \Omega (

\bigl( 
2k
k

\bigr) 
), we construct a corresponding instance of Fair Division

with O(k) items. In the two-player case, each index in the bit strings will correspond
to a possible allocation that gives each player k items.

Our constructed instance will have a property that a c-P allocation exists if and
only if (x1, x2) is a no-instance14 of Equality (for a deterministic lower bound) or a
no-instance of Disjointness (for a randomized lower bound). Thus, if there existed
a protocol for Fair Division with communication cost less than \Omega (

\bigl( 
2k
k

\bigr) 
), it could also

be used to solve Equality or Disjointness in communication less than \Omega (\ell ). This
is impossible according to Lemmas 5.1 and 5.2, so any protocol for Fair Division
requires exponential communication.

Using this framework, all that is needed to prove a lower bound for a particular
set of parameters (property P , constant c, and a valuation class) is the following:

1. Given bit strings x1 and x2 of length \Omega (
\bigl( 
2k
k

\bigr) 
), define how to construct a

corresponding instance of Fair Division with O(k) items.
2. Show that a c-P allocation exists in the constructed instance if and only if

(x1, x2) is a no-instance of Equality or Disjointness.
3. Show that the valuations in the constructed instance of Fair Division are

of the desired valuation class.
More specifically, our Fair Division instance will have two players and 2k items.

Valuations will be constructed such that a player will never be happy if she receives
fewer than k items, so both players will have to receive exactly k items. There are\bigl( 
2k
k

\bigr) 
allocations which give each player k items, and this gives rise to the exponential

communication lower bound.
In fact, we can do this in a very standardized way for the two-player determin-

istic case. Given bit strings of length 1
2

\bigl( 
2k
k

\bigr) 
, we define a list of allocations \scrT =

(T1, T2, . . . , T| \scrT | ), where each Tj = (Tj1, Tj2) \in \scrT is an allocation giving each player k
items: | Tj1| = | Tj2| = k. There are two important properties we will need \scrT to have.
First, \scrT should not contain every such allocation, in particular for any allocation
A \in \scrT , A \not \in \scrT .15 Second, the order of allocations in \scrT cannot depend on the input
strings. This order is arbitrary but publicly known. Note that | \scrT | = 1

2

\bigl( 
2k
k

\bigr) 
.

Lemma 5.4 states that under this approach, all that is necessary to complete the
lower bound is to construct valuations satisfying three particular properties. The
exact way valuations are constructed will depend on what class we wish them to
belong to (general, subadditive, or submodular). We only prove the lemma for the
c-EF in the two-player deterministic setting. A similar result is possible for other
settings, but this is the only setting where we prove enough different lower bounds to
make it worth having a separate lemma.

For a bit string xi, let xi denote the string obtained by flipping every bit: xij \not = xij

14Note that no-instances of Equality or Disjointness become instances where a c-P allocation
does exist.

15Recall that for A = (A1, A2), A = (A2, A1).
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226 BENJAMIN PLAUT AND TIM ROUGHGARDEN

for all j. We will define two new bit strings, y1 and y2, by y1 = x1 and y2 = x2. Also,
recall that for a player i, i denotes the other player.

The lemma relies on three conditions. Condition 5.1 states that neither player is
happy with any bundle containing fewer than k items: then any c-P allocation must
either be A or A for some A \in \scrT . Condition 5.2 states that player i is unhappy
receiving Tji when yij = 1 (and happy receiving Tji). Condition 5.3 states that player
i is unhappy receiving Tji when yij = 0 (and happy receiving Tji). Thus we want to
find an index j where either y1j = y2j = 1, in which case the allocation (Tj1, Tj2) is
c-P , or where y1j = y2j = 0, in which case the allocation (Tj2, Tj1) is c-P . Therefore
we are looking for an index where y1j = y2j , which is equivalent to x1j \not = x2j . This is
exactly the Equality problem.

Lemma 5.4. Given bit strings x1, x2, each of length 1
2

\bigl( 
2k
k

\bigr) 
for some integer k, let

M = [2k] and N = [2]. Let y1 = x1 and y2 = x2, and let c be some constant. Let
\scrT = (T1, T2, . . . , T| \scrT | ) be a list of allocations as described above. Suppose v1, v2 can
be constructed such that the following conditions are met.

Condition 5.1. For all | S| < k and both i, vi(S) < c \cdot vi(M\setminus S).
Condition 5.2. Whenever yij = 1, vi(Tji) < c \cdot vi(Tji).

Condition 5.3. Whenever yij = 0, vi(Tji) < c \cdot vi(Tji).

Then any deterministic protocol which finds a c-EF allocation for two players
requires exponential communication. Specifically,

D(2, 2k,EF, c) \geq 1

2

\biggl( 
2k

k

\biggr) 
.

Proof. We reduce from Equality. Given bit strings x1 and x2 of length 1
2

\bigl( 
2k
k

\bigr) 
for some integer k, we construct the following instance of Fair Division. Let
N,M, (y1, y2), and \scrT be as defined in the statement of Lemma 5.4. Also, assume
that v1 and v2 satisfy Conditions 5.1, 5.2, and 5.3.

Suppose that (x1, x2) is a no-instance of Equality: then there exists j where
x1j \not = x2j . Therefore y1j = y2j . If y1j = y2j = 1, then by Condition 5.2,

vi(Tji) >
1

c
vi(Tji) \geq c \cdot vi(Tji)

for both i. Thus the allocation Tj is c-EF, because each player i receives Tji. If
y1j = y2j = 0, then by Condition 5.3,

vi(Tji) >
1

c
vi(Tji) \geq c \cdot vi(Tji)

for both i. Thus the allocation Tj is c-EF, because each player i receives Tji. There-
fore, if (x1, x2) is a no-instance of Equality, there exists an allocation satisfying
c-EF.

Suppose that (x1, x2) is a yes-instance of Equality: then, for every j, y1j \not = y2j .
For any allocation A where | Ai| < k for some i, we have vi(Ai) < c \cdot vi(Ai) by
Condition 5.1. Thus A cannot be c-EF whenever | Ai| < k for some i.

Now consider an arbitrary allocation A where | A1| = | A2| = k. For any such
allocation, there must exist j where either A = Tj , or A = Tj . Since y1j \not = y2j ,
there exists a player i where yij = 0, and yij = 1. Then, by Condition 5.3, vi(Tji) <

c \cdot vi(Tji). Also, vi(Tji
) < c \cdot vi(Tji) by Condition 5.2, where i = i represents the

player other than i. Thus vi(Tji) < c \cdot vi(Tji).
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Therefore neither player is happy with bundle Tji. But since either A = Tj or
A = Tj , there must be a player who receives Tjiand hence is not happy. Thus no
allocation where | A1| = | A2| = k can be c-EF; no allocation is c-EF.

This lemma will be useful in a variety of settings. In the next section, we will use
this lemma to prove a lower bound for 1-EF that matches the PAS from section 4.

6. 1-EF is hard for submodular valuations. In this section, we use the
general approach described in section 5 to show that 1-EF requires exponential com-
munication, even for two players with submodular valuations. This shows that the
PAS for this setting from section 4 is the best we can hope for.

Formally, section 4 showed that Dsubmod(2,m,EF, c) is polynomial in m when
c < 1. We now show that Dsubmod(2,m,EF, c) is exponential when c = 1. Section 3
showed that Dsubmod(2,m,Prop, c) is polynomial for any c, so there is no lower bound
necessary there. Thus this section resolves the deterministic submodular case for two
players.

