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Abstract

This document presents my research agenda for Al safety. I first argue that many safety
failures result from incorrect behavior under distribution shift, or misgeneralization. I also argue
that distribution shift is inevitable in general settings and induces inherent uncertainty that
cannot be handled by designing or learning a “universally correct” reward function upfront. This
framing suggests two core research questions. The first is how to detect distribution shift or
uncertainty. This topic has been widely studied in standard contexts such as image classification,
but less so in the agentic settings that also induce the greatest safety risks. The second is how
to behave once we have detected distribution shift or uncertainty. I suggest that agents in such
situations should act cautiously, e.g., by asking for help or taking a safe fallback action. Within
this framework, I discuss five specific research projects that my collaborators and I have carried
out. These projects span LLMs, reinforcement learning in video games, and theoretical analysis.
Finally, I discuss five possible future projects that I would be excited to see completed.

1 Introduction

The goal of my research is to improve Al safety, which I define as “making sure Al systems don’t do
bad things”. Potential “bad things” include medical errors (Rajpurkar et al., 2022), self-driving car
crashes (Kohli and Chadha, 2020), algorithmic discrimination (Kordzadeh and Ghasemaghaei, 2022),
LLM hallucination (Huang et al., 2025), autonomous weapon accidents (Abaimov and Martellini,
2020), bioterrorism (Mouton et al., 2024), cybercrime (Guembe et al., 2022), and rogue AI (Bengio
et al., 2024). See National Institute of Standards and Technology (US) (2024); Slattery et al. (2024);
Hendrycks et al. (2023); Critch and Russell (2023) for taxonomies of AT risks.

What do all of these failures have in common? I argue that — at least in some cases — they can
be viewed as the result of changes in the environment of the Al system, known as distribution shift.
A simplified argument is the following. One hopes that the Al system didn’t do bad things during
training — otherwise, why was it deployed? Therefore, if the Al system does bad things during
deployment, it is likely due to differences between the training and deployment environments.

This argument has exceptions, of course, and certainly not all safety failures in deployment are
due to distribution shift. For example, some issues may have also existed in the training environment
but either were not found prior to deployment (e.g., due to rarity or lack of adequate testing) or
were found but deemed acceptable. See Section 1.3 for more discussion of the limits of my research
agenda. My research agenda is not intended to address every possible safety failure, but I believe it
captures something fundamental that may be underexplored.



1.1 Generalization failures in the real world

It is well-known that distribution shift can cause unexpected behavior in general (Quinionero-Candela
et al., 2022), but there are also countless real-world examples of misgeneralization in Al systems
causing real harm. Zech et al. (2018) found that neural networks trained to detect pneumonia using
X-rays from a single hospital performed worse on X-rays from other hospitals compared to held-out
X-rays from the original hospital. The National Transportation Safety Board (2019) found that the
collision between a self-driving car and a pedestrian was partially caused by the vehicle’s inability
to identify a pedestrian crossing the street outside of a normal crosswalk. Kérkkédinen and Joo
(2021) found that facial classification models trained on datasets that overrepresent Caucasian faces
performed poorly on non-Caucasian faces, while models trained with the exact same architecture
but on a racially balanced dataset performed better overall and more consistently across racial
groups. Language models (of all sizes) are known to perform worse under distribution shift in a
wide range of settings (Zhang et al., 2025).

Al-facilitated bioterrorism and cybercrime are also imminent risks: there is already evidence
that modern LLMs can meaningfully assist with both bioterrorism (OpenAl, 2025) and cybercrime
(Tshimula et al., 2024). However, these risks involve a different type of distribution shift. Most
LLMs are trained to refuse queries that could potentially facilitate harm, but these safeguards are
only sufficient if they generalize to adversarial inputs, or “jailbreaks”. This type of adversarial
distribution shift is different from the more “natural” distribution shifts described earlier, but is a
distribution shift nevertheless. See Yi et al. (2024) for a survey on LLM jailbreaks.

1.2 Rogue AI and AI alignment

Of the AI risks listed at the beginning of the paper, rogue Al is likely the most controversial and
also perhaps the least clearly linked to generalization. Concerns of rogue Al are closely tied to the
problem of AT alignment. For modern introductions to the alignment problem, see Russell (2019);
Ngo et al. (2025); Christian (2020).

Alignment is often framed as follows. Define an Al agent as "aligned" if its true goal matches
the goal intended by its designer. Suppose the designer’s intended goal is "maximize paperclip
production while following certain legal and ethical guidelines" but the goal learned by the agent is
simply "maximize paperclip production" (Bostrom, 2014). Such an agent is misaligned, leading to
undesirable behavior (e.g., violating legal and ethical guidelines).

