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Abstract. Ronald Dworkin’s equality of resources [12], and the closely related concept of envy-freeness,
are two of the fundamental ideas behind fair allocation of private goods. The appropriate analog to
these concepts in a public decision-making environment is unclear, since all agents consume the same
“bundle” of resources (though they may have different utilities for this bundle). Drawing inspiration
from equality of resources and the Dworkin quote below, we propose that equality in public decision-
making should allow each agent to cause equal cost to the rest of society, which we model as equal
externality. We term this equality of power. The first challenge here is that the cost to the rest of society
must be measured somehow, and it is generally impossible to elicit the scale of individual utilities (in
the absence of monetary payments). Again drawing inspiration from foundational literature for private
goods economies, we normalize each agent’s utility so that every agent’s marginal utility for additional
power is the same. We show that for quadratic utilities, in the large market limit, there always exists
an outcome that simultaneously satisfies equal power, equal marginal utility for additional power, and
social welfare maximization with respect to the normalized utilities.

“
Equality of resources supposes that the resources devoted to each person’s life should

be equal. That goal needs a metric. The auction proposes what the envy test in fact
assumes, that the true measure of the social resources devoted to the life of one person
is fixed by asking how important, in fact, that resource is for others. It insists that the
cost, measured in that way, figure in each person’s sense of what is rightly his and in
each person’s judgment of what life he should lead, given that command of justice. ”

Ronald Dworkin, What is Equality? Part II: Equality of Resources, 1981

1 Introduction

In settings where monetary payments are not allowed, it is generally impossible to elicit the absolute scale
of agents’ utilities. This makes objectives like social welfare maximization difficult. Instead, it is common to
focus on some notion of equality or fairness. In the context of pure private goods economies, this is commonly
represented, in both analytic philosophy and economics, by the closely related ideas of the envy-freeness [15],
competitive equilibrium from equal incomes [26] and equality of resources [12]. There has been a recent surge
of interest in these topics – and more generally, axiomatic fair division of resources – in the computational
economics community as well.

It is not immediately clear how to adapt these concepts to the public decision-making setting. For
example, envy-freeness is not meaningful in such an economy, since all agents “consume” the same outcome;
they simply receive different utility from that outcome. In this paper we propose and analyze a potential
solution in a continuous public decision-making environment (i.e., an outcome is a point in Rm, where each
of the m dimensions represents a public issue) that we call equality of power.

The idea at the foundation of equality of power is that each individual’s opinion should be given equal
weight. This is widely considered by political theorists to be the defining feature of democracy [11] if not
of justice more generally [1, 2, 25]. As Dahl puts it, “The moral judgement that all human beings are of
intrinsically equal worth...(requires) that the good or interests of each person must be given equal consider-
ation.” Despite this progress on the political theory front, no version of the equal power concept has been
formalized technically. How do we formally define “equal weight” of opinions? In this paper, we propose a
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formal definition of equality of power, and show that for quadratic utility functions1 and a large number of
agents2, there always exists an outcome satisfying this definition.

1.1 Our contribution

Ronald Dworkin’s seminal work in private goods economies suggests that each agent should be allowed to
impose equal cost on the rest of society [12]. We model this as externality. The externality of an agent is the
decrease in social welfare (i.e., sum of utilities) for everyone else caused by the existence of that agent. That
is, consider the outcome that would be chosen in the absence of that agent, versus the outcome chosen when
that agent is included: the externality is the difference in social welfare for the rest of the agents between
those two outcomes. We define an agent’s power to be her externality, and so equal power requires all agents
to have the same externality.

However, we cannot define social welfare in the standard sense, because we do not know the scale of the
individual utilities. To define a common scale, we follow the spirit of Dworkin [12] and measure utilities by a
metric where the marginal value of additional power for every agent is equal. This is tightly analogous to the
definition of equality of resources in terms of equal units of an artificial auction currency, which is exactly
the concept of competitive equilibrium from incomes concept from Varian [26]. For additional intuition,
imagine that the social planner has a finite amount of power to allocate. In order to maximize social welfare,
the marginal value of additional power should be the same for each agent: otherwise, moving power from
agents with lower marginal value to agents with higher marginal value would increase the social welfare.
We emphasize that the above discussion is not a technical statement, nor is it representative of our actual
mathematical model; we include it solely for intuition behind choosing a common scale which equalizes the
marginal value of additional power.

Informal statement of results. Our full mathematical model is given in Section 2, but we give an informal
description here. We assume agents have quadratic utilities: each agent i has an ideal point yi ∈ Rm, along
with a weight wij for each issue j. Agent i’s utility for an outcome x ∈ R is defined as

ui(x) = −
m∑
j=1

wij(yij − xj)2

where yij and xj are the jth coordinates of yi and x, respectively. Note that ui(x) is maximized at x = yi.
To define “marginal value for additional power”, we use the following elicitation scheme. Consider an

outcome x for the public decision-making problem. We ask each agent to move the outcome towards her ideal
point, under the constraint that the externality she imposes on the rest of society is at most some constant
γ. When γ is uniform across all agents, this satisfies equality of power.

Our goal, then, is the following. We desire a scaling of utilities c and an public decision-making outcome
x3 such that all of the following hold:

1. Each agent has equal power. This is achieved by having γ be uniform across agents.
2. Each agent has equal marginal utility for additional power with respect to the elicitation scheme described

above (allowing each agent to move the outcome towards their ideal point).
3. The net movement in each direction in the above elicitation scheme is 0.
4. The outcome x maximizes social welfare with respect to c.

For quadratic utilities, we are able to prove existence of such an x and c in the limit as the number of
agents approaches infinity. This leads to Theorem 4.2, whose formal statement comes later. Here δij(x) ∈ R
represents the amount agent i chooses to move from the current point on issue j. We will often simply denote
this by δij , and denote the desired shift vector of agent i by δi. Note that we do not need to explicitly require
that all agents have equal power, as this is ensured by the elicitation scheme (as long as γ is uniform).

1 See Section 1.1 for a definition.
2 Specifically, we show that for any finite number of agents, we achieve an approximate version of this equal power

outcome, and the approximation error goes to 0 as the number of agents goes to infinity.
3 This scaling, which we denote c, will be a vector assigning a scaling factor to each agent. The outcome x will be a

vector in Rm, where m is the number of issues.
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Theorem 4.2 (Informal). When agent utilities are quadratic, there exists an outcome x and a scaling of
agent utilities c such that as the number of agents goes to infinity, all of the following hold:

1. The net movement along each issue (i.e.,
∑
i δij(x)) is 0.

2. Every agent has the same marginal utility for additional power.
3. The outcome x maximizes welfare with respect to c.

The technical statement of the theorem can be found in Section 4. Our proof is quite technically involved.
Along with some standard (though involved) Lagrangian duality techniques, we use a fixed point argument
whereby we show that a particular infinite-dimensional function admits “almost-fixed” points, i.e., points z
where z and f(z) are arbitrarily close (we will end up choosing our scaling c to be an almost-fixed point of
this particular function). Our primary technical contribution is a novel technique for proving existence of
approximate fixed points; see Section 4.1 for a more in-depth discussion.

Dependence of marginal utility and social welfare on c. Both the marginal utilities and the social
welfare are computed with respect to the utility scale c. The reader may be worried that this makes Theo-
rem 4.2 circular, but it is important to recognize three things. First, the scaling c is not a free parameter: it
is tied down by our requirement that the marginal value for additional power be equal. Second, as mentioned
above, this is strongly inspired by the definition of equality of resources in terms of equal amounts of an
artificial currency (see Varian [26]).

Third, and most importantly, we argue that it is not meaningful to ask for equal marginal utilities or
welfare maximization with respect to the “true” utilities. This is because, in our model, “true” utilities do
not really exist: it is not meaningful for ask for the absolute scale of an agent’s utility (since there are no
monetary payments). The model is not that we are given agents’ true utilities and we are scaling them, the
model is that we are defining a scale of agents’ utilities, since some scale is needed in order to maximize
social welfare. Inspired by [12], we are choosing a scale that equalizes the marginal utilities.

For some intuition, in the one dimensional case, the outcome specified by Theorem 4.2 turns out to be the
median of the agents’ ideal points (see Section 3). Furthermore, we argue in Appendix E that our solution
concept is not trivial, by showing that an “obvious” choice for c (specifically, giving each agent the same
scaling factor ci) does not work.

Finally, we briefly discuss incentives and computation. Our query to agents – to provide a desired shift
from the current point, under the equal power constraint – is an elicitation method, not a mechanism.
Consequently, our result should be thought of only as an existence result. We do not consider mechanism
design in a formal sense in this paper, and leave that for future work. We are optimistic about the possibility
of an iterative procedure for computing x and c, where on each step, each agent provides a δi(x), and we
use δ1 . . . δn to compute the next iterate.

1.2 Connections to quadratic voting

It will turn out that our equal power constraint will reduce to a simple quadratic constraint of the form∑
j qjδ

2
ij ≤ γ, where each qj is a positive constant and each j is an issue. Quadratic voting is an increasingly

promising voting scheme, both in theory [3, 4, 8, 18, 19, 20, 21, 27] and practice [17, 22, 24]. The fact that
our equal power outcome can be implemented with (weighted) quadratic voting leads to a host of promising
directions for future work.

In particular, we are optimistic about the possibility of an iterative protocol for computing our desired
outcome (x∗, c). As suggested above, consider an iterative algorithm where on each step, we ask each agent
for their desired shift δi(x) from the current point x, and use those shifts to compute the next iterate. This
algorithm was first studied by Hylland and Zeckhauser in 1979 [18], although instead of the externality
constraint (which reduces to

∑
j qjδ

2
ij ≤ γ), they used subjected each agent to the dimension-symmetric

quadratic voting constraint of
∑
j δ

2
ij ≤ γ4. They show that their procedure converges to a Pareto optimum.

However, we desire something stronger than just a Pareto optimum. Intuitively, by using a dimension-
symmetric constraint, their algorithm ignores the fact that some issues are more important to the population
than others. The more the rest of society cares about an issue, the more difficult it should be for an individual

4 The dimension-symmetric version of this algorithm has also been studied in [3, 4, 8, 17].
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to affect the outcome on that issue. This is what Dworkin’s quote from the beginning of our paper captures,
and what inspires our equal externality constraint. As discussed above, our equal externality constraint will
reduce to a constraint of the form

∑
j qjδ

2
ij ≤ γ. Each qj should be interpreted as the aggregate weight

society places on issue j.
The distinction between these two constraints is not simply technical. Since each issue is unitless in this

model, it not clear what the “right” description of the issue space is, i.e., the right scale for each issue5. Our
equal externality constraint will be invariant to such rescaling, as intuitively should be the case: if some issue
j is rescaled, qj will simply rescale accordingly. This means that regardless of the representation of the issue
space, the outcome described by Theorem 4.2 will be the same. However, Hylland and Zeckhauser’s algorithm
dimension-symmetric algorithm is extremely vulnerable to this: their outcome will depend dramatically on
the precise description of the decision space.

For future work, we are interested in the variant of their algorithm where their dimension-symmetric
constraint is replaced with our equal power constraint. This leads to another complication: the right scale
for each issue (i.e., qj) is not known a priori. However, we believe that the right scaling can be discovered
as the algorithm progresses based on agents’ desired shifts. This is similar to how iterative algorithms for
computing private goods market equilibria6 slowly discover the right prices based on agent demands. All in
all, we conjecture that this will lead to an iterative algorithm for public decision-making that both maximizes
social welfare, and is consistent with the spirit of equality of resources and envy-freeness studied by economics
and philosophy giants such as Ronald Dworkin, Hal Varian, and many more.