Theorem 6.1. For two players with submodular valuations, any deterministic
protocol which determines whether a 1-EF allocation exists requires an exponential
amount of communication. Specifically,

Dsubmod(2, 2k,EF, 1) \geq 
1

2

\biggl( 
2k

k

\biggr) 
.

Proof. Given bit strings of length 1
2

\bigl( 
2k
k

\bigr) 
for some integer k, define M,N, (y1, y2),

and \scrT as in Lemma 5.4. We need only construct submodular valuations v1, v2 such
that Conditions 5.1, 5.2, and 5.3 are met. We define each vi by

vi(S) =

\left\{                   

3| S| if | S| < k,

3k if | S| > k,

3k if S = Tji and yij = 1,

3k if S = Tji and yij = 0,

3k  - 1 if S = Tji and yij = 0,

3k  - 1 if S = Tji and yij = 1.

Importantly, for every bundle S with | S| = k, there exists exactly one pair (i, j) such
that S = Tji. Thus, if | S| = k, S falls under exactly one of the last four cases in the
definition of vi.

If | S| < k, we have | M\setminus S| > k, so vi(S) < 3k = vi(M\setminus S). This satisfies Con-
dition 5.1. Suppose yij = 1 for some i, j: then vi(Tji) = 3k  - 1 < 3k = vi(Tji), so
Condition 5.2 is satisfied. Suppose yij = 0 for some i, j: then, similarly, vi(Tji) =
3k  - 1 < 3k = vi(Tji). Thus Condition 5.3 is satisfied as well.

It remains to show that the valuations are submodular. To do this, we examine
vi(S \cup \{ g\} ) - vi(S) for any bundle S and item g \not \in S:

vi(S \cup \{ g\} ) - vi(S) =

\left\{         
3 if | S \cup \{ g\} | < k,

2 or 3 if | S \cup \{ g\} | = k,

0 or 1 if | S \cup \{ g\} | = k + 1,

0 if | S \cup \{ g\} | > k + 1.

Therefore vi(S \cup \{ g\} ) - vi(S) is nonincreasing with | S| . Thus vi(X \cup \{ g\} ) - vi(X) \geq 
vi(Y \cup \{ g\} )  - vi(Y ) whenever | X| < | Y | . If X \subseteq Y , either | X| < | Y | or X = Y .D
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228 BENJAMIN PLAUT AND TIM ROUGHGARDEN

When X = Y , we trivially have vi(X \cup \{ g\} )  - vi(X) = vi(Y \cup \{ g\} )  - vi(Y ). Thus
we have vi(X \cup \{ g\} )  - vi(X) \geq vi(Y \cup \{ g\} )  - vi(Y ) whenever X \subseteq Y , and so vi is
submodular.

Recall that section 4 gave a PAS for this setting, where for any fixed c, com-

munication at most 2(m + 1)
8

1 - c is required. In a fully polynomial-communication
approximation scheme (FPAS), the dependence in 1

1 - c is required to be polynomial.

The PAS from section 4 is not an FPAS, since the dependence on 1
1 - c is exponential.

The above proof of Theorem 6.1 actually shows that for any c > 3k - 1
3k = 3m - 2

3m ,
exponential communication is required. This does not contradict the PAS from section
4, because 3m - 2

3m is not a fixed constant (it depends on m). However, this does rule
out the possibility of an FPAS. To see this, suppose an FPAS existed, and consider
some c > 3m - 2

3m . Then the FPAS would have communication cost polynomial in 1
1 - c .

We have
1

1 - c
>

1

1 - 3m - 2

3m

=
3m

2
,

so the communication cost is polynomial in m. But the proof of Theorem 6.1 shows
that a communication exponential in m is required, which is a contradiction.

Finally, we note that the proof of Theorem 6.1 can easily be adapted to prove
exponential lower bounds on the communication complexity of maximizing Nash wel-
fare (the product of player valuations) or egalitarian welfare (the minimum player
valuation).

7. Everything is hard for more than two players. In this section, we show
that Fair Division requires an exponential amount of communication whenever there
are more than two players: even when randomization is allowed, even for submodular
valuations, and for any c > 0. This will allow us to focus on the two-player setting
for the rest of the paper.

Before proving the theorems, we discuss the multiparty (i.e., n > 2) communica-
tion complexity model. As mentioned in section 2, there is more than one such model.
This will turn out not to matter in our setting. The reason is that our lower bounds
will hold even when only players 1 and 2 have private valuations, and the valuations
of all other players are public information. One can think of the other players as not
really being agents but just being a (publicly known) part of the input. Thus we
never actually consider multiparty communication. In this way, the theorem that we
are really proving is that when there are more than two Fair Division players, the
problem is hard in the two-party communication complexity model.

We first prove hardness for envy-freeness and then reduce envy-freeness to pro-
portionality. Recall that Disjointness has randomized communication complexity
\Omega (\ell ), where \ell is the length of the bit strings (Lemma 5.1).

Theorem 7.1. For any n > 2 and any c > 0, any randomized protocol which
determines whether a c-EF allocation exists requires an exponential amount of com-
munication, even for submodular valuations. Specifically,

Rsubmod(n, 2k + n - 2,EF, c) \in \Omega 

\biggl( \biggl( 
2k

k

\biggr) \biggr) 
for any n > 2 and c > 0.

Proof. We reduce from Disjointness. Given bit strings x1 and x2 of length
\bigl( 
2k
k

\bigr) 
,

we construct a Fair Division instance as follows. Although there will be more than
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two players, there are only two bit strings. Let player 1 hold x1 and player 2 hold x2,
and the other players will have no bit strings.

Let M1 = [2k],M2 = \{ g3, . . . , gn\} , and let M = M1 \cup M2: note that | M | =
2k + n  - 2. Let N = [n]. We define a similar list of allocations \scrT = (T1, T2, . . . , ),
where Tj = (Tj1, Tj2). Here each Tj is an allocation over only M1 and for just two
players. Any such allocation A where | A1| = | A2| = k is in \scrT (and so is A). Note
that | \scrT | =

\bigl( 
2k
k

\bigr) 
. For i \in \{ 1, 2\} , vi is given by

vi(S) =

\left\{                   

k if g3 \in S,

| S| c if | S| < k and g3 \not \in S,

kc if | S| > k and g3 \not \in S,

(k  - 1
2 )c if | S| = k and g3 \not \in S and S \cap M2 \not = \emptyset ,

kc if \exists j S = Tji, where xij = 1 and g3 \not \in S,

(k  - 1
2 )c if \exists j S = Tji, where xij = 0 and g3 \not \in S.

Every allocation giving each player k items occurs in \scrT exactly once. Thus, when
| S| = k and S \subset M1, exactly one of the last two cases occurs, and any such j must
be unique. For i > 2, vi(S) is given by

vi(S) =

\Biggl\{ 
1 if gi \in S,

0 otherwise.

Suppose that (x1, x2) is a no-instance of Disjointness: then there exists j where
x1j = x2j = 1. Consider the allocation A where Ai = Tji for i \leq 2, and Ai = \{ gi\} 
for i > 2. For i > 2, vi(Ai) = 1 and vi(Ai\prime ) = 0 for all i\prime \not = i, so each player i > 2 is
happy. For i \leq 2, we have vi(Ai) = vi(Tji) = kc, and vi(Ai\prime ) \leq k for all i\prime . Therefore,
for all i, i\prime , vi(Ai) \geq cvi(Ai\prime ), so A is c-EF.

Suppose that (x1, x2) is a yes-instance of Disjointness: then, for every j, there
exists i where xij = 0. Suppose that a c-EF allocation A = (A1, A2) exists. We first
claim that for every i > 2, gi \in Ai: if not, vi(Ai) = 0, so player i will envy whichever
player receives gi.

Thus, for i \leq 2,

vi(Ai) \geq c \cdot vi(A3) \geq c \cdot vi(\{ g3\} ) = kc.

Suppose a player i \leq 2 receives strictly fewer than k items in Ai: then vi(Ai) < kc,
since none of those items can be g3. This is a contradiction, so we have | A1| = | A2| = k.
Since \scrT contains all of the allocations which give each player k items, there must exist
j where Ai = Tji for both i, and vi(Ai) \geq kc. But that implies that x1j = x2j = 1,
which is a contradiction. Therefore no allocation is c-Prop.

It remains to show that the valuations are submodular. For i > 2, vi is trivially
submodular. We now examine vi(S \cup \{ g\} )  - vi(S) for i \leq 2, any bundle S, and any
item g \not \in S, where g3 \not \in S \cup \{ g\} :

vi(S \cup \{ g\} ) - vi(S) =

\left\{         
c if | S \cup \{ g\} | < k,

c or c/2 if | S \cup \{ g\} | = k,

c/2 or 0 if | S \cup \{ g\} | = k + 1,

0 if | S \cup \{ g\} | > k + 1.
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Therefore vi(S \cup \{ g\} )  - vi(S) is nonincreasing with | S| when g3 \not \in S \cup \{ g\} . Thus
vi(X \cup \{ g\} ) - vi(X) \geq vi(Y \cup \{ g\} ) - vi(Y ) whenever | X| < | Y | and g3 \not \in S \cup \{ g\} . If
X \subseteq Y , either | X| < | Y | or X = Y . When X = Y , we trivially have vi(X \cup \{ g\} )  - 
vi(X) = vi(Y \cup \{ g\} ) - vi(Y ). Thus we have vi(X \cup \{ g\} ) - vi(X) \geq vi(Y \cup \{ g\} ) - vi(Y )
whenever X \subseteq Y and g3 \not \in S\cup \{ g\} . Therefore the submodularity condition is satisfied
when g3 \not \in S \cup \{ g\} .

There are two remaining cases: when g3 \in S, or when g = g3. For g3 \in S, vi(S \cup 
\{ g\} ) - vi(S) = 0 for all S and g, so the condition is satisfied in this case. For g = g3, we
have vi(X\cup \{ g3\} ) - vi(X) = vi(M) - vi(X) and vi(Y \cup \{ g3\} ) - vi(Y ) = vi(M) - vi(Y ).
If X \subseteq Y , we have vi(X) \leq vi(Y ), so vi(X \cup \{ g3\} )  - vi(X) \geq vi(Y \cup \{ g3\} )  - vi(Y ).
Therefore vi is submodular for all i.

We now prove hardness for proportionality for more than two players, by reducing
from envy-freeness.

Theorem 7.2. For any n > 2 and any c > 0, any randomized protocol which
determines whether a c-Prop allocation exists requires an exponential amount of com-
munication, even for submodular valuations. Specifically,

Rsubmod(n, 2k + n - 2,Prop, c) \in \Omega 

\biggl( \biggl( 
2k

k

\biggr) \biggr) 
for any c > 0.

Proof. We reduce from Fair Division for P = EF. Given an input (x1, x2), we
define vi as in the proof of Theorem 7.1, except using c/n instead of c. That is, for
i \leq 2,

vi(S) =

\left\{                   

k if g3 \in S,

| S| c/n if | S| < k and g3 \not \in S,

kc/n if | S| > k and g3 \not \in S,

(k  - 1
2 )c/n if | S| = k and g3 \not \in S and S \cap M2 \not = \emptyset ,

kc/n if \exists j S = Tji, where xij = 1 and g3 \not \in S,

(k  - 1
2 )c/n if \exists j S = Tji, where xij = 0 and g3 \not \in S.

It was shown in the proof of Theorem 7.1 that these valuations are submodular.
Theorem 7.1 implies that \Omega (

\bigl( 
2k
k

\bigr) 
) communication is required to determine whether

a c
n -EF allocation exists under these valuations. We will show that under these

valuations, an allocation is c-Prop if and only if it is c
n -EF. This will imply that

determining whether a c-Prop allocation exists is just as hard as whether a c
n -EF

allocation exists.
In order for an allocation A to be c

n -EF or c-Prop, we must have vi(Ai) > 0 for
all i. Thus assume gi \in Ai for all i > 2, and we need only consider i \leq 2.

Suppose an allocation A is c-Prop: then, for i \leq 2, vi(Ai) \geq 
c

n
vi(M) =

kc

n
. Since

vi(Ai\prime ) \leq k for all i\prime , we have

vi(Ai) \geq 
kc

n
\geq c

n
vi(Ai\prime )

for all i\prime . Therefore A is c
n -EF.

Suppose an allocation A is c
n -EF: then, for all i and i\prime , vi(Ai) \geq c

nvi(Ai\prime ). For
i \leq 2, we have vi(A3) \geq vi(\{ g3\} ) = k, so

vi(Ai) \geq 
c

n
vi(A3) \geq 

kc

n
=

c

n
vi(M),
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Protocol 8.1 Protocol for two players to find either a c-P allocation or a c\ast -P
allocation.

Private inputs: v1, v2
Public inputs: P, c

1. If there exists an allocation A where player 1 is happy with both A and A,
player 1 sends that allocation to player 2. If player 2 is happy with A, she
declares that A is c-P ; otherwise, she declares that A is c-P .

2. If there is no such allocation A, player 1 sends the set \scrS of her minimal bundles
to player 2. She also sends the bundle S\ast (v1) and the value c1(S

\ast (v1)).
3. Player 2 first checks whether there exists a bundle S \in \scrS where player 2 is

happy with M\setminus S. If so, she declares that (S,M\setminus S) is c-P .
4. If not, player 2 computes S\ast (v2) and i = argmaxi\prime \in \{ 1,2\} ci\prime (S

\ast (vi\prime )). Let A
be the allocation where Ai = S\ast (vi) and Ai = M\setminus S\ast (vi). Player 2 then
declares that A is ci(S

\ast (vi))-P and that c\ast = ci(S
\ast (vi)).

and so A is c-Prop.

This resolves the n > 2 case for all combinations of other parameters, so we will
assume that n = 2 for the remainder of the paper.

8. Subadditive valuations. In this section, we consider the deterministic set-
ting for two players with subadditive valuations. In section 8.1, we use the Minimal
Bundle Protocol from section 4 to show that c-EF for c \leq 1/2 and c-Prop for c \leq 2/3
require only polynomial communication. This is the same protocol that yielded the
PAS for EF with submodular valuations, but the communication cost analysis will be
different. In section 8.2, we show that this is tight, by giving an exponential lower
bound for c-EF and c-Prop when c exceeds 1/2 and 2/3, respectively.

8.1. Upper bounds. In this section, we prove that when players have subad-
ditive valuations, the Minimal Bundle Protocol (Protocol 4.1) can be used to solve
Fair Division for 1

2 -EF and 2
3 -Prop with polynomial communication. In fact, we will

show that if a satisfactory allocation is not found in step 1, there must exist a single
item g where v1(\{ g\} ) > v1(M\setminus \{ g\} ). This will imply that the only minimal bundle is
\{ g\} . Protocol 4.1 is restated above for the convenience of the reader.