Further connections to quadratic voting and second order methods. For the expert reader, we include a brief
discussion of some more technical aspects of these connections. Going back to Dworkin [12], he suggests
the use of an auction based on equal initial endowments; while he is not explicit about the auction theory
involved, he seems to appeal to the idea of a Walrasian auction to which many auction designs converge in
large replications of private goods economies with a fixed number of goods [10, 23]. However, the structure
of power and quadratic voting is fundamentally different than the linear pricing of a Walrasian auction.
For a large population, each agent is only able to suggest a very small shift δi from the current point. In
particular, the second and higher derivatives of her utility function with respect to δi vanish as the number
of agents goes to infinity. In order to capture the remaining first derivative, the “pricing” of the δi (i.e., the
externality constraint on δi) should therefore be a quadratic form rather than a linear function, so that the
first derivatives of the constraint are linear.

1.3 Other related work

There has been significant recent progress on the theory of public decision-making, some of which with close
ties to our work, and some of which using very different approaches. An iterative algorithm which elicits a
desired shift from each agent on each step has been studied in [3, 4, 8, 17] and shown to converge under
certain assumptions. Furthermore, most of this work does focus specifically on quadratic constraints on the
desired shifts. However, none of this work addresses the “weighting” or “rescaling” of dimensions that is
crucial to our work (and handled by the qj constants, as discussed above). For example, [17] focuses on the
case where each agent cares about all of the dimensions the same amount.

One can think of the equal power constraint as a pricing mechanism, in the sense that the amount of
externality caused (which is equal to

∑
j qjδ

2
ij) is the “price”, and each agent has γ units of power to spend.

One famous result regarding pricing for public decision-making is that when arbitrary personalized prices
are allowed (i.e., the central authority can give agents different prices for the same issue with no restrictions),
any Pareto optimal point can be a market equilibrium [14]. A recent paper [16] improved upon this result
for the special case of binary issue public decision-making (i.e., each issue has two discrete alternatives, and
each agent’s ideal point is one of these two alternatives). They gave a reduction by which any binary issue
public decision-making problem can be reduced to a private goods market that is “equivalent” in a strong
sense, and used this to obtain stronger market equilibrium properties for their special case. Both of these
differ from our work in that they use personalized prices to some extent, whereas we subject each agent to

5 Note that rescaling of the issue space is independent of our scaling c of the agent utility functions.
6 Such algorithms are often known as tâtonnements.
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exactly the same equal power constraint. In this way, our work is arguably more consistent with the spirit
of equality of resources.

We briefly mention several non-market approaches. Storable Votes [7] considers a repeated voting context,
and permits agents to store their votes for future meetings. In [9], the authors adapt traditional private goods
fairness axioms (such as a proportionality) to the public decision-making context for the case where only
a discrete set of outcomes are allowed for each issue. The discrete public decision-making problem is also
studied by [13], which considers approximate versions of the core, since the (exact) core is not guaranteed
to exist in the discrete version of the problem.

The paper proceeds as follows. Section 2 presents the formal model. Section 3 considers the one-dimensional
case7; this serves as a “warm-up” for the main proof. Since the proof of our main result (Theorem 4.2) is
quite involved, we use Section 4 to set up the main result and provide a detailed roadmap of the proof.
We then move on to the formal proof. Section 5 contains the fixed point argument that we use to identify
our desired outcome x and scaling c. The rest of the proof appears in the appendix. Appendix A provides
some additional setup that was omitted from the main body. We then proceed with the rest of the formal
proof. Appendix B proves several properties that will be important throughout the proof, such a technical
version of the statement “each agent is a small fraction of a large population”. Appendix C characterizes
each agent’s desired shift δi, and show that under the choice of x and c from Section 5, (almost all) the
agents have (almost) the same marginal value for additional power. Appendix D handles the last require-
ment of Theorem 4.2, which is that

∑
j δij(x) is (almost) 0 for each issue j. Also, Appendix E shows that

an “obvious” choice of c (specifically, giving every agent the same scaling factor) is not sufficient for our
purposes; this section is solely for intuition.

2 Model

Consider a set of public issues M = {1 . . .m}. We assume that an outcome for a particular issue is a scalar
in R, so an outcome for the overall problem is a vector in Rm. A group of agents need to choose an outcome
for this decision-making problem. We assume that each agent is drawn i.i.d. from an integrable probability
distribution p : N → R≥0 over possible agent types, where N is the set of agent types. We assume that the
distribution is not concentrated too strongly anywhere: specifically, we assume that there exists pmax > 0
such that p(i) ≤ pmax for all i. We will use “agents” and “agent types” interchangeably. In general, we will
use i and k to refer to agents, and j and ` to refer to issues. Since we are holding m fixed and taking n to
infinity, we will think of m as a constant (in that we suppress it in asymptotic notation).

Each agent type is specified by an ideal outcome yi ∈ Rm and a weight vector wi ∈ Rm. The weight
vector represents how much the agent cares about different issues. Let yij ∈ R and wij ∈ R≥0 denote agent
i’s ideal outcome and weight for issue j, respectively. Then agent i’s utility for an arbitrary point x ∈ Rm is

ui(x) = −ci
∑
j∈M

wij(xj − yij)2

where ci ∈ R>0 is the scaling of agent i’s utility that we choose. Note that agent i’s utility is maximized at
x = yi.

Let χ ⊂ Rm be the set of feasible outcomes. We assume that the region of feasible outcomes is bounded
and convex. Define dmax by

dmax = sup
a,b∈χ

||a− b||2

where ||a− b||2 =
√∑

j∈M (aj − bj)2 is the L2 norm.

We also assume all agents’ weights are bounded above and below. Specifically, we assume there exists
wmin, wmax > 0 such that wmin ≤ wij ≤ wmax for all i, j8. The assumptions of boundedness of χ and
boundedness of wij for all i, j together imply that the set N is bounded.

7 Recall that our desired outcome turns out to be the median of the agents’ ideal points in this case.
8 This is really only one assumption, actually: ci will be invariant to wi in the sense that if agent i doubles wi, ci

will halve. This means that only the relative weights matter anyway, so we are essentially assuming that the ratio
of each agent’s maximum weight dividing by minimum weight is bounded above, i.e., wi is “well-conditioned”.
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Equality of power. Let n be the number of agents sampled from p, and let Ns be the random variable
representing this set of sampled agents. Rather than focusing on the welfare of the actual set of agents
sampled, we use the expected societal welfare with respect to the distribution p. However, since the agents
are drawn i.i.d., the law of large numbers implies that the two coincide in the limit as n → ∞ anyway.
Specifically, for x ∈ χ, the expected societal welfare U(x) (which depends on the chosen ci’s) is defined by

U(x) = ENs∼p

[∑
i∈Ns

ui(x)

]
= n

∫
i∈N

p(i)ui(x) di

For our equal power (i.e., equal externality) constraint, we define externality with respect to the expected
societal welfare U , not with respect to the welfare of the actual sampled agents Ns. Formally, given a current
point x ∈ χ, we define the externality of a desired shift δ ∈ Rm to be U(x)−U(x+ δ)9. Thus given a current
point x and a small power constant γ > 0, we present each agent i with the following convex program:

max
δ∈Rm

ui(x+ δ) (1)

s.t. U(x)− U(x+ δ) ≤ γ

Let δi(x) ∈ Rm be the optimal solution to Program 1 starting from point x ∈ Rm, and let λi(x) ∈ R be the
value of the Lagrange multiplier in the optimal solution. These variables refer only to the optimal solution of
agent i’s copy of Program 1, not any sort of global optimal solution. Also note that this program implicitly
depends on the scaling factors c (through U).

For a convex program with a differential objective function (such as Program 1), the Lagrange multiplier
represents how much we could improve the objective value if the constraint were relaxed10. In our case, the
objective function here is agent i’s utility for outcome x+ δ, and the constraint is enforcing that the power
used by agent i is at most γ. Thus the Lagrange multiplier λi(x) is exactly agent i’s marginal value for
additional power, and this is what we wish to equalize across agents.

Our solution concept. Our solution concept – an equal-power equal-λ ε-equilibrium – asks us to chose an
outcome x ∈ Rm and agent scaling factors c ∈ RN>0 (along with a power constant γ and a particular Lagrange
multiplier λ) that satisfies three requirements. First, the expected net movement (the sum of δi(x)’s) from the
current point is smaller than ε. We use the L2 norm to express the size of

∑
i δi(x). The second requirement

is that all agents except an ε fraction have the same value of λi(x), up to an ε error. Finally, the selected
outcome x ∈ Rm must maximize welfare with respect to the chosen agent scaling factors c ∈ RN>0. Since N
is a (continuous) distribution over agent types, c will be an infinite-dimensional vector.

Definition 2.1. An equal-power equal-λ ε-equilibrium is a outcome x ∈ Rm, agent scaling factors c ∈ RN>0,
power constant γ, and marginal utility λ > 0 such that

1. ENs∼p
[
||
∑
i∈Ns

δi(x)||2
]
< ε.

2. The expected number of agents i with (1− ε)λ ≤ λi(x) ≤ λ is at least (1− ε)n.
3. The outcome x maximizes welfare with respect to c, i.e., x ∈ arg maxx′ U(x′).

We will usually leave x implicit and just write δi (which is a vector), δij (which is a scalar), and λi (which
is a scalar). Note that we are only asking for ||

∑
i∈Ns

δi||2 to be small in expectation, but the law of large
numbers ensures that the realized value will converge to the expectation with probability 1 as |Ns| → ∞.

Our goal will be to show that for any ε > 0, there exists a large enough n (number of agents) such that
an equal-power equal-λ ε-equilibrium exists (for some choice of λ). Specifically, we will choose a fixed x and
c based on the underlying distribution p, agnostic to the set of agents that are actually sampled. We then
show that the approximation error goes to 0 as n→∞.

In the next section, we show that in the one-dimensional case, our desired outcome is the median of the
agents’ ideal points.

9 The careful reader may notice that externality is usually defined as the impact on the welfare of everyone else,
excluding the agent in question. However, since we assume agents to be drawn i.i.d., this distinction is not important.

10 See Chapter 5 of [6] for an introduction to this type of perturbation analysis.
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3 Warm-up: one dimension

We view the one-dimensional case as a warm-up in the sense that the result of this section (Theorem 3.1) will
be subsumed by our result for the m-dimensional case (Theorem 4.2). Although the proof of Theorem 4.2 is
much more technically involved, the general flow of the proof for the one-dimensional case is similar, so we
find it instructive to present first. The main difference is that for the m-dimensional case, the equilibrium
point is identified as an approximate fixed point of a particular (somewhat complicated) function. In contrast,
for the one-dimensional case, we are able to “guess” that the equilibrium point should be the median. There
are several additional small differences, such as the specific bound on λi. If the reader is confident and wishes
to skip this warm-up, we encourage them to proceed directly to Section 4.

Since we are working with a single dimension, we have wi, yi ∈ R, and agent i’s utility function is
ui(x) = −ciwi(x−yi)2. Define x to be the median of the agents’ ideal points. Specifically, choose x ∈ R such
that ∫

i∈N
p(i) sgn(x− yi) di = 0

That is, the probability of sampling an agent i with yi ≤ x is equal to the probability of sampling an agent
i with yi ≥ x. Since p is continuous, such an x must exist (if there are multiple, choose one arbitrarily).