In section 4, we proved correctness of this protocol for any setting, so it remains
only to prove the communication cost bound for this setting.

Let \alpha \in (0, 1] be some constant. Let \eta P (\alpha ) be the maximum c \leq 1 for which
any allocation A is guaranteed to be c-P , given vi(Ai) \geq \alpha vi(Ai) for both i. For
example, \eta EF (\alpha ) = \alpha . We will write \eta P (\alpha ) = \eta (\alpha ) and leave P implicit. Lemma 8.1
is strongest for \alpha = 1/2, but we find it insightful to prove the theorem for any \alpha \leq 1/2.

Also, recall that Condition 3.1 is satisfied for c-Prop with subadditive valuations
for any c: for any allocation A, each player must be happy with at least one of A and
A.

Lemma 8.1. For two players with subadditive valuations, \alpha \in (0, 1/2], and c =
\eta (\alpha ), Protocol 4.1 has communication cost at most

2(m+ vsize).

Proof. If the protocol terminates in step 1, a single allocation is communicated,
which requires m bits. Thus the claim is satisfied in this case.
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If the protocol does not terminate in step 1, the only communication happens in

step 2. For a bundle S, ci(S) is defined as the ratio of two values: vi(S)
vi(M\setminus S) for EF, and

2vi(S)
vi(M) for Prop.16 Thus communicating c1(S

\ast (v1)) requires 2v
size bits. The only other

information transmitted is the bundle S\ast (v1) and \scrS . Communicating S\ast (v1) requires
m bits, and \scrS requires | \scrS | m bits. Thus the communication cost of the protocol is

m(| \scrS | + 1) + 2vsize.

It remains to show that if the protocol does not terminate in step 1, then | \scrS | = 1.
By Condition 3.1, for every allocation A, player 1 is happy with at least one of A

and A. Thus | \scrS | \geq 1, so let S be a minimal bundle in \scrS . Since player 1 is happy with
S, we know that she is not happy with M\setminus S, or the protocol would have terminated
in step 1. Suppose \alpha v1(S) \leq v1(M\setminus S): then player 1 is \eta (\alpha )-happy with M\setminus S. Since
c = \eta (\alpha ), this means player 1 is happy with M\setminus S, which is a contradiction. Therefore
\alpha v1(S) > v1(M\setminus S). This also implies that v1(S) > 0.

Also, since S is minimal, player 1 is not happy with S\setminus \{ g\} for all g \in S. Therefore
player 1 is happy with (M\setminus S) \cup \{ g\} for all g \in S. By the same argument as above,
we have \alpha v1(M\setminus S) \cup \{ g\} ) > v1(S\setminus \{ g\} ).

Since vi(S) > 0, S must be nonempty, so let g be an arbitrary item in S. By
subadditivity of v1, we have

v1(M\setminus S) + v1(\{ g\} ) \geq v1

\Bigl( 
(M\setminus S) \cup \{ g\} 

\Bigr) 
.

Similarly,

v1(S\setminus \{ g\} ) + v1(\{ g\} ) \geq v1(S),

v1(S\setminus \{ g\} ) \geq v1(S) - v1(\{ g\} ).

Therefore

v1(M\setminus S) + v1(\{ g\} ) \geq v1

\Bigl( 
(M\setminus S) \cup \{ g\} 

\Bigr) 
>

1

\alpha 
v1(S\setminus \{ g\} )

\geq 
\biggl( 
1

\alpha 
 - 1

\biggr) 
v1(S\setminus \{ g\} ) + v1(S) - v1(\{ g\} ).

Since v1(S) >
1
\alpha v1(M\setminus S), we have

v1(M\setminus S) + v1(\{ g\} ) >
\biggl( 
1

\alpha 
 - 1

\biggr) 
v1(S\setminus \{ g\} ) +

1

\alpha 
v1(M\setminus S) - v1(\{ g\} ),

2v1(\{ g\} ) \geq 
\biggl( 
1

\alpha 
 - 1

\biggr) 
v1(S\setminus \{ g\} ) +

\biggl( 
1

\alpha 
 - 1

\biggr) 
v1(M\setminus S)

v1(\{ g\} ) \geq 
1

2

\biggl( 
1

\alpha 
 - 1

\biggr) \Bigl( 
v1(S\setminus \{ g\} ) + v1(M\setminus S)

\Bigr) 
.

By subadditivity of v1, we have

v1(S\setminus \{ g\} ) + v1(M\setminus S) \geq v1

\Bigl( 
(S \cup (M\setminus S))\setminus \{ g\} 

\Bigr) 
= v1(M\setminus \{ g\} ).

16Technically only one value is needed for Prop, since we can assume that v1(M) = 1, so only
v1(S) is needed. However, since two values are needed for EF, we ignore this.
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Therefore

v1(\{ g\} ) >
1

2

\biggl( 
1

\alpha 
 - 1

\biggr) 
v1(M\setminus \{ g\} ),

v1(\{ g\} ) \geq \alpha v1(M\setminus \{ g\} ),

where the final step is due to 0 < \alpha \leq 1/2.
Thus player 1 is \eta (\alpha )-happy with the bundle \{ g\} by definition. Since the protocol

did not terminate in step 1, player 1 must not be happy with M\setminus \{ g\} . Therefore
player i is happy with a bundle S if and only if g \in S, and so the only minimal bundle
is \{ g\} .

Theorem 8.2 is immediately implied by the combination of Lemma 4.4 (correct-
ness) and Lemma 8.1 (communication cost).

Theorem 8.2. For two players with subadditive valuations and c = \eta (1/2), Pro-
tocol 4.1 has communication cost at most 2(m+ vsize) and returns either a c-P allo-
cation or a c\ast -P allocation.

Theorem 8.2 immediately implies the following result.

Theorem 8.3. For two players with subadditive valuations, a property P , and
any constant c \leq \eta P (1/2), there exists a deterministic protocol with communication
cost 2(m+ vsize) which solves Fair Division. Formally,

Dsubadd(2,m, P, c) \leq 2(m+ vsize)

for any c \leq \eta P (1/2).

Proof. Run Protocol 4.1 to find either an \eta P (1/2)-P allocation or to find a c\prime -
P allocation where c\prime is the best possible. If an \eta P (1/2)-P allocation exists, then
a c-P allocation exists, since c \leq \eta P (1/2). If a c\ast -P allocation is returned where
c\ast < \eta P (1/2), then by definition of c\ast , a c-P allocation exists if and only if c\ast \geq c.

Theorem 8.4 is a direct consequence of Theorem 8.3, since \eta EF (\alpha ) = \alpha , and
Theorem 8.5 requires only a short proof.

Theorem 8.4. For two players with subadditive valuations, P = EF, and any
constant c \leq 1/2, there exists a deterministic protocol with communication cost 2(m+
vsize) which solves Fair Division. Formally,

Dsubadd(2,m,EF, c) \leq 2(m+ vsize)

for any c \leq 1/2.

Theorem 8.5. For two players with subadditive valuations, P = Prop, and any
constant c \leq 2/3, there exists a deterministic protocol with communication cost 2(m+
vsize) which solves Fair Division. Formally,

Dsubadd(2,m,Prop, c) \leq 2(m+ vsize)

for any c \leq 2/3.

Proof. By Theorem 8.2, we need only show that \eta Prop(1/2) \geq 2/3. Suppose
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v1(A1) \geq \alpha v1(A2). Then v1(A2) \leq 1
\alpha v1(A1), and by subadditivity of v1, we have

v1(M) = v1(A1 \cup A2)

\leq v1(A1) + v1(A2)

\leq v1(A1) +
1

\alpha 
v1(A1)

=
\alpha + 1

\alpha 
v1(A1).

Therefore v1(A1) \geq 2\alpha 
\alpha +1

\bigl( 
1
2v1(M)

\bigr) 
, and so \eta Prop(\alpha ) \geq 2\alpha 

\alpha +1 . Therefore \eta Prop(1/2) \geq 
2/3.

Since \eta Prop(1/2) \geq 2/3, any 1
2 -EF A allocation is also 2

3 -Prop. However, a c\prime -
EF allocation where c\prime is the maximum possible EF approximation ratio does not
necessarily achieve the maximum possible approximation ratio for Prop. Consider
the case where M = \{ g1, g2\} , the players' valuations are given by

v1(S) =

\left\{     
9 if S = M,

7 if S = \{ g1\} ,
2 if S = \{ g2\} ,

v2(S) =

\left\{     
4 if S = M,

4 if S = \{ g1\} ,
1 if S = \{ g2\} ,

and vi(\emptyset ) = 0 for both i. There is no 1
2 -EF allocation or 2

3 -Prop allocation in this
instance. The allocation achieving the maximum EF approximation ratio is A =
(\{ g2\} , \{ g1\} ), which is 2

7 -EF. On the other hand, the allocation achieving the maximum

Prop approximation ratio is A, which is 1
2 -Prop.

8.2. Lower bounds. In this section, we show that 1
2 -EF and 2

3 -Prop are the
best we can do deterministically for two players with subadditive valuations. We first
prove that c-EF is hard for any c > 1/2 and then show that the same construction
also proves hardness for c-Prop when c > 2/3.

We will use Lemma 5.4, which gives a standardized way to prove deterministic
lower bounds for EF for two players. Recall that a list of allocations \scrT = (T1, T2, . . . )
is defined where each Tj = (Tj1, Tj2) is an allocation giving each player k items. Also,
for every such allocation A, exactly one of A and A appears in \scrT . All that is needed
to complete the reduction is to show how to construct valuations v1, v2 such that the
following conditions are satisfied.

Condition 5.1. For all | S| < k and both i, vi(S) < c \cdot vi(M\setminus S).
Condition 5.2. Whenever yij = 1, vi(Tji) < c \cdot vi(Tji).

Condition 5.3. Whenever yij = 0, vi(Tji) < c \cdot vi(Tji).

Theorem 8.6. For two players with subadditive valuations and any c > 1/2, any
deterministic protocol which determines whether a c-EF allocation exists requires an
exponential amount of communication. Formally,

Dsubadd(2, 2k,EF, c) \geq 
1

2

\biggl( 
2k

k

\biggr) 
for any c > 1/2.

Proof. Given bit strings of length 1
2

\bigl( 
2k
k

\bigr) 
for some integer k, define M,N, (y1, y2),

and \scrT as in Lemma 5.4. We need only construct subadditive valuations v1, v2 such
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that Conditions 5.1, 5.2, and 5.3 are met. We define each vi by

vi(S) =

\left\{                             

0 if | S| = 0,

1 if 0 < | S| < k,

2 if k < | S| < 2k,

3 if | S| = 2k,

2 if \exists j S = Tji, where yij = 1,

2 if \exists j S = Tji, where yij = 0,

1 if \exists j S = Tji, where yij = 0,

1 if \exists j S = Tji, where yij = 1.

When | S| = k, S falls under exactly one of the last four cases in the definition of vi.
If | S| < k, we have | M\setminus S| > k, so vi(S) \leq 1 and vi(M\setminus S) \geq 2. Thus, for any

c > 1/2, vi(S) < c \cdot vi(M\setminus S), so Condition 5.1 is met. Suppose yij = 1 for some
i, j: then vi(Tji) = 1 and vi(Tji) = 2, so again vi(S) < c \cdot vi(M\setminus S) for any c > 1/2.
Suppose yij = 0 for some i, j: then, similarly, vi(Tji) = 1 < c \cdot 2 = c \cdot vi(Tji) for any
c > 1/2. Thus Condition 5.3 is satisfied as well.

It remains to show that vi is subadditive for both i. Specifically, we need to show
that for any S and T , vi(S) + vi(T ) \geq vi(S \cup T ). If either S = \emptyset or T = \emptyset , this
trivially holds, so suppose | S| > 0 and | T | > 0. We proceed by case analysis.

Case 1: | S \cup T | < 2k. Then vi(S \cup T ) \leq 2. Since | S| > 0 and | T | > 0, we have

vi(S) + vi(T ) \geq 1 + 1 \geq 2 \geq vi(S \cup T ).

Case 2: | S \cup T | = 2k. Then vi(S \cup T ) = 3. Since vi(S) \geq 1 and vi(T ) \geq 1,
it remains to show that at least one of vi(S) \geq 2 and vi(T ) \geq 2 is true. Since
S \cup T = M in this case, we have M\setminus S \subseteq T . Observe that under these valuations,
for any allocation A where vi(Ai) \leq 1, we have vi(Ai) \geq 2. Thus, if vi(S) \leq 1, then
vi(M\setminus S) \geq 2, so vi(T ) \geq 2. Since vi only takes on integer values in this proof, if
vi(S) > 1, we have vi(S) \geq 2. Thus at least one of vi(S) \geq 2 and vi(T ) \geq 2 is true,
so the claim is satisfied in this case. Thus vi is subadditive for both i.

To prove hardness for proportionality, we reduce from envy-freeness.

Theorem 8.7. For two players with subadditive valuations and any c > 2/3, any
deterministic protocol which determines whether a c-Prop allocation exists requires an
exponential amount of communication. Formally,

Dsubadd(2, 2k,Prop, c) \geq 
1

2

\biggl( 
2k

k

\biggr) 
for any c > 2/3.

Proof. We reduce from Fair Division for P = EF. Given an input (x1, x2), we
define vi as in the proof of Theorem 8.6. By Theorem 8.6, for any c\prime > 1/2, at least
1
2

\bigl( 
2k
k

\bigr) 
communication is required to determine whether a c\prime -EF allocation exists under

these valuations. We will show that under these valuations, for any c > 2/3 and any
c\prime > 1/2, an allocation A is c-Prop if and only if it is c\prime -EF: thus, the lower bound of
Theorem 8.6 will apply to c-Prop for c > 1/2 as well.17

17It is actually sufficient to show that for any c > 2/3, there exists such a c\prime > 1/2, but we prove
that this holds for any c\prime > 1/2.
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Suppose an allocation A is c\prime -EF for some c\prime > 1/2: then vi(Ai) \geq c\prime vi(Ai) >
1
2vi(Ai). Under these valuations, for any allocation A where vi(Ai) \leq 1, we have
vi(Ai) \geq 2. Thus vi(Ai) must be strictly greater than 1. Since these valuations only
take on integer values, this implies that vi(Ai) \geq 2 for both i. Therefore

vi(Ai) \geq 2 \geq 3

2
=

1

2
vi(M) \geq c

2
vi(M)

for every c > 2/3, so A is c-Prop for every c > 2/3.
Now suppose that A is c-Prop for some c > 2/3: then vi(Ai) \geq c

2vi(M) = 3c
2 > 1

for both i. Thus we again have vi(Ai) \geq 2 for both i, since these valuations only
take on integer values. This also implies that | Ai| > 0 for both i, which means that
| Ai| < 2k for both i. Therefore vi(Ai) \leq 2 for both i, so we have

vi(Ai) \geq 2 \geq vi(Ai) \geq c\prime vi(Ai)

for any c\prime > 1/2. Therefore A is c\prime -EF for every c\prime > 1/2.