For each i ∈ N with yi 6= x, we define ci to be inversely proportional to her weight wi and the distance
between yi and x. Agents with yi = x will turn out to not matter (because this set has measure 0), so we
set ci = c for those agents, where c can be any constant.

ci =


1

wi|x− yi|
if yi 6= x

c if yi = x

This definition will imply that the outcome is scale-invariant: doubling wi results in halving ci, which leads

to the same final utility function of ui(x) = − (x− yi)2

|x− yi|
= −|x− yi|. Also, let q = n

∫
k∈N p(k)|x− yk|−1 dk.11

Since
∫
k∈N p(k)|x− yk|−1 dk is just some constant (i.e., independent of n), q is Θ(n).

Theorem 3.1. For x, c as defined above, there exists a power constant γ such that the following all hold:

1. |n
∫
i∈N p(i)δi(x) di| goes to 0 as n→∞.

2. For each agent i except a vanishing fraction12, λi goes to 1/
√
qγ as n→∞.

3. The outcome x maximizes welfare with respect to c, i.e., x ∈ arg maxx′ U(x′).

Note that rather than converging to a specific value, λi is approaching 1/
√
qγ, and q is Θ(n). However,

since we are interested in multiplicative differences in λi, this is not a problem. For the m-dimensional case,
one product of our more complicated setup will be that λi converges to a specific value: specifically, 1/

√
γ.

Since the point of this section is to give intuition for the main proof (and not to actually prove an
interesting result), we are less formal and rigorous than we will be in the proof of the main result. There are
also a few (uninformative) parts of the proof that we defer entirely until the proof of the main result.

To start, we consider welfare maximization.

Lemma 3.1. The outcome x as defined above maximizes welfare with respect to c.

Proof. Since U is concave and differentiable, and we are maximizing over an unrestricted domain, xmaximizes
U if and only if derivative of U at x is 0:

d

dx
U(x) =

d

dx
n

∫
i∈N

p(i)ui(xi) di = −2

∫
i∈N

p(i)ciwi(x− yi) di = −2

∫
i∈N

p(i)
wi(x− yi)
wi|x− yi|

By definition of x, we have
∫
i∈N p(i) sgn(x − yi) di =

∫
i∈N p(i)

x− yi
|x− yi|

di = 0. Thus
d

dx
U(x) = 0, so x ∈

arg maxx′ U(x).

11 Note that although |yi − x|−1 is undefined at x = yi, its integral is indeed well-defined.
12 That is, the fraction of agents for whom this does not hold should go to 0 as n→∞.
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Next, we obtain an expression for δi in terms of λi.

Lemma 3.2. For each i ∈ N , we have δi =
(yi − x)

|x− yi|(|x− yi|−1 + λiq)
.

Proof. We begin by writing the Lagrangian of Program 1 for an arbitrary agent i:

L(δi, λi) = ui(x+ δi)− λi
(
U(x)− U(x+ δi)− γ

)
The KKT conditions imply that the derivative of L with respect to δi should be zero for the optimal δi:

d

dδi
L(δi, λi) =

d

dδi
ui(x+ δi) + λi

d

dδi
U(x+ δi)

= − 2(x+ δi − yi)
|x− yi|

− λin
∫
k∈N

p(k)
2(x+ δi − yk)

|x− yk|
dk

= − 2δi
|x− yi|

− 2(x− yi)
|x− yi|

− n
∫
k∈N

p(k)
2λiδi
|x− yk|

dk − 2nλi

∫
k∈N

p(k)
x− yk
|x− yk|

dk

By the definition of x, we have
∫
k∈N p(k) sgn(x− yk) dk =

∫
k∈N p(k)

x− yk
|x− yk|

dk = 0, so

d

dδi
L(δi, λi) = − 2δi

|x− yi|
− 2(x− yi)
|x− yi|

− n
∫
k∈N

p(k)
2λiδi
|x− yk|

dk

= − 2δi

(
|x− yi|−1 + λin

∫
k∈N

p(k)|x− yk|−1 dk
)
− 2(x− yi)
|x− yi|

Since d
dδi
L(δi, λi) = 0, we get

δi =
(yi − x)

|x− yi|
(
|x− yi|−1 + λin

∫
k∈N p(k)|x− yk|−1 dk

) =
(yi − x)

|x− yi|(|x− yi|−1 + λiq)

We will now use Lemma 3.2 to derive explicit bounds on λi. Let N̂ = {i ∈ N : |x − yi| ≥ 1/n1/4}.
Clearly as n goes to ∞, the fraction of agents not in N̂ goes to 0. Furthermore, we can always choose the
power constant γ to be small enough such that every agent in N̂ exhausts her power. Thus for each i ∈ N̂ ,
U(x)− U(x+ δi) = γ.

Lemma 3.3. For each i ∈ N̂ ,
1
√
q

(
1
√
γ
−

1

Ω(n1/4)

)
≤ λi ≤

1
√
qγ

.

Proof. Using arithmetic (we prove this for the more general setting later: see Lemma C.1), U(x)−U(x+δi) =
δ2i q. Therefore δ2i = γ/q. Also using Lemma 3.2, for each i ∈ N̂ we have

(yi − x)2

(yi − x)2(|x− yi|−1 + λiq)2
= γ/q

|x− yi|−1 + λiq =
√
q/γ

λi =
1
√
qγ
− 1

q|x− yi|

Clearly we have λi ≤ 1/
√
qγ. Since |x− yi| ≥ 1/n1/4 for i ∈ N̂ , we have λi ≥

1
√
q

(
1
√
γ
− n1/4

√
q

)
=

1
√
q

(
1
√
γ
−

1

Ω(n1/4)

)
. Therefore for each i ∈ N̂ ,

1
√
q

(
1
√
γ
− 1

Ω(n1/4)

)
≤ λi ≤

1
√
qγ

.

Finally, we need the expected net movement to be small:
∫
i∈N p(i)δi(x) di goes to 0 as n→∞.

Lemma 3.4. As n→∞, |
∫
i∈N p(i)δi(x) di| goes to 0.

The proof for Lemma 3.4 is fairly tedious, even for one dimension. Thus we defer this part of the proof
until later, when we formally prove this for the general case.

Lemmas 3.1, 3.3, and 3.4 together imply Theorem 3.1.
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4 Main theorem setup

In this section, we state our main theorem (and one variant of the theorem), and provide a roadmap of the
proof. Informally, our main result is:

Theorem 4.2 (Informal). As the number of agents goes to infinity, there exists an outcome x and a scaling
of agent utilities c such that all of the following hold:

1. The expected net movement – ||n
∫
i∈N p(i)δi(x) di||2 – is 0.

2. Every agent has the same marginal utility for additional power.
3. The outcome x maximizes expected welfare with respect to c.

This implies that for any ε > 0 and large enough n, there exists an equal-power equal-λ ε-equilibrium.
We state two theorems in this section. The theorem statements refer to a function f that will be defined

in Section 5. The variable α is a parameter of f that is used to ensure continuity of f , and will be chosen as
a function of n.

Most of the paper is devoted to proving Theorem 4.1, which assumes an exact fixed point of f , and
presents approximation bounds on our quantities of interest (i.e, λi and ||n

∫
i∈N p(i)δi(x) di||2) as a function

of α and n. An intermediate lemma (Lemma A.1), which appears in Appendix A, shows that there is a choice
of α (specifically, α = n−7/8) such that the approximation error vanishes as n goes to ∞, also assuming an
exact fixed point of f .

In reality, we are not able to prove that f has an exact fixed point. Instead, we show in Section 5 that
f has an ε-fixed point for each ε > 0 (where ε = 0 would denote an exact fixed point). Theorem 4.2 states
that we can pick ε small enough that using an ε-fixed point of f is good enough.

Theorem 4.1. Suppose f as defined in Section 5 has an exact fixed point c for any choice of α and n. Let

xj =
(∫
i∈N p(i)ciwij di

)−1 ∫
i∈N p(i)ciwijyij di. Let α be chosen as a function of n so that limn→∞ n3/2α =∞

and limn→∞ αm/2nm/4 = 0. Then for any ε, there exists α and n such that (x, c, γ, 1/
√
γ) is an equal-power

equal-λ ε-equilibrium. Specifically:

1. ||n
∫
i∈N p(i)δi(x) di||2 ≤

γ +
√
γ

O(n2α2)
+O(αm/2nm/4+1).

2. For all i except an expected O(αm/2nm/4) fraction, O
(√

n3/2α

n3/2α+ 1

) 1
√
γ
≤ λi(x) ≤

1
√
γ

.

3. The outcome x maximizes welfare with respect to c.

The assumptions of limn→∞ n3/2α = ∞ and limn→∞ αm/2nm/4 = 0 in Theorem 4.1 are necessary for a
few parts of the proof to work.

Using Theorem 4.1 and Lemma A.1, we get our final result:

Theorem 4.2. Let c be an ε-fixed point of f and let xj =
(∫
i∈N p(i)ciwij di

)−1 ∫
i∈N p(i)ciwijyij di. Let

α = n−7/8 and m ≥ 6. Then there exists a small enough ε such that all of the following hold:

1. ||n
∫
i∈N p(i)δi(x) di||2 ≤ (γ +

√
γ)O(n−1/4) +O(n−1/8).

2. For all i except an expected O(n−3/4) fraction, O
(√

n5/8

n5/8 + 1

) 1
√
γ
≤ λi(x) ≤

1
√
γ

.

3. The outcome x maximizes welfare with respect to c.

4.1 Proof roadmap

In this section, we state and describe the key lemmas in our proof. The proofs of some of these lemmas
involve additional lemmas, but we only include the most important lemmas.

Section 5 is devoted to showing that the function f satisfies the approximate fixed-point property (AFPP) [5]:
for every ε > 0, f admits an ε-fixed point13. In our opinion, this is the most interesting part of the overall
proof, and constitutes a novel approach for proving existence of approximate fixed points.

13 See Section 5 for a formal definition.
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The function f will actually be infinite-dimensional, and it turns out (perhaps unsurprisingly) to be
challenging to prove fixed point existence for infinite-dimensional functions. Instead, we will analyze a finite-
dimensional variant denoted by gA (A will be any finite set of agents).

We first show that gA has an exact fixed point for any finite set A (Lemma 5.1). In the following lemma
statement, α and s1 . . . s|A| are parameters of gA.

Lemma 5.1. For any α ∈ (0,
√
nw2

maxd
2
max

wmin
], any finite set A ⊂ N , and any nonnegative s1 . . . s|A| that sum

to 1, the function gA has a fixed point c∗ ∈
[

wmin

w2
maxd

2
max

,
√
n

α

]|A|
.

We then show that for any ε > 0, there exists an A large enough that any exact fixed point of g can be
transformed into an ε-fixed point of f . This part of the argument is quite involved, and uses the following
steps: (1) Partition the agent space into arbitrarily small hypercubes. (2) Choose a “representative” from
each hypercube in a careful way. (3) Let A be the set of those representatives, let s` be the measure of p in
the `th hypercube, and let c be an exact fixed point of gA with parameters s1 . . . s|A|. (4) Assign each agent
not in A to have the same scaling factor as her representative. (5) Show that for small enough hypercubes,
this is an ε-fixed point of f . This results in the following lemma:

Lemma 5.3. The function f satisfies AFPP.

The rest of the proof appears in the appendix. Also, throughout the rest of the paper after Section 5,
we use x and c to specifically refer to the outcome and agent scaling factors defined in Theorem 4.1, not
arbitrary outcomes/agent scaling factors.

In Appendix B, we establish some important properties we will use along the way. First, we show that
x as defined in the statement of Theorem 4.1 maximizes welfare with respect to the agent scaling factors c
defined in that theorem statement.

Lemma B.1. The outcome x maximizes societal welfare U(x) with respect to c.

Next, we define N̂ as the set of “normal” agents (“normal” will be defined later), and show that the
measure of N \ N̂ is small (i.e., almost all the agents are “normal”). Since we treat m as a constant, the
right hand side is O(αm/2nm/4); everything else is a constant.

Lemma B.2. We have

∫
i 6∈N̂

p(i) di ≤ αm/2nm/4 π
m/2pmax

Γ (m
2

+ 1)

(√
wmax

wmin

)m
.

Lemma B.4 states that each agent is a small fraction of the overall population, in terms of weight ciwij
on any issue. Note that the left hand side is an integral over the whole population, and the right hand side
is a multiple of ciwij .

Lemma B.4. For any agent i ∈ N ,

∫
k∈N

p(k)ckwkj dk ≥ w2
min

4w3
maxd

2
max

√
nαciwij.

Appendix C to devoted to analyzing properties of δi and λi. First, we show that δi obeys a particular
expression in terms of λi.

Lemma C.2. For every agent i and issue j, δij =
ciwij(yij − xj)
ciwij + λiqj

.

We will define an approximation variable τi such that λi =
1

√
τi + γ

, and show that τi is small. This holds

for every “normal” agent, i.e., the agents in N̂ .

Lemma C.5. For each agent i ∈ N̂ , τi ≤
2γ3/2mwmax

n3/2αβwmin − 2
√
γmwmax

.

We will also show that τi > 0 (this part will be easy). This will allow us to upper- and lower-bound the
value of λi for each i ∈ N̂ . The variable η will be defined later, but we will have η = Θ(n3/2α); by assumption
of Theorem 4.1, limn→∞ n3/2α =∞. This means that limn→∞ η =∞ as well, and this range of allowable λi
shrinks to a single point (specifically, 1/γ).
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Lemma C.6. For all i ∈ N̂ ,
√

η

η + 1
· 1
√
γ
≤ λi ≤

1
√
γ

.

Finally, Appendix D proves an upper bound on
∣∣∣∣n ∫

i∈N p(i)δi(x) di
∣∣∣∣
2
: the expected net movement with

respect to the current point. Note that ENs∼p[||
∑
i∈Ns

δi(x)||2] = n||
∫
i∈N p(i)δi(x) di||2.

Lemma D.5. We have

∣∣∣∣∣∣∣∣n∫
i∈N

p(i)δi(x) di

∣∣∣∣∣∣∣∣
2

≤ γ+
√
γ

Ω(n2α2) +O(αm/2nm/4+1).

Lemmas B.1, C.6, and D.5 will together imply Theorem 4.1.

5 The fixed point argument

We will choose our agent scaling factors c to be an (approximate) fixed point of a particular function
f (defined below). This section is devoted to constructing this function and showing that it satisfies the
approximate fixed point property (defined in Definition 5.1).

Defining the function f . Let RN>0 be the set of functions c : N → R>0. We can think of each function
c as assigning a scaling factor c(i) > 0 to each agent type i. For this section of the paper, we will use the
function notation c(i) instead of ci.

For brevity, for each j ∈M define xj(c) by

xj(c) =
(∫

i∈N
p(i)c(i)wij di

)−1 ∫
i∈N

p(i)c(i)wijyij di

This is a continuous average of all agents’ ideal points yij weighted by c(i) and wij . We show later that this
choice of x maximizes welfare with respect to c (Lemma B.1).

The function f : RN>0 → RN>0 will take as input a function c : N → R>0, and returns a another function
f(c) : N → R>0. Just as c(i) ∈ R>0 is the scaling factor that c assigns to agent i, we use [f(c)](i) ∈ R>0

to denote the scaling factor that f(c) assigns to agent i. For a small α > 0 to be chosen later, we define
[f(c)](i) by

[f(c)](i) =

√
n

max
(
α,
√∑

j∈M w2
ij(yij − xj(c))2

( ∫
k∈N p(k)c(k)wkj dk

)−1)
Intuition behind f . Since we will be choosing c to be an (approximate) fixed point of f , each ci will end
up approximately equal to [f(c)](i). Consequently, the structure of f gives us a qualitative interpretation of
the agent scaling factors c.

Ignore α and
√
n for now. First, notice that f is invariant to the scale of individual utilities. Specifically,

if an agent scales up her weights by a constant factor κ, [f(c)](i) ≈ c(i) decreases by a factor of κ: w2
ij

becomes κ2w2
ij , then pull κ out of the square root (still ignoring α). The consequence is that our “common

utility scale” defined by c is invariant to individuals scaling up or down their utility functions, as it should
be.

Next, think of
∫
k∈N p(k)c(k)wkj dk is the aggregate weight placed by society on issue j. Thus each term

w2
ij(yij − xj(c))2

( ∫
k∈N p(k)c(k)wkj dk

)−1
is equal to agent i’s weight for issue j (i.e., wij) times her utility

loss on issue j (i.e., wij(yij−xj(c)), as a fraction of society’s total weight on that issue. Thus the summation
in the denominator can be thought of as expressing how much agent i “disagrees” with the rest of society,
with respect to the current point x(c). More intense disagreement leads to a larger denominator, and smaller
overall value for c(i).

That said, the real reason for this choice of f is technical: in order for (almost) all agents to have (almost)
the same value of λi, we will need c(i)2 to be proportional to the expression under the square root for (almost)
all agents. This is exactly what a fixed point of f gives us (ignoring α).

Finally, the purposes of
√
n and α are purely technical. The maximization with α is to ensure that there

is no discontinuity in f when the expression under the square root is zero (continuity is required for our
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fixed point analysis). We will show that α can be chosen so that the properties we desire are not affected.
The

√
n is simply to help certain aspects of the math later on work out smoothly.14

Approximate fixed points. Ideally, we would like to show that f has a fixed point. As the reader might
expect, showing existence of fixed points in infinite-dimensional spaces can be challenging. Instead, we will
show that f admits approximate fixed points:15

Definition 5.1. Let X be a set. We say that a function f : RX>0 → RX>0 satisfies the approximate fixed point
property (AFPP) if for every ε > 0, there exists c such that |[f(c)](i)− c(i)| < ε for all i ∈ X. We call such
a c an ε-fixed point.

The rest of this section is devoted to showing that f satisfies AFPP. To do this, we define a function
gA for any finite set of agents A which serves a finite-dimensional approximation of f . We will show that
gA admits an exact fixed point for any set A. To complete the proof, we will show that picking A to be
arbitrarily large allows us to approximate f arbitrarily well.

5.1 Showing that f satisfies AFPP

Let A = {i1, i2 . . . i|A|} be a finite set of agents with nonnegative coefficients s1 . . . s|A| that sum to 1.With

slight abuse of notation, we will use sik and sk interchangeably. We define a function gA : R|A|>0 → R|A|>0 by

[gA(c)](i) =

√
n

max
(
α,
√∑

j∈M w2
ij(yij − xj(c))2

(∑
k∈A skc(k)wkj

)−1)
for all i ∈ A. That is, gA takes as input a function c : A → R>0 that assigns c(i) to each i ∈ A, and it
returns a vector gA(c) ∈ Ra>0 that assigns [gA(c)](i) each i ∈ A. When c has a finite domain (such as in the
definition of gA), xj(c) is defined to be the discrete average of yi for i ∈ A, weighted by c(i), wij , and si.
Formally, xj(c) = (

∑
i∈A siwij)

−1∑
i∈A siwijyij . When c has a continuous domain as in the definition of f ,

xj(c) is defined to be the continuous weighted average defined previously.

Lemma 5.1 states that for any set A and any small enough α, gA has a fixed point. The proof uses
Brouwer’s fixed point theorem:

Theorem 5.1 (Brouwer’s fixed point theorem). Let ` be a positive integer, let S ⊂ R` be convex and compact,
and let f : S → S be continuous. Then there exists c∗ ∈ S such that f(c∗) = c∗.

Lemma 5.1. For any α ∈ (0,
√
nw2

maxd
2
max

wmin
], any finite set A ⊂ N , and any nonnegative s1 . . . s|A| that sum

to 1, the function gA has a fixed point c∗ ∈
[

wmin

w2
maxd

2
max

,
√
n

α

]|A|
.

Proof. Let S =
[

wmin

w2
maxd

2
max

,
√
n
α

]|A|
. Since c(i) > 0 for all i for all c ∈ S,

∑
k∈A skc(k)wkj is strictly positive.

Thus we have
∑
j∈M w2

ij(yij − xj(c))2
(∑

k∈A skc(k)wkj
)−1 ≥ 0, so the denominator of [gA(c)](i) is always

real. Furthermore, since α > 0, the denominator is always positive, so the function is well-defined and

continuous on S. It is also clear that S is convex and compact (and nonempty as long as α ≤
√
nw2

maxd
2
max

wmin
).

14 It is worth noting that f does depend on n (both explicitly in the numerator, and implicitly through α, which
will end up depending on n); this is not a problem, however. Since x(c) is a weighted average of the agents’ ideal
points, scaling all c(i) by the same amount (which is what

√
n does) will not affect x(c), the equilibrium outcome.

With regards to α, we will need α to go to zero n → ∞ so that the error introduced goes to 0. One can think of
this as the impact of α going to zero as n → ∞, so that we achieve an exact equal-power equal-λ equilibrium in
the limit.

15 In general, the approximate fixed point property can be defined for any metric space.
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It remains to show that gA(c) ∈ S for all c ∈ S. First, since the denominator is always at least α,

[gA(c)](i) ≤
√
n/α for all c and all i. Next, since c(i) ≥ wmin

w2
maxd

2
max

for all i ∈ N (because c ∈ S),

√∑
j∈M w2

ij(yij − xj(c))2
(∑

k∈A skc(k)wkj
)−1 ≤ √∑j∈M w2

ij(yij − xj(c))2
(∑

k∈A sk
wmin

w2
maxd

2
max

wkj
)−1

=
wmaxdmax√

wmin

√∑
j∈M w2

ij(yij − xj(c))2
(∑

k∈A skwkj
)−1

=
wmaxdmax√

wmin

√∑
j∈M w2

max(yij − xj(c))2
(∑

k∈A skwmin
)−1

≤ w2
maxdmax

wmin

√∑
j∈M (yij − xj(c))2

≤ w2
maxd

2
max

wmin

Therefore the denominator of [gA(c)](i) is at most
w2

maxd
2
max

wmin
, which implies that [gA(c)](i) ≥

√
nwmin

w2
maxd

2
max

for

all c ∈ S. Since n ≥ 1, we have [gA(c)](i) ≥
√
nwmin

w2
maxd

2
max
≥ wmin

w2
maxd

2
max

, as required.

Therefore gA(c) ∈ S for every c ∈ S. Thus by Brouwer’s fixed point theorem, there exists an c∗ ∈ S such
that gA(c∗) = c∗.

5.2 Using g to approximate f

We next show that for certain choices of A, fixed points of gA are approximate fixed points of f . The proof
approach is as follows:

1. Partition the space of agent types into arbitrarily small hypercubes (Lemma 5.2 shows that this is
possible). Thus all agents within a given hypercube will have arbitrarily similar values of yij and wij .

2. Choose a “representative” from each hypercube. The representative for the `th hypercube will be chosen
such that for each j ∈ M , her ideal point yij and wij are equal to the weighted average (within the
hypercube) of ideal points and weight vectors, respectively. Such an agent is guaranteed to exist within
the same hypercube.

3. Let A be the set of representatives, let s` be the measure of p in the `th hypercube, and let cA be a fixed
point of gA for coefficients s1 . . . s|A|.