Theorems 8.6 and 8.7 resolve the deterministic subadditive case. We now move
on to general valuations and give the last few results we need to complete Table 1.

9. General valuations. This section covers the remaining settings for envy-
freeness and proportionality. In section 9.1, we show that c-Prop is hard for general
valuations for any c > 0 in both the randomized and deterministic settings. Section 9.2
gives a similar lower bound for c-EF for any c > 0 but only for deterministic protocols.
In section 9.3, we show that there actually exists an efficient randomized protocol for
c-EF for any c \in [0, 1]. We also show that this protocol works for proportionality in
the subadditive case, again for any c \in [0, 1]. These results conclude our study of
envy-freeness and proportionality.

9.1. Proportionality randomized lower bound. Recall that Disjointness
on bit strings of length \ell has randomized communication complexity \Omega (\ell ) (Lemma 5.1).

Theorem 9.1. For two players with general valuations and any c > 0, any ran-
domized protocol which determines whether a c-Prop allocation exists requires an ex-
ponential amount of communication. Specifically,

R(2, 2k,Prop, c) \in \Omega 

\biggl( \biggl( 
2k

k

\biggr) \biggr) 
for any c > 0.

Proof. We reduce from Disjointness. Given bit strings x1 and x2 of length\bigl( 
2k
k

\bigr) 
, we construct an instance of Fair Division as follows. Let N = [2] be the set

of players, and let M = [2k] be the set of items. Let \scrT = (T1, T2, . . . , T| \scrT | ) be an
arbitrary ordering of all of the allocations which give each player k items: for any
allocation A = (A1, A2), where | A1| = | A2| = k, there exists j where Ai = Tji for

both i. Both A and A appear in \scrT . Note that | \scrT | =
\bigl( 
2k
k

\bigr) 
. Each player i's valuation

is defined by

vi(S) =

\left\{         
0 if | S| < k,

1 if | S| > k,

1 if \exists j S = Tji, where xij = 1,

0 if \exists j S = Tji, where xij = 0.

Exactly one of the last two cases occurs when | S| = k, and any such j is unique.
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Suppose that (x1, x2) is a no-instance of Disjointness: then there exists j where
x1j = x2j = 1. Consider the allocation Tj = (Tj1, Tj2). Then, for both i, vi(Tji) =

1 = vi(M) \geq c

2
\cdot vi(M), so the allocation Tj satisfies c-Prop.

Suppose that (x1, x2) is a yes-instance of Disjointness: then for every j, there
exists i where xij = 0. Suppose that a c-Prop allocation A = (A1, A2) exists: then

vi(Ai) \geq c

2
\cdot vi(M) > 0 for both i. Suppose a player i receives strictly more than

k items in Ai: then the other player receives strictly fewer than k items, and has
value zero, which is impossible. Thus | A1| = | A2| = k. Since \scrT contains all of the
allocations which give each player k items, there must exist j where Ai = Tji for
both i. But that implies that x1j = x2j = 1, which is a contradiction. Therefore no
allocation is c-Prop.

This lower bound is actually much more general than just c-Prop. It holds for any
imaginable fairness property (not just c-EF or c-Prop) where (1) player i is always
unhappy if vi(Ai) = 0, even if vi(Ai) is also 0, and (2) player i is always happy
if vi(Ai) = vi(M). Both c-EF and c-Prop satisfy the first condition. The second
condition is satisfied by c-Prop for any c, but c-EF violates this for every c: player i
is always happy if vi(Ai) = vi(Ai) = 0. We will see in section 9.3 that this leads to
an efficient randomized protocol for c-EF for any c \in [0, 1].

9.2. Envy-freeness deterministic lower bound. In this section, we prove
that for general valuations, c-EF is hard in the deterministic setting for any c > 0.
We will use Lemma 5.4; recall that we need only show how to construct valuations
that satisfy the following conditions.

Condition 5.1. For all | S| < k and both i, vi(S) < c \cdot vi(M\setminus S).
Condition 5.2. Whenever yij = 1, vi(Tji) < c \cdot vi(Tji).

Condition 5.3. Whenever yij = 0, vi(Tji) < c \cdot vi(Tji).

Theorem 9.2. For two players with general valuations and any c > 0, any de-
terministic protocol which determines whether a c-EF allocation exists requires an
exponential amount of communication. Specifically,

D(2, 2k,EF, c) \geq 1

2

\biggl( 
2k

k

\biggr) 
for any c > 0.

Proof. We use Lemma 5.4. Given bit strings of length 1
2

\bigl( 
2k
k

\bigr) 
for some integer

k, define M,N, (y1, y2), and \scrT as in Lemma 5.4. We need only construct valuations
v1, v2 such that Conditions 5.1, 5.2, and 5.3 are met. We define each vi by

vi(S) =

\left\{                   

0 if | S| < k,

1 if | S| > k,

1 if \exists j S = Tji, where yij = 1,

1 if \exists j S = Tji, where yij = 0,

0 if \exists j S = Tji, where yij = 0,

0 if \exists j S = Tji, where yij = 1.

Recall that for every allocation A which gives each player k items, \scrT (as defined by
Lemma 5.4) contains exactly one of A and A. Thus, if | S| = k, then S falls under
exactly one of the last four cases in the definition of vi.
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If | S| < k, we have | M\setminus S| > k, so vi(S) = 0 < c = c \cdot vi(M\setminus S). This satisfies
Condition 5.1. Suppose yij = 1 for some i, j: then vi(Tji) = 0 < c = c \cdot vi(Tji), so
Condition 5.2 is satisfied. Suppose yij = 0 for some i, j: then, similarly, vi(Tji) = 0 <
c = c \cdot vi(Tji). Thus Condition 5.3 is satisfied as well.

9.3. A randomized upper bound. Although c-EF is hard for general val-
uations in the deterministic setting, it admits an efficient randomized protocol for
any c \leq 1. Fundamentally, this is because the randomized communication complex-
ity of Equality is constant, while its deterministic complexity is the length of the
string. Our deterministic lower bound in section 9.2 was based on a reduction from
Equality: in this section, we reduce to Equality.

Our protocol will actually be much more general than just c-EF. For example, it
will also work for c-Prop for subadditive valuations for any c \in [0, 1]. More generally,
it solves Fair Division with two players when (c, P ) satisfies two conditions.

Condition 3.1. For every allocation A, each player is happy with at least one of
A and A.

Condition 9.1. Whether player i is happy does not depend on any valuation
other than vi.

All of the fairness properties we consider satisfy Condition 9.1. The c-EF property
satisfies Condition 3.1 for any c \leq 1. As mentioned before, c-Prop satisfies this for
any c \leq 1 for subadditive valuations.

Despite being hard in the deterministic setting, Equality admits an efficient
randomized protocol (Lemma 5.3), as described in section 5. This protocol (let us
call it \Gamma EQ) enables the Fair Division randomized protocol that we present in this
section.

The standard Equality problem is a decision problem, but Fair Division is a
search problem: we must output a satisfactory allocation if one exists. The search
version of Equality is to determine whether two bit strings are equal, and if they
are not, to return an index where they differ.