4. Define c : N → R>0 so that each agent’s scaling factor c(i) is equal to the scaling factor of her represen-
tative under cA(i). Since every agent is in some hypercube, this fully specifies c.

5. Show that |[f(c)](i)− c(i)| is small.

Lemma 5.2. For some q > 0, let S ⊂ Rq be a hybercube. Then for any ε, there exists a partition of S into
hypercubes S1 . . . SL such that for any ` ∈ {1 . . . L}, for all z, z′ ∈ S`, ||z − z′||∞ < ε16.

Proof. If S is a hypercube, then we can bisect it along every coordinate to create many hypercubes, each
with side length half of the original. Starting with N , continue halving the side length in this way until the
side length of every hypercube is less than ε. That implies that for any vectors z, z′ in the same hypercube,
||z − z′||∞ < ε.

By assumption, χ ⊂ Rm is bounded, so let χ̄ represent the smallest hypercube that contains χ. Without
loss of generality, we can use χ̄ instead, and simply set p(i) = 0 for all yi 6∈ χ. The set of weight vectors
wi = (wi1 . . . wim) with wmin ≤ wij ≤ wmax for all i, j is also a hypercube in Rm. Since each agent i is a

pair (yi, wi), we can write i ∈ N ⊂ Rm2

, and N too is a hypercube.

Lemma 5.3. The function f satisfies AFPP.

16 We use || · ||∞ to denote the L∞ norm, which is defined to be the maximum coordinate.
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Proof. Recall the definition of AFPP: we need to show that for any ε′ > 0, there exists an ε′-fixed point c
of f . Specifically, we need |[f(c)](i)− c(i)| < ε′ for all i ∈ N .

Part 1: Defining the approximate fixed point c. Fix an ε > 0; later on we will choose ε as a function
of ε′. Using Lemma 5.2, let S1 . . . SL be a partition of N into hypercubes such that for any ` ∈ {1 . . . L}, for
all i, k ∈ S`, ||i− k||∞ < ε. This means that for any i, k in the same hypercube and and any j ∈M , we have

|yij − ykj | < ε and |wij − wkj | < ε (2)

For each ` ∈ {1 . . . L}, let s` =
∫
i∈S`

p(i) di be the measure of S`. For each S`, we will carefully pick a

representative i`. For each `, and each j, define wavg`j and yavg`j by

yavg`j =
( ∫

i∈S`
p(i)wij di

)−1 ∫
i∈S`

p(i)wijyij di and wavg`j =
1

s`

∫
i∈S`

p(i)wij di

Thus for each j ∈ M , yavg`j is a weighted average of yij for i ∈ S`, and wavg`j is a weighted average of wij
for i ∈ S`. In particular, mink∈S`

ykj ≤ yavg`j ≤ maxk∈S`
ykj , and mink∈S`

wkj ≤ wavg`j ≤ maxk∈S`
wkj . Thus

since each S` is a hypercube, each S` contains an agent i` with wi`,j = wavg`j and yi`j = yavg`j for all j ∈M .
Define A = {i1, i2 . . . iL}, and let cA be a fixed point of gA with coefficients s1 . . . s` (which is guaranteed

to exist, by Lemma 5.1). Define c : N → R>0 so that for each i ∈ S`, c(i) = cA(i`). In words, we define each
agent’s scaling factor c(i) to be the same as that of her representative.

Part 2: Properties of c. For any j ∈M ,

xj(c) =
( ∫

k∈N p(k)c(k)wkj dk
)−1 ∫

k∈N p(k)c(k)wkjykj dk (definition of xj(c) for continuous c)

=
(∑L

`=1

∫
k∈S`

p(k)c(k)wkj dk
)−1∑L

`=1

∫
k∈S`

p(k)c(k)wkjykj dk (summing integral over hypercubes)

=
(∑L

`=1 cA(i`)
∫
k∈S`

p(k)wkj dk
)−1∑L

`=1 cA(i`)
∫
k∈S`

p(k)wkjykj dk (definition of c(k) for k ∈ S`)

=
(∑L

`=1 cA(i`)
∫
k∈S`

p(k)wkj dk
)−1∑L

`=1 cA(i`)y
avg
`j

∫
k∈S`

p(k)wkj dk (definition of yavg`j )

=
(∑L

`=1 cA(i`)s`w
avg
`j

)−1∑L
`=1 cA(i`)y

avg
`j s`w

avg
`j (definition of wavg`j )

=
(∑L

`=1 cA(i`)s`wi`,j
)−1∑L

`=1 cA(i`)s`wi`,jyi`,j (definitions of wi`,j and yi`,j)

=
(∑

k∈A skcA(k)wkj
)−1∑L

k∈A skcA(k)wkjykj (definition of A = {i1 . . . iL})
= xj(cA) (definition of xj(c) for discrete c)

Therefore for each j ∈ M , we have xj(c) = xj(cA), where the left hand side and right hand side are
continuous and discrete weighted averages, respectively.

In the process of the above sequence of equations, we also showed that
∫
k∈N p(k)c(k)wkj dk =

∑
k∈A skcA(k)wkj .

Using this, and the fact that cA is a fixed point of gA, for all i ∈ A we have

cA(i) =
√
n
(

max
(
α,

√∑
j∈M w2

ij(yij − xj(cA))2
(∑

k∈A skcA(k)wkj
)−1))−1

=
√
n
(

max
(
α,

√∑
j∈M w2

ij(yij − xj(c))2
( ∫

k∈N p(k)c(k)wkj dk
)−1))−1

= [f(c)](i)

Since c(i) = cA(i) for i ∈ A, we therefore have c(i) = [f(c)](i) exactly when i ∈ A.
Part 3: Showing that |[f(c)](i)− c(i)| is small for every i ∈ N . For i ∈ A, we are done. For i 6∈ A,

recall that for each ` and all i ∈ S`, c(i) = c(i`) by definition, so c(i) = c(i`) = [f(c)](i`). Therefore it suffices
to show that |[f(c)](i)− [f(c)](i`)| is small.

For brevity, let r(i) =
∑
j∈M w2

ij(yij − xj(c))2
( ∫

k∈N p(k)c(k)wkj dk
)−1

. Then for all i ∈ S`,

|r(i)− r(i`)| =
( ∫

k∈N p(k)c(k)wkj dk
)−1 ∣∣∣∑j∈M

(
w2
ij(yij − xj(c))2 − w2

i`,j
(yi`j − xj(c))2

)∣∣∣ (defn of r(i))

≤
( ∫

k∈N p(k)c(k)wkj dk
)−1∑

j∈M
∣∣w2
ij(yij − xj(c))2 − w2

i`,j
(yi`j − xj(c))2

∣∣ (triangle inequality)

≤
( ∫

k∈N p(k)c(k)wkj dk
)−1∑

j∈M
∣∣w2
ij(yij − xj(c))2 − (wij + ε)2(yij − xj(c) + ε)2

∣∣ (Eq. 2)
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=
( ∫

k∈N p(k)c(k)wkj dk
)−1∑

j∈M
∣∣ε4 + ε2

(
w2
ij(yij − xj(c))2

)∣∣ (canceling out terms)

≤
( ∫

k∈N p(k)c(k)wkj dk
)−1∑

j∈M (ε4 + ε2w2
maxd

2
max) (defn’s of dmax, wmax)

≤
( ∫

k∈N p(k)c(k)wmin dk
)−1

m(ε4 + ε2w2
maxd

2
max) (defn of wmin)

≤
( ∫

k∈N p(k)
wmin

w2
maxd

2
max

wmin dk
)−1

m(ε4 + ε2w2
maxd

2
max) (Lemma 5.1)

≤ O(1) ·m · (ε4 + ε2 ·O(1))

= O(ε2)

Our citation of Lemma 5.1 is because Lemma 5.1 guarantees that every c(k) ≥ wmin

w2
maxd

2
max

. Thus for each

i ∈ S`, |r(i)− r(i`)| ≤ O(ε2).
If [f(c)](i) = [f(c)](i`) = 1/α, then c(i) = [f(c)](i`) = [f(c)](i), and we are done. Thus assume at least

one does not equal 1/α. Suppose f [(c)](i) 6= 1/α (the argument is symmetric for the other case), and basic
algebra gives us

|[f(c)](i)− [f(c)](i`)| =
∣∣∣ √n√

r(i)
−

√
n

max(α,
√
r(i`))

∣∣∣
≤
√
n
∣∣∣ 1√

r(i)
− 1√

r(i`)

∣∣∣
=

√
n√

r(i)r(i`)

∣∣∣√r(i`))−√(r(i)
∣∣∣

=
√
n√

r(i)r(i`)(
√
r(i) +

√
r(i`))

|r(i`)− r(i)|

≤
√
n ·O(ε2)√

r(i)r(i`)(
√
r(i) +

√
r(i`))

Since r(i), r(i`) ≤ α, we have

|[f(c)](i)− [f(c)](i`)| ≤
O(
√
nε2)

α3

and thus |[f(c)](i) − c(i)| ≤ O(
√
nε2)/α3. Now, for a fixed ε, taking n → ∞ does make this bound go to

infinity. The key here is that ε can be chosen independently of α and n. That is, for any instantiation of f
(i.e., for a fixed n and α), we can pick ε to be as small as we want. In particular, since this bound holds
uniformly for all i ∈ N (i.e., with the same ε), for any ε′ > 0, there exists ε such that

|[f(c)](i)− c(i)| < ε′

for all i ∈ N . We conclude that f satisfies AFPP.

6 Conclusion

In this paper, we proposed and analyzed the concept of equal power for multidimensional continuous public
decision-making. Drawing fundamental literature in political philosophy and economics, we argued that that
equality of power is a natural analog of equality of resources and envy-freeness for public decision-making.
Our main result is that for any ε > 0 and a large enough number of agents, an equal-power equal-λ ε-
equilibrium is guaranteed to exist; in other words, we achieve an exact equal-power equal-λ equilibrium in
the limit. The most interesting part of our proof is the novel fixed point argument presented in Section 5;
the rest of our proof appears in the appendix.

There are many possible directions for future work. The first is the possibility of an iterative algorithm
for converging to an equal-power equal-λ equilibrium. As discussed in Section 1.2, there is a good reason to
be optimistic about the existence of such an algorithm, especially in conjunction with the already extensive
quadratic voting literature.
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It could also be interesting to extend our results to other utility functions beyond quadratic utilities. A
first step could be a “general quadratic utility” of the form ui(x) = −(yi − x)TWi(yi − x) for some positive
definite matrix Wi. When Wi is a diagonal matrix, this reduces to the form of utility function we studied in
this paper. For a general quadratic utility, we conjecture that the equal power constraint would be reduce
to a constraint of the form δTi Qδi ≤ γ. This would correspond to not just a rescaling of the issues, but also
a rotation. Our proof does not immediately carry over to general quadratic utility functions, and we suspect
that additional mathematical insights are needed.

Possibly the most exciting direction – but also the most ambitious – is extending our results beyond
economics that are purely public goods. In general, economies will involve a much richer mix of public goods
at different levels of social organization, which are thus partially private when viewed from another resolution
(e.g. goods that accrue at the national or city level, but do not spillover beyond these). Efficient, equal budget
mechanisms for such societies might offer powerful insights about economic structures that could outperform
existing mixtures of capitalism and states.
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A Omitted proofs the main body

Lemma A.1. Suppose f as defined in Section 5 has an exact fixed point c for any choice of α and n. Let

xj =
(∫
i∈N p(i)ciwij di

)−1 ∫
i∈N p(i)ciwijyij di. Let α = n−7/8 and m ≥ 6.