Lemma 9.3 (see [20]). There exists a randomized protocol which solves the search
version of Equality for two players and has communication cost O(log \ell ), where \ell 
is the length of the bit strings.

The protocol uses a binary search approach. The players first use \Gamma EQ to check
whether their strings are equal. If so, the protocol terminates. If not, the players
split their strings into a left half and a right half. They again use \Gamma EQ to check
whether their left halves are equal: if they are not, the players recurse on the left half;
otherwise, they recurse on the right half. This process continues until players isolate
a single bit, which differs in their bit strings.18

Since \Gamma EQ is a randomized protocol, it may return an incorrect answer with
probability up to 1/3 (say) each time it is run. If we use \Gamma EQ many times, as required
by the above binary search argument, the probability \Gamma EQ returns the correct answer
every time may be less than 2/3, which is unacceptable. This makes the protocol a sort
of ``noisy binary"" search. This can be done with total communication O(log \ell log log \ell )
using a standard Chernoff bound argument, but the authors in [13] show how this can
be done with total communication just O(log \ell ). We refer to protocol from Lemma 9.3

18The protocol described in [20] is actually slightly stronger: they find the most significant bit
where the two strings differ. This is because they have a slightly different goal in that paper, for
which finding any bit that differs is not sufficient.
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as \Gamma EQS .
We now present our randomized protocol (Protocol 9.1). Let \scrT = (T1, T2, . . . )

be a list of every possible allocation (not just those with bundles of a fixed size) in
an arbitrary order. The ordering \scrT will be publicly agreed upon ahead of time; note
that this is not a ``cheat"" in the sense that our lower bounds still apply even if players
publicly agree on an ordering of possible allocations. Condition 9.1 is necessary for
Protocol 9.1 to be well-defined (step 1 in particular) but will not appear in the proof
of Theorem 9.4.

The protocol uses a construction similar to that of the previous lower bounds
in that players have exponentially long bit strings, with each index representing a
possible allocation, and where yij = 1 if player i is happy with Tj . Similarly to the
Equality lower bounds, an index where y1j = y2j implies the existence of a c-P
allocation: if y1j = y2j = 1, both players are happy with that allocation, and if
y1j = y2j = 0, both players are happy with the reverse allocation by Condition 3.1.
This is made formal by the following theorem.

Protocol 9.1 Randomized protocol for two players to either find an P allocation or
determine that none exists, assuming P satisfies Conditions 3.1 and 9.1.

Private inputs: v1, v2
Public inputs: P, c, \scrT 

1. Each player i constructs a bit string yi as follows: for all j where player i is
happy with Tj , player i sets yij = 1. For all j where player i is unhappy with
Tj , player i sets yij = 0.

2. Player 1 sets x1 = y1, and player 2 sets x2 = y2.
3. The players run \Gamma EQS on (x1, x2), which either returns an index j where

x1j \not = x2j or determines that the two strings are equal.
4. If the two bit strings are equal, the players declare that no c-P allocation

exists.
5. If an index j is returned where x1j = 1 and x2j = 0, the players declare that

Tj is a c-P allocation.
6. If an index j is returned where x1j = 0 and x2j = 1, the players declare that

T j is a c-P allocation.

Theorem 9.4. If (c, P ) satisfies Conditions 3.1 and 9.1, then Procotol 9.1 either
finds a c-P allocation or shows that none exists, and it uses communication O(m).

Proof. Suppose Protocol 9.1 declares that no c-P allocation exists: then x1j = x2j

for all j. This implies that y1j \not = y2j for all j. Therefore, whenever player 1 is happy
with Tj , player 2 is unhappy with Tj , so no c-P allocation exists.

Suppose Protocol 9.1 returns an index j where x1j \not = x2j . If x1j = 1 and x2j = 0,
then y1j = y2j = 1. Thus both players are happy with Tj , so Tj is c-P . If x1j = 0
and x2j = 1, then y1j = y2j = 0, so neither player is happy with Tj . Then, by
Condition 3.1, both players are happy with Tj , so T j is c-P . Therefore Protocol 9.1
correctly finds a c-P allocation or determines that none exists.

Since the total number of allocations is O(2m) when n = 2, x1 and x2 have length
O(2m). Thus \Gamma EQS has communication cost O

\bigl( 
log(2m)) = O(m). Since all other

steps require no communication, Protocol 9.1 uses communication O(m).

Theorem 9.4 immediately implies the following two theorems.

Theorem 9.5. For any c \in [0, 1], Protocol 9.1 finds a c-EF allocation or shows
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that none exists, and it has communication cost O(m). Formally,

R(2,m,EF, c) \in O(m).

Theorem 9.6. For subadditive valuations and any c \in [0, 1], Protocol 9.1 finds
a c-Prop allocation or shows that none exists, and it has communication cost O(m).
Formally,

Rsubadd(2,m, Prop, c) \in O(m).

Since Rsubmod(n,m,P, c) \leq Rsubadd(n,m,P, c) \leq R(n,m,P, c), this settles the
randomized communication complexities for all settings with two players. The reader
can verify that Table 1 is now complete.

10. Maximin share. Finally, we consider a different fairness property: maximin
share. A player's maximin share (MMS) is the maximum value she could guarantee
herself if she gets to divide the items into n bundles but chooses last. An allocation A
is c-MMS for c \in [0, 1] if each player receives at least a c-fraction of her MMS. We use
MMS to refer to both each player's maximin share and the fairness property itself.
Formally, we define the following.

Definition 10.1. An allocation A is c-MMS if for every player i,

vi(Ai) \geq max
A\prime =(A\prime 

1,...,A
\prime 
n)

min
j\in [n]

vi(A
\prime 
j),

where A\prime ranges over all possible allocations.

In this section, we prove exponential lower bounds for MMS in two settings: for
general valuations and any c > 0, and for submodular valuations when c = 1. Both
lower bounds hold even for two players and for randomized protocols. Both lower
bounds will rely on reductions from Disjointness.

10.1. Lower bound for general valuations and any \bfitc > 0. In this section,
we show that for general valuations, c-MMS is hard for any c > 0, even for randomized
protocols and even if there are only two players. We will reduce from 1-Prop, which
we know to be hard in this setting (randomized, n = 2, general valuations) from
Theorem 9.1. We say that an allocation A is over a set of items M to mean that
A1 \cup A2 = M . Also, we say that an allocation A is c-Prop for valuations v1, v2 if
vi(Ai) \geq c

2vi(M) for both i. Since we will be reducing between two different Fair
Division instances, we will be dealing with allocations over different sets of items
and different sets of valuations.

Theorem 10.2. For two players with general valuations and any c > 0, any
randomized protocol which determines whether a c-MMS allocation exists requires an
exponential amount of communication. Specifically,

R(2, 2k + 4,MMS, c) \in \Omega 

\biggl( \biggl( 
2k

k

\biggr) \biggr) 
for any c > 0.