1. ||n
∫
i∈N p(i)δi(x) di||2 ≤ (γ +

√
γ)O(n−1/4) +O(n−1/8).

2. For all i except an expected O(n−3/4) fraction, O
(√

n5/8

n5/8 + 1

) 1
√
γ
≤ λi(x) ≤

1
√
γ

.

3. The outcome x maximizes welfare with respect to c.

Proof. Assume Theorem 4.1 holds. We need to show the following:

1. limn→∞ αm/2nm/4 = 0

2. limn→∞ n3/2α =∞
3. limn→∞ αm/2nm/4+1 = 0

4. limn→∞ α2n2 =∞

The first two points are necessary as conditions of Theorem 4.1, in addition to being necessary for vanishing
approximation error. Note that the third point implies the first 1.

Since m ≥ 6, O(αm/2nm/4+1) becomes O(n−3m/16+1) = O(n−18/16+1) = O(n−1/8), which does indeed
go to zero as n→∞. This satisfies points 1 and 3.

For the second point, we have O(n3/2α) = O(n3/2−7/8) = O(n5/8). Thus O(n3/2α) does go to infinity as
n→∞.

Finally, α2n2 = n2/8 = n1/4, which goes to infinity as n→∞.

Theorem 4.2. Let c be an ε-fixed point of f and let xj =
(∫
i∈N p(i)ciwij di

)−1 ∫
i∈N p(i)ciwijyij di. Let

α = n−7/8 and m ≥ 6. Then there exists a small enough ε such that all of the following hold:

1. ||n
∫
i∈N p(i)δi(x) di||2 ≤ (γ +

√
γ)O(n−1/4) +O(n−1/8).

2. For all i except an expected O(n−3/4) fraction, O
(√

n5/8

n5/8 + 1

) 1
√
γ
≤ λi(x) ≤

1
√
γ

.

3. The outcome x maximizes welfare with respect to c.

Proof. An ε-fixed point is guaranteed to exist by Lemma 5.3. Assume Lemma A.1 holds. The key here
is that ε can be chosen independently of any other parameters (α, n, γ, etc). Furthermore, λi(x) and
||n
∫
i∈N p(i)δi(x) di||2 will be continuous functions of c. Thus for any ε′, there exists ε such that perturbing

c by ε′ changes both ||n
∫
i∈N p(i)δi(x) di||2 and each λi by at most ε. Since the results are only asymptotic

anyway, we can pick ε′ small enough that all of the approximations still hold.

B Important properties to be used later

The rest of the paper is devoted to proving Theorem 4.1. Throughout, we assume that c is a fixed point of

the function f from Section 5, and that xj =
(∫
i∈N p(i)ciwij di

)−1 ∫
i∈N p(i)ciwijyij di. Recall that we used

the function notation of c(i) only for Section 5; we use the vector notation ci for the rest of the paper.
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B.1 Welfare maximization for quadratic utilities

Lemma B.1. The outcome x maximizes societal welfare U(x) with respect to c.

Proof. The welfare of an outcome x′ is

U(x′) = n
∫
i∈N p(i)ui(x

′) di = −n
∫
i∈N p(i)ci

∑
j∈M

wij(x
′
j − yij)2 di

Since U is concave and differentiable, and we are interested in an unconstrained maximization, it suffices to
show that the gradient of U at x is 0. Specifically, the partial derivative with respect to xj should be zero
for each j:

∂

∂xj
U(x) = − 2n

∫
i∈N p(i)ciwij(xj − yij) di

=
∫
i∈N p(i)ciwijxj di−

∫
i∈N p(i)ciwijyij di

= xj
∫
i∈N p(i)ciwij di−

∫
i∈N p(i)ciwijyij di

Substituting in the definition of xj as given in the statement of Theorem 4.1:

∂

∂xj
U(x) =

(
(
∫
k∈N p(k)ckwkj dk)−1

∫
k∈N p(k)ckwkjykj dk

) ∫
i∈N p(i)ciwij di−

∫
i∈N p(i)ciwijyij di

=
∫
i∈N p(i)ciwijyij di−

∫
i∈N p(i)ciwijyij di

= 0

Thus x is indeed optimal for U .

B.2 The measure of “unusual” agents is small

Let N̂ be the set of agents i for whom ci =
√
n/
√∑

j∈M w2
ij(yij − xj)2

( ∫
k∈N p(k)ckwkj dk

)−1
. In ways that

will become clear later, N̂ is the set of “normal” agents. We need to show that the number of agents not in
N̂ shrinks to zero as α goes to zero. Here Γ denotes the gamma function.

Lemma B.2. We have

∫
i 6∈N̂

p(i) di ≤ αm/2nm/4 π
m/2pmax

Γ (m
2

+ 1)

(√
wmax

wmin

)m
.

Proof. Since c is a fixed point of f , if i 6∈ N̂ , we have α ≥
√∑

j∈M w2
ij(yij − xj)2

( ∫
k∈N p(k)ckwkj dk

)−1
.

Also, by the definition of f , we have ck ≤
√
n/α for all k ∈ N . Thus for an arbitrary i ∈ N we have√∑

j∈M w2
ij(yij − xj)2

( ∫
k∈N p(k)ckwkj dk

)−1 ≥ √∑j∈M w2
ij(yij − xj)2

( ∫
k∈N p(k)

√
n

α
wkj dk

)−1
=

√
α

n1/4

√∑
j∈M w2

ij(yij − xj)2
( ∫

k∈N p(k)wkj dk
)−1

≥
√
α

n1/4

√∑
j∈M w2

min(yij − xj)2
( ∫

k∈N p(k)wmax dk
)−1

=

√
αwmin

n1/4
√
wmax

√∑
j∈M (yij − xj)2

( ∫
k∈N p(k) dk

)−1
≥
√
αwmin

n1/4
√
wmax

√∑
j∈M (yij − xj)2

=

√
αwmin

n1/4
√
wmax

||yi − x||2
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Thus if i 6∈ N̂ ,

α ≥
√
α

n1/4
||yi − x||2

wmin√
wmax

||yi − x||2 ≤
√
αwmaxn

1/4

wmin

Therefore i 6∈ N̂ only if ||yi − x||2 ≤
√
αwmaxn1/4

wmin
wmin. Let B denote the ball with radius

√
αwmaxn1/4

wmin

centered at x. Then we have
∫
i 6∈N̂ p(i) di ≤

∫
i:yi∈B p(i) di.

Since p(i) ≤ pmax for all i ∈ N by assumption, we have∫
i:yi∈B p(i) di ≤ pmax

∫
i:yi∈B di

Since
∫
i:yi∈B di is just the volume of the m-dimensional unit ball with radius

√
αwmaxn1/4

wmin
, we have

∫
i:yi∈B

di =
πm/2

Γ (m2 + 1)

(√αwmaxn1/4
wmin

)m

Since we treat m, pmax, wmin and wmax as constants, we can simply write∫
i 6∈N̂ p(i) di = O(αm/2nm/4)

B.3 Each agent is a small fraction of the population

In this section, we show that the weight contribution by any single agent on any issue (i.e., ciwij) is a small
fraction of the weight of the internet population. The main result is Lemma B.4; we first prove Lemma B.3,
which lower bounds the aggregate weight of the whole population on issue j.

Lemma B.3. For all j ∈M ,
∫
k∈N p(k)ckwkj dk ≥ w2

min

4w2
maxd

2
max

n.

Proof. Since c is assumed to be a fixed point of f , for all j ∈M we have∫
k∈N p(k)ckwkj dk ≥ wmin

∫
k∈N p(k)ck dk

= wmin

∫
k∈N̂

√
np(k) dk

max
(
α,

√∑
`∈M w2

k`(yk` − x`)2
( ∫

i∈N p(i)ciwi` di
)−1)

≥ wmin
√
n

∫
k∈N

p(k) dk√∑
`∈M w2

k`(yk` − x`)2
( ∫

i∈N p(i)ciwi` di
)−1

≥ wmin
√
n

∫
k∈N̂

p(k) dk√∑
`∈M w2

k`(yk` − x`)2
( ∫

i∈N p(i)ciwmin di
)−1

≥ w
3/2
min

√
n
√∫

i∈N p(i)ci di

∫
k∈N̂

p(k) dk√∑
`∈M w2

k`(yk` − x`)2

≥ w
3/2
min

wmax

√
n
√∫

k∈N p(k)ck dk

∫
k∈N̂

p(k) dk√∑
`∈M (yk` − x`)2

≥ w
3/2
min

wmaxdmax

√
n
√∫

k∈N p(k)ck dk
∫
k∈N̂ p(k) dk
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By Lemma B.2,
∫
k 6∈N̂ p(k) dk = O(αm/2nm/4), and we know that limn→∞ αm/2nm/4 = 0 by assumption of

Theorem 4.1. Thus for large enough n,
∫
k∈N̂ p(k) dk ≥ 1/2, so

wmin
∫
k∈N p(k)ck dk ≥ w

3/2
min

wmaxdmax

√
n
√∫

k∈N p(k)ck dk
∫
k∈N̂ p(k) dk

≥ w
3/2
min

2wmaxdmax

√
n
√∫

k∈N p(k)ck dk

Therefore wmin
∫
k∈N p(k)ck dk ≥ w

3/2
min

2wmaxdmax

√
n
√∫

k∈N p(k)ck dk, so

√∫
k∈N p(k)ck dk ≥ w

1/2
min

2wmaxdmax

√
n∫

k∈N p(k)ck dk ≥ wmin
4w2

maxd
2
max

n

Therefore ∫
k∈N p(k)ckwkj dk ≥ w2

min

4w2
maxd

2
max

n

as required.

Lemma B.4. For any agent i ∈ N ,

∫
k∈N

p(k)ckwkj dk ≥ w2
min

4w3
maxd

2
max

√
nαciwij.

Proof. Since ci ≤
√
n/α for all i ∈ N and wij ≤ wmax, the right hand side is at most

w2
min

4w2
maxd

2
max

n. Applying

Lemma B.3 completes the proof.

For brevity, let β =
w2

min

4w3
maxd

2
max

. Thus
∫
k∈N p(k)ckwkj dk ≥ β

√
nαciwij .

C Characterizing δi and λi

In this section, we derive an expression for δi in terms of λi, then provide almost tight upper and lower
bounds on λi. Lemma C.2 gives the expression for δi in terms of λi, and Lemma C.6 gives the upper and
lower bounds for λi.

C.1 Deriving an expression for δi in terms of λi

First, we show that the equal power constraint of Program 1 can be reduced to a simpler form.

Lemma C.1. Then the equal power constraint is equivalent to∑
j∈M

δ2ij
(
n
∫
k∈N p(k)ckwkj dk

)
≤ γ

Proof. For quadratic utilities, we can rewrite U(x+ δi) as

U(x+ δi) = U(x) + δTi (∇xU)(x) +
1

2
δTi (∇2

xU)(x)δi

where the gradient is just with respect to x. For brevity, we will omit the parentheses and just write ∇xU(x)
etc. By Lemma B.1, x maximizes U with respect to c. Therefore ∇xU(x) = 0, so

U(x)− U(x+ δi) = U(x)−
(
U(x) + δTi ∇xU(x) +

1

2
δTi ∇2

xU(x)δi
)
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= − 1

2
δTi ∇2

xU(x)δi

This makes the constraint of equal power reduce to

−1

2
δTi ∇2

xU(x)δi ≤ γ

Next, recall that U(x) = n
∫
i∈N p(i)ui(x) di by definition. Therefore

∂

∂xj
U(x) =

∂

∂xj

(
− n

∫
k∈N p(k)

(
ck
∑
j∈M wkj(xj − ykj)2

)
dk
)

= −2n
∫
k∈N p(k)ckwkj(xj − ykj) dk

which means that
∂2

∂xj∂x`
= 0 whenever j 6= `, for j = ` we have

∂2

∂x2j
U(x) = −2n

∫
k∈N p(k)ckwkj dk

Thus ∇2
xU(x) is a diagonal matrix with entry n

∫
k∈N p(k)ckwkj dk in the jth row, so the equal power

constraint simplifies to
∑
j∈M δ2ij

(
n
∫
k∈N p(k)ckwkj dk

)
≤ γ, as required.

For brevity, define qj by
qj = n

∫
k∈N p(k)ckwkj dk

Thus the equal power constraint is equivalent to
∑
j∈M qjδ

2
ij ≤ γ. We can think of qj as how much the pop-

ulation in aggregate cares about issue j. The expression
∑
j∈M qjδ

2
ij indicates that the more the population

cares about issue j, the more power it required to move on that issue.

Lemma C.2. For every agent i and issue j, δij =
ciwij(yij − xj)
ciwij + λiqj

.

Proof. Define the Lagrangian by

L(δi, λi) = ui(x+ δi)− λi
(
U(x)− U(x+ δi)− γ

)
= − ci

∑
j∈M wij(x+ δi − yij)2 − λi

(∑
j∈M qjδ

2
ij − γ

)
where the second line used Lemma C.1.

For δi = 0, we have U(x)−U(x+ δi) = 0 < γ, so we have strong duality by Slater’s condition. Since the
convex is convex, the optimal solution must satisfy the KKT conditions; in particular, stationarity:

∂

∂δij
L(δi, λi) = 0

for all j ∈M . Therefore for all j,

−2ciwij(xj + δij − yij)− 2λiqjδij = 0

(ciwij + λiqj)δij + ciwij(xj − yij) = 0

δij =
ciwij(yij − xj)
ciwij + λiqj

as required.

C.2 Bounding λi

For each agent i, we have m+1 unknowns: δi1 . . . δim, and λi. The previous section gave us m equations: one
for each δij . For our last equation, we show that we can pick γ small enough such that for most of the agents,
the equal power constraint holds with equality. Specifically, the power constraint will hold with equality for
every agent in N̂ (and we know N \ N̂ to have small measure by Lemma B.2).
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Lemma C.3. There exists a γ such that the power constraint is tight for all i ∈ N̂ , i.e.,
∑
j∈M qjδ

2
ij = γ.

Proof. For all agents i ∈ N̂ , we know that

α ≤
√∑

j∈M w2
ij(yij − xj)2

( ∫
k∈N p(k)ckwkj dk

)−1
≤
√∑

j∈M w2
max(yij − xj)2

( ∫
k∈N p(k)

wmin

w2
maxd

2
max

wmin dk
)−1

≤ w2
maxdmax
wmin

√∑
j∈M (yij − xj)2

( ∫
k∈N p(k) dk

)−1
≤ w2

maxdmax
wmin

||yi − x||2

Thus ||yi − x||2 ≥
αwmin

w2
maxdmax

. Suppose for sake of contradiction that for all γ > 0, there is an agent i ∈ N̂

whose power constraint is not tight. That would imply that there are agents in N̂ arbitrarily close to x,
which we just showed is not true. We conclude that there exists a γ > 0 such that

∑
j∈M qjδ

2
ij = γ for all

i ∈ N̂ .

Note that if Lemma C.3 holds for some γ > 0, it also holds for any γ′ ∈ (0, γ]. In particular, later on we
will require that γ ≤ 1.

Recall that N̂ is the set of agents i for whom ci =
√
n/
√∑

j∈M w2
ij(yij − xj)2

( ∫
k∈N p(k)ckwkj dk

)−1
.

This implies ci = 1/
√∑

j∈M w2
ij(yij − xj)2

(
n
∫
k∈N p(k)ckwkj dk

)−1
= 1/

√∑
j∈M w2

ij(yij − xj)2q
−1
j . For

each i ∈ N̂ , define τi by

τi =
c2i
λ2i

∑
j∈M

w2
ij(yij − xj)2q−1j −

∑
j∈M

qjδ
2
ij

By Lemma C.3,
c2i
λ2i

∑
j∈M

w2
ij(yij − xj)2q−1j = τi + γ

We know that ci = 1/
√∑

j∈M w2
ij(yij − xj)2q

−1
j for every i ∈ N̂ , so

1

λ2i
= τi + γ, and therefore

λi =
1√
τi + γ

C.3 Bounding τi

Our goal is to show that for all i ∈ N̂ , λi is close to 1/
√
γ. To do this, we need to show that τi is small and

nonnegative. Nonnegativity is (much) easier, so we begin with that.

Lemma C.4. For all i ∈ N̂ , τi > 0.

Proof. Plugging in the expression for δij from Lemma C.2, we have

∑
j∈M

qjδ
2
ij =

∑
j∈M

qjc
2
iw

2
ij(yij − xj)2

(ciwij + λiqj)2

<
∑
j∈M

qjc
2
iw

2
ij(yij − xj)2

(λiqj)2

=
c2i
λ2i

∑
j∈M

w2
ij(yij − xj)2q−1j
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Therefore

τi >
c2i
λ2i

∑
j∈M

w2
ij(yij − xj)2q−1j −

c2i
λ2i

∑
j∈M

w2
ij(yij − xj)2q−1j = 0

Next, we prove an upper bound on τi. The upper bound expression in Lemma C.5 appears quite compli-
cated, but notice that the denominator contains n3/2α, and we know that limn→∞ n3/2α =∞.

Lemma C.5. For each agent i ∈ N̂ , τi ≤
2γ3/2mwmax

n3/2αβwmin − 2
√
γmwmax

.

Proof. We begin the proof with some algebraic manipulations on the definition of τi:

τi =
c2i
λ2i

∑
j∈M

w2
ij(yij − xj)2q−1j −

∑
j∈M

qjδ
2
ij

=
c2i
λ2i

∑
j∈M

w2
ij(yij − xj)2q−1j −

∑
j∈M

qj

(ciwij(yij − xj)
ciwij + λiqj

)2
= c2i

∑
j∈M

w2
ij(yij − xj)2

( 1

λ2i qj
− qj

(ciwij + λiqj)2

)
= c2i

∑
j∈M

w2
ij(yij − xj)2

(ciwij + λiqj)
2 − λ2i q2j

λ2i qj(ciwij + λiqj)2

= c2i
∑
j∈M

w2
ij(yij − xj)2

c2iw
2
ij + λ2i q

2
j + 2ciwijλiqj − λ2i q2j

λ2i qj(ciwij + λiqj)2

= c2i
∑
j∈M

w2
ij(yij − xj)2

c2iw
2
ij + 2ciwijλiqj

λ2i qj(ciwij + λiqj)2

=
c3i
λ2i

∑
j∈M

w3
ij(yij − xj)2

ciwij + 2λiqj
qj(ciwij + λiqj)2

=
2c3i
λ2i

∑
j∈M

w3
ij(yij − xj)2

ciwij + 2λiqj
qj(ciwij + λiqj)(2ciwij + 2λiqj)

≤ 2c3i
λ2i

∑
j∈M

w3
ij(yij − xj)2

1

qj(ciwij + λiqj)

By Lemma C.1 (and the definition of qj), each agent’s power constraint is
∑
j∈M δ2ijqj ≤ γ. This means

that for all i ∈ N and j ∈M ,
√
δij ≤

√
γq
−1/2
j . Also recall that δij =

ciwij(yij − xj)
ciwij + λiqj

(Lemma C.2). Therefore

τi ≤
2c3i
λ2i

∑
j∈M

w3
ij(yij − xj)2

1

qj(ciwij + λiqj)

=
2c2i
λ2i

∑
j∈M

w2
ij(yij − xj)δijq−1j

≤
2c2i
√
γ

λ2i

∑
j∈M

w2
ij |yij − xj |q

−1/2
j q−1j

Next, let ∆i = maxj∈M |yij − xj |q−1/2j . Recall that ci = 1/
√∑

j∈M w2
ij(yij − xj)2q

−1
j for every i ∈ N̂ .

Since wij ≥ wmin, we have√∑
j∈M w2

ij(yij − xj)2q
−1
j ≥ wmin

√∑
j∈M (yij − xj)2q−1j ≥ wmin∆i
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Thus ci ≤ 1
wmin∆i

for all i ∈ N̂ . Therefore

τi ≤
2ci
√
γ

wmin∆iλ2i

∑
j∈M

w2
ij∆iq

−1
j =

2ci
√
γ

wminλ2i

∑
j∈M

w2
ijq
−1
j

Lemma B.4 implies that for all j ∈ M ,
∫
k∈N p(k)ckwkj dk ≥ β

√
nαciwij . Using the definition of qj , we get

qj ≥ βn3/2αciwij , so ciwijq
−1
j ≤ 1

βn3/2α
. Therefore

τi ≤
2
√
γ

wminλ2i

∑
j∈M

wij(ciwijq
−1
j )

≤
2
√
γ

βwminn3/2αλ2i

∑
j∈M

wij

≤
2
√
γmwmax

βwminn3/2αλ2i

= (τi + γ)
2
√
γmwmax

βwminn3/2α

We can now solve for τi:

τin
3/2αβwmin ≤ 2(τi + γ)

√
γmwmax

τi(n
3/2αβwmin − 2

√
γmwmax) ≤ 2γ3/2mwmax

τi ≤
2γ3/2mwmax

n3/2αβwmin − 2
√
γmwmax

Note that we assumed βwminn
3/2α− 2

√
γmwmax > 0 when dividing both sides by that quantity. This is

true as n→∞, since limn→∞ n3/2α =∞ by assumption.

For brevity, let η =
n3/2αβwmin − 2

√
γmwmax

2mwmax
. Thus τ ≤ γ3/2/η. Since we can always pick γ ≤ 1, we have

τ ≤ γ/η. Recall that β is a constant, so η = Θ(n3/2α).

Lemma C.6. For all i ∈ N̂ ,
√

η

η + 1
· 1
√
γ
≤ λi ≤

1
√
γ

.

Proof. By Lemma C.5,

λi =
1√
τi + γ

≥ 1√
γ/η + γ

≥
√
η

√
γ + γη

=

√
η

η + 1
· 1
√
γ

This satisfies the first inequality. The second follows immediately from the fact that τi ≥ 0.

D Bounding the net movement: ||
∫

i∈N
p(i)δi(x) di||2

Finally, we need to show that ||
∫
i∈N p(i)δi(x) di||2 is small. Recall that by Lemma C.2,

δi =
ciwij(yij − xj)
ciwij + λiqj
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for all i ∈ N . We start by defining two approximations to δi:

δ′i =
ciwij(yij − xj)

λiqj

δ′′i = ciwij(yij − xj)q−1j
√
γ

We first show that
∣∣∣∣∫

i∈N p(i)δ
′′
i (x) di

∣∣∣∣
2

= 0 exactly. Next, we show that δ′′i approximates δ′i well, and

that δ′i approximates δi well, for each i ∈ N̂ . Finally, we show that the agents not in N̂ do not matter too
much, since their combined measure is small (Lemma B.2).