Proof. Consider an arbitrary instance of Fair Division for two players with
general valuations v1, v2, any c > 0, and some set of items M . We want to know
whether there exists an allocation A over M which is 1-Prop for v1, v2. Let \alpha i =
1

2c
vi(M): then A is 1-Prop if and only if vi(Ai) \geq c\alpha i for both i.
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We will create a second instance of Fair Division as follows. Add four items
g1, g2, g3, g4, let X = \{ g1, g2, g3, g4\} , and define M \prime = M \cup X. Let Y1 = \{ g1, g2\} , Y2 =
\{ g3, g4\} , Z1 = \{ g1, g3\} , and Z2 = \{ g2, g4\} . The set of players is the same. Define the
following valuations v\prime 1 and v\prime 2 over M \prime :

v\prime 1(S) =

\left\{     
\alpha 1 if Y1 \subseteq S or Y2 \subseteq S,

min(v1(S\setminus X), c\alpha 1) if \{ g1, g4\} \subseteq S and g2, g3 \not \in S,

0 otherwise,

v\prime 2(S) =

\left\{     
\alpha 2 if Z1 \subseteq S or Z2 \subseteq S,

min(v2(S\setminus X), c\alpha 2) if \{ g2, g3\} \subseteq S and g1, g4 \not \in S,

0 otherwise.

We first claim that each player i's MMS is exactly \alpha i. Since c \leq 1, we have v\prime i(A
\prime 
i) \leq \alpha i

for all i and for every allocation A\prime over M \prime . Thus each player's MMS is at most \alpha i.
In the partition (Y1, Y2 \cup M), player 1 has value \alpha 1 for both bundles, so player 1's
MMS is at least \alpha 1. Similarly, player 2 has value \alpha 2 for both bundles in the partition
(Z1, Z2 \cup M). Thus each player i's MMS is exactly \alpha i.

Therefore an allocation A\prime over M \prime is c-MMS for v\prime 1, v
\prime 
2 if and only if v\prime i(A

\prime 
i) \geq c\alpha i

for both i. It remains to show that there exists such an allocation A\prime over M \prime if and
only if there exists a 1-Prop allocation for v1, v2 over M .

Suppose A is 1-Prop allocation over M for v1, v2: then vi(Ai) \geq c\alpha i for both i.
Let A\prime = (A1 \cup X,A2): then v\prime i(A

\prime 
i) \geq vi(Ai) \geq c\alpha i, so A\prime is c-MMS for v\prime 1, v

\prime 
2 over

M \prime .
Now suppose A\prime is a c-MMS allocation for v\prime 1, v

\prime 
2 over M \prime . Since c > 0, we have

v\prime i(A
\prime 
i) \geq c\alpha i > 0 for all i. For all j and j\prime , we have Yj \cap Zj\prime \not = \emptyset . Thus, if player

1 receives Y1 or Y2, then player 2 cannot receive Z1 or Z2. Furthermore, player 2
cannot receive \{ g2, g3\} , so v\prime 2(A

\prime 
2) = 0, which is a contradiction. Therefore player 1

cannot receive either Y1 or Y2. Similarly, if player 2 receives Z1 and Z2, player 1 will
have value 0. Thus player 2 does not receive Z1 or Z2.

Therefore v1(A1) = 0 unless \{ g1, g4\} \subseteq A1, and v2(A2) = 0 unless \{ g2, g3\} \subseteq A2.
Therefore \{ g1, g4\} \subseteq A1 and \{ g2, g3\} \subseteq A2. Thus v\prime i(A

\prime 
i) = min(vi(A

\prime 
i\setminus X), c\alpha i) for

both i. Since v\prime i(A
\prime 
i) \geq c\alpha i for all i, we have vi(A

\prime 
i\setminus X) \geq c\alpha i for both i.

Define an allocation A where Ai = A\prime 
i\setminus X. It is clear that A is an allocation over

M . Then vi(Ai) \geq c\alpha i for both i, so A is a 1-Prop allocation for v1, v2 over M .
Therefore there exists a c-MMS allocation for v\prime 1, v

\prime 
2 over M \prime if and only if there

exists a 1-Prop allocation for v1, v2 over M . This completes the reduction and shows
that for any c > 0 and any number of items m,

R(2,m+ 4,MMS, c) \geq R(2,m,Prop, 1).

Therefore, by Theorem 9.1, we have R(2, 2k + 4,MMS, c) \in \Omega 
\bigl( \bigl( 

2k
k

\bigr) \bigr) 
.

10.2. Lower bound for submodular valuations and \bfitc = 1. We now show
that even for two players with submodular valuations, 1-MMS is hard. This does not
hold for c-MMS for any c: in fact, a 1

3 -MMS is guaranteed to exist for submodular
valuations [14].

Theorem 10.3. For two players with submodular valuations, any randomized
protocol which determines whether a 1-MMS allocation exists requires an exponen-
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tial amount of communication. Specifically,

R(2, 2k,MMS, 1) \in \Omega 

\biggl( \biggl( 
2k

k

\biggr) \biggr) 
.

Proof. We reduce from Disjointness. Given bit strings x1 and x2 of length\bigl( 
2k
k

\bigr) 
, we construct an instance of Fair Division as follows. Let N = [2] be the set

of players, and let M = [2k] be the set of items. We define Y1 = \{ 1, . . . , k\} , Z1 =
\{ k + 1, . . . , 2k\} , Y2 = \{ 2, . . . , k + 1\} , and Z2 = \{ 1\} \cup \{ k + 2, . . . , 2k\} .

Let \scrT = (T1, T2, . . . , T| \scrT | ) be an arbitrary ordering of all of the allocations which
give each player k items: for any allocation A = (A1, A2), where | A1| = | A2| = k,
there exists j where Ai = Tji for both i. Note that | \scrT | =

\bigl( 
2k
k

\bigr) 
. One exception: none

of (Y1, Z1), (Z1, Y1), (Y2, Z2), or (Z2, Y2) appears in \scrT .
Player i's valuation is given by

vi(S) =

\left\{                   

3| S| if | S| < k,

3k if | S| > k,

3k if S = Yi or S = Zi,

3k  - 1 if S = Yi or S = Zi,

3k if \exists j S = Tji, where xij = 1,

3k  - 1 if \exists j S = Tji, where xij = 0.

These valuations are submodular by the same argument as in the proof of Theorem 6.1.
Observe that when | S| = k, exactly one of the last four cases occurs.

Since vi(S) \leq 3k for all S, player i's MMS is at most 3k. For both i, (Yi, Zi)
is a valid allocation. Furthermore, player i has value 3k for both bundles in that
allocation. Thus each player i's MMS is at least 3k, so both players' MMSs are
exactly 3k.

Suppose that (x1, x2) is a no-instance of Disjointness: then there exists j where
x1j = x2j = 1. Consider the allocation Tj = (Tj1, Tj2). Then, for both i, vi(Tji) = 3k,
so the allocation Tj satisfies 1-MMS.

Suppose that (x1, x2) is a yes-instance of Disjointness: then, for every j, there
exists i where xij = 0. Suppose a 1-MMS allocation A exists. We first claim that for
both i, A \not = (Yi, Zi) and A \not = (Zi, Yi) for both i. This is because player i will have
value 3k - 1, which is less than her MMS. Suppose there is a player i where | Ai| < k:
then vi(Ai) < 3k, which is impossible. Thus | A1| = | A2| = k.

Therefore there exists j where A = Tj . But since (x1, x2) is a yes-instance of
Disjointness, there exists i where xij = 0, so vi(Tji) = 3k - 1. This is a contradiction,
so no 1-MMS allocation exists.

11. Conclusion. In this paper, we proposed a simple model for the communi-
cation complexity of fair division, and solved it completely, for every combination of
five parameters: number of players, valuation class, fairness property P , constant c,
and deterministic vs. randomized complexity.

More broadly, communication complexity is an example of topic that has been
well studied in algorithmic game theory but not in fair division, despite having a
natural fair division analogue. We wonder whether there are other such topics.
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