Lemma D.1. ∣∣∣∣∫
i∈N p(i)δ

′′
i (x) di

∣∣∣∣
2

= 0

Proof. ∣∣∣∣∫
i∈N p(i)δ

′′
i (x) di

∣∣∣∣
2

=
∣∣∣∣∫

i∈N p(i)ciwij(yij − xj)q
−1
j

√
γ di

∣∣∣∣
2

=
∣∣∣∣√γq−1j ∫

i∈N p(i)ciwijyij di−√γq−1j
∫
i∈N p(i)ciwijxj di

∣∣∣∣
2

=
∣∣∣∣∣∣√γq−1j ∫

i∈N p(i)ciwijyij di−√γq−1j
( ∫

i∈N p(i)ciwij di
)
xj

∣∣∣∣∣∣
2

Since xj =
(∫

i∈N p(i)ciwij di
)−1 ∫

i∈N p(i)ciwijyij di, we have∣∣∣∣∫
i∈N p(i)δ

′′
i (x) di

∣∣∣∣
2

=
∣∣∣∣√γq−1j ∫

i∈N p(i)ciwijyij di−√γq−1j
∫
i∈N p(i)ciwijyij di

∣∣∣∣
2

= 0

as required.

Lemma D.2. For each i ∈ N̂ ,

||δ′i − δi||2 ≤
2γdmax
β2n3α2

Proof. The expression δ′i − δi reduces to:

ciwij(yij − x)

λiqj
− ciwij(yij − x)

ciwij + λiqj
= ciwij(yij − xj)

ciwij + λiqj − λiqj
λiqj(ciwij + λiqj)

=
c2iw

2
ij(yij − xj)

λiqj(ciwij + λiqj)

Then using Lemmas B.4 and C.6, we have

||δ′i − δi||22 =
c4iw

4
ij(yij − xj)2

λ2i q
2
j (ciwij + λiqj)2

≤
c4iw

4
ij(yij − xj)2

λ4i q
4
j

≤ d2max
λ4i
·
(ciwij

qj

)4
≤ d2max
λ4iβ

4n6α4

≤ γ2

β4n6α4

(η + 1

η

)2
d2max
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As long as η ≥ 1 (which is of course true as n approaches infinity), we have

||δ′i − δi||22 ≤ 4
γ2

β4n6α4
d2max

Altogether, this implies that

||δ′i − δi||2 ≤
2γdmax
β2n3α2

as required.

Lemma D.3. For all i ∈ N̂ ,

||δ′i − δ′′i ||2 ≤
√
γdmax

βηn3/2α

Proof. We have

1

λi
−√γ ≤ √γ

(√η + 1

η
− 1
)

=
√
γ
(√η + 1

η
−
√
η

η

)
=
√
γ
(√η + 1

η
−
√
η

η

)
=
√
γ

√
η + 1−√η
√
η

=
√
γ

η + 1− η
√
η(
√
η + 1 +

√
η)

≤
√
γ

η

Thus ||δ′i − δ′′i ||2 is bounded by

||δ′i − δ′′i ||2 ≤
∣∣∣∣ciwij(yij − x)

λiqj
− ci
√
γq−1j wij(yij − x)

∣∣∣∣
2

≤
∣∣∣∣√γ
η
ciq
−1
j wij(yij − x)

∣∣∣∣
2

≤
√
γ

η
||ciq−1j wij(yij − x)||2

=

√
γ

η

√
(yij − xj)2(ciwijq

−1
j )2

=

√
γ

η
||yi − x||2ciwijq−1j

≤
√
γdmax

βηn3/2α

Lemma D.4. ∣∣∣∣∣∣∫ i 6∈N̂ p(i)(δi − δ′′i ) di
∣∣∣∣∣∣
2

= O(αm/2nm/4)
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Proof. For δi, we trivially have ||δi||2 ≤ dmax. For δ′′i , by Lemma B.4 (and the definition of qj) we have

ciwijq
−1
j ≤ 1

βn3/2α
. Therefore

||δ′′i ||2 =
√
γciwijq

−1
j ||yi − x||2 ≤

√
γdmax

βn3/2α

Since limn→∞ n3/2α = ∞ by assumption, we have ||δ′′i ||2 = O(1) (this is a loose bound of course, but
sufficient for our purposes). Therefore∣∣∣∣∣∣∫ i 6∈N̂ p(i)(δi − δ′′i ) di

∣∣∣∣∣∣
2
≤
∫
i6∈N̂ p(i)||δi||2 di+

∫
i 6∈N̂ p(i)||δ

′′
i ||2 di

≤ (dmax +O(1))
∫
i 6∈N̂ p(i) di

By Lemma B.2,
∫
i6∈N̂ p(i) di = O(αm/2nm/4). Since dmax is also a constant, we have

∣∣∣∣∣∣∫ i 6∈N̂ p(i)(δi − δ′′i ) di
∣∣∣∣∣∣
2

=

O(αm/2nm/4).

Lemma D.5. We have

∣∣∣∣∣∣∣∣n∫
i∈N

p(i)δi(x) di

∣∣∣∣∣∣∣∣
2

≤ γ+
√
γ

Ω(n2α2) +O(αm/2nm/4+1).

Proof. We have ∣∣∣∣∫
i∈N p(i)δi di

∣∣∣∣
2

=
∣∣∣∣∫

i∈N p(i)(δ
′′
i − δ′′i + δi) di

∣∣∣∣
2

=
∣∣∣∣∫

i∈N p(i)δ
′′
i di

∣∣∣∣
2

+
∣∣∣∣∫

i∈N p(i)(δi − δ
′′
i ) di

∣∣∣∣
2

By Lemma D.1,
∣∣∣∣∫

i∈N p(i)δ
′′
i di

∣∣∣∣
2

= 0. Thus∣∣∣∣∫
i∈N p(i)δi di

∣∣∣∣
2

=
∣∣∣∣∫

i∈N p(i)(δi − δ
′′
i ) di

∣∣∣∣
2

=
∣∣∣∣∣∣∫ i∈N̂ p(i)(δi − δ′′i ) di+

∫
i 6∈N̂ p(i)(δi − δ

′′
i ) di

∣∣∣∣∣∣
2

≤
∣∣∣∣∫

i∈N̂ p(i)(δi − δ
′′
i ) di

∣∣∣∣
2

+
∣∣∣∣∣∣∫ i6∈N̂ p(i)(δi − δ′′i ) di

∣∣∣∣∣∣
2

where the inequality follows from the triangle inequality of norms. By Lemma D.4, we have
∣∣∣∣∣∣∫ i6∈N̂ p(i)(δi − δ′′i ) di

∣∣∣∣∣∣
2

=

O(αm/2nm/4), so
∣∣∣∣∫

i∈N p(i)δi di
∣∣∣∣
2
≤
∣∣∣∣∫

i∈N̂ p(i)(δi − δ
′′
i ) di

∣∣∣∣
2

+ O(αm/2nm/4). For the next sequence of

equations, we will use the triangle inequality, Lemmas D.2 and D.3, and
∫
i∈N̂ p(i) di ≤

∫
i∈N p(i) di = 1.∣∣∣∣∫

i∈N̂ p(i)(δi − δ
′′
i ) di

∣∣∣∣
2

=
∣∣∣∣∫

i∈N̂ p(i)(δ
′′
i − δ′i + δ′i − δi) di

∣∣∣∣
2

≤
∣∣∣∣∫

i∈N̂ p(i)(δ
′′
i − δ′i) di

∣∣∣∣
2

+
∣∣∣∣∫

i∈N̂ p(i)(δ
′
i − δi) di

∣∣∣∣
2

≤
∫
i∈N̂ p(i)||δ

′′
i − δ′i||2 di+

∫
i∈N̂ p(i)||δ

′
i − δi||2 di

≤ 2γdmax
β2n3α2

∫
i∈N̂ p(i) di+

√
γ

βηn3/2α
dmax

∫
i∈N̂ p(i) di

=
2γdmax
β2n3α2

+

√
γ

βηn3/2α
dmax

=
γ

Ω(n3α2)
+

√
γ

Ω(n3α2)

Therefore ∣∣∣∣∫
i∈N p(i)δi di

∣∣∣∣
2
≤ γ

Ω(n3α2)
+

√
γ

Ω(n3α2)
+O(αm/2nm/4)

To obtain the required bound for
∣∣∣∣n ∫

i∈N p(i)δi(x) di
∣∣∣∣
2
, we simply multiply the above expression by n.

Lemmas B.1, C.6, and D.5 together imply Theorem 4.1.
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E Non-triviality of our solution concept

As mentioned in Section 1.1, our definition of an equal-power equal-λ equilibrium may appear circular,
since we are maximizing welfare and evaluating λi with respect to a utility scale which we get to choose.
In Section 1.1, we argued that intuitively, this is analogous to the definition of equality by allocating equal
amounts of an artificial currency. In this section, we argue that our solution concept is mathematically
nontrivial, by (informally) showing that a particular “obvious” choice for c is not sufficient. Specifically, we
show that a uniform c (i.e., ci = c for all i) cannot lead to an equal-power equal-λ equilibrium in general.
Making this argument formal would require substantial algebra similar to that in Section C.2, which we feel
would obscure the primary intuition.

Recall Lemma C.2, where qj = n
∫
k∈N p(k)ckwkj dk:

Lemma C.2. For every agent i and issue j, δij =
ciwij(yij − xj)
ciwij + λiqj

.

Suppose there exists some c > 0 such that ci = c for all i ∈ N . Then δij reduces to

δij =
cwij(yij − xj)

cwij + λicn
∫
k∈N p(k)wkj dk

=
wij(yij − xj)

wij + λin
∫
k∈N p(k)wkj dk

As n goes to infinity, the λin
∫
k∈N p(k)wkj dk term dominates the ciwij term. Thus we can approximate δij

by

δij ≈
wij(yij − xj)

λin
∫
k∈N p(k)wkj dk

=
cwij(yij − xj)

λiqj

Recall that for any agent i whose power constraint is not tight, we have λi = 0; this is a standard property
of Lagrange multipliers. Clearly for those agents, we cannot have (1 − ε′)λ ≤ λi ≤ λ for any λ > 0. An
equal-power equal-λ ε′-equilibrium requires that the above hold for at least a 1− ε′ fraction of the agents, so
at least a 1− ε′ fraction of the agents must have a tight power constraint. Thus in order to achieve an exact
equal-power equal-λ equilibrium as n → ∞, almost all of the agents must have a tight power constraint as
n→∞.

Let i be an arbitrary agent with a tight power constraint. By Lemma C.1, this implies that
∑
j∈M δ2ijqj =

γ. Thus we have ∑
j∈M

(
cwij(yij − xj)

λiqj

)2
qj ≈ γ

∑
j∈M

c2w2
ij(yij − xj)2q−1j ≈ λ2i

c2
∑
j∈M

w2
ij(yij − xj)2q−1j ≈ λ2i

We need every pair of agents i, i′ ∈ Ñ to satisfy λi/λk ≈ 1. That means we need∑
j∈M w2

ij(yij − xj)2(
∫
k∈N p(k)ckwkj dk)−1∑

j∈M w2
i′j(yi′j − xj)2(

∫
k∈N p(k)ckwkj dk)−1

≈ 1

Note that (
∫
k∈N p(k)ckwkj dk)−1 is just some constant. Consider a pair of agents i and i′ such that |yij−xj | >

|yi′j − xj | and wij > wi′j for each j ∈ M : then this ratio can never approach 1, even as n → ∞. For an
appropriate choice of distribution p, this means that there will always be constant measure set of agents
whose values of λi are not close to the Lagrange multipliers of other agents.

This means that in general, choosing the same scaling factor for each agent will not be sufficient for an
equal-power equal-λ equilibrium. Furthermore, the above reasoning intuitively suggests that we really do

need ci ≈ 1/
√∑

j∈M w2
ij(yij − xj)2q

−1
j for (almost) every i ∈ N .
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