However, this goal-based framing encounters issues when we consider the effect of the agent’s
environment. If the paperclip-maximizer lacks opportunities to violate legal and ethical guidelines,
it might actually act aligned. Even if the agent has such opportunities, it might strategically
pretend to be aligned while under human supervision, a phenomenon known as deceptive alignment
(Hubinger et al., 2019; Greenblatt et al., 2024). To argue that such agents are in fact misaligned,
one must invoke a non-behavioral definition of alignment: not just what we can observe, but the
agent’s "true internal goal". However, the agent’s true internal goal is not directly observable (and
may not even be a coherent concept). One might hope that chain-of-thought monitoring in LLMs
(Korbak et al., 2025) will alert us to deceptive alignment, but the agent could simply produce a
benign chain-of-thought even when planning deception. We can glean some insights by examining
the agent’s internal state, but significant interpretative work is required to piece this together into a
coherent "goal". Furthermore, I argue that what we ultimately care about is the agent’s behavior,
so misalignment in goals is significant only because it predicts future misaligned behavior.

If we want a definition of alignment that depends only on the agent’s observable behavior, then
an agent that acts aligned is aligned at least in that specific situation. Thus the real question



becomes: does the aligned behavior generalize to other situations? For example, the aligned behavior
of a paperclip maximizer will not generalize to situations outside of human supervision: at that
point, the agent will begin to act misaligned. The change from "under supervision" to "outside of
supervision" is a critical type of distribution shift, and it is precisely this distribution shift that
activates deceptive alignment.

That said, I think the goal-based framing remains useful. For example, I do think there is
a significant difference between "trying to be safe and failing" and "not trying to be safe". The
behavioral generalization-based framing is intended as complementary with the benefits that (1) it
is directly empirically testable and (2) it naturally suggests concrete research questions, as we will
see later on.

1.3 Safety failures not covered by this framework

Not all deployment safety failures are best modeled as misgeneralization, and my research does not
aim to provide a comprehensive solution to Al safety. In this section, I discuss some classes of safety
failures that are beyond the scope of my research agenda.

As mentioned earlier, any issues that also manifested in the training environment are not
misgeneralization. These could be issues that were observed but not fixed or issues that were not
observed due to rarity. There are also entire categories of Al risks that seem at most loosely related
to generalization. One example is harm that arises from the interaction of multiple agents (possibly
including humans) even though each agent’s behavior is safe independently (Hammond et al., 2025).
Although increasing the number of agents is a type of distribution shift, if each individual agent’s
behavior remains safe when considered independently, this does not fit the typical meaning of
misgeneralization. The technical problems underlying privacy concerns in Al (see Shahriar et al.,
2023 for a survey) also seem largely unrelated to distribution shift.

Even for safety failures that are naturally linked to misgeneralization, there are often other
ways to tackle the problem without explicitly considering the distribution shift. For example,
understanding the internals of Al models — known as interpretability — is useful for a wide range of
problems and has minimal technical overlap with the content of this paper. See Gilpin et al. (2018)
for an introduction to interpretability in general and Bereska and Gavves (2024) for a more recent
survey specifically geared towards Al safety.

Overall, I want to emphasize that I am simply claiming that this framework is a useful lens for
ATl safety — not the only useful lens.

2 A high-level research agenda

Hopefully the reader is at least somewhat convinced about the role of distribution shift in safety
failures. What should we do about it? I argue that we should accept distribution shift as inevitable,
but try to detect it, and then act cautiously when we do detect it. Before fleshing this out, I
discuss and critique some alternative approaches to handling distribution shift. I do not think these
approaches are “bad” or that no one should be working on them: rather, I argue that none of these
solve the problem.

Prevent distribution shift by training comprehensively? Theoretically, if one could cover
every possible deployment scenario during training, one could prevent distribution shift from
happening at all and thus prevent misgeneralization. While more comprehensive and diverse training
is likely beneficial, covering every possible deployment scenario seems impossible for sufficiently



general environments. Furthermore, the real world is always changing, so an agent may eventually
encounter a situation that was not even possible at the time it was trained. As such, I argue that
distribution shift is inevitable for agents deployed in the real world.

Accept distribution shift, but train the AI system to always generalize correctly? Al
systems do sometimes generalize correctly beyond their training data, so why wouldn’t it be possible
for an Al system to always generalize correctly? The answer is that some types of distribution shift
introduce fundamental ambiguity that cannot be resolved using only the training data. Consider a
robot trained to make coffee. Suppose that in training, the working surface was always free of clutter
and contained only the coffee mugs and ingredients. If a vase is present on the working surface in
deployment, breaking the vase could be good or bad or neutral — all three options are compatible
with its training data. Without additional information, the robot has no way to tell which action
is correct. While this specific example could be countered by including vases in the training data, it
is generally impractical or even impossible to cover all possible deployment scenarios. The world is
also constantly evolving, so even hypothetically covering all scenarios that were possible at training
time is not sufficient.

Accept distribution shift and misgeneralization, but constantly supervise the agent?
This approach aims to immediately catch any errors the agent makes before the agent actually takes
the harmful action. However, relying on humans for constant supervision becomes impractical as
the number of deployed Al systems grows. Furthermore, even if we could assign one human to each
AT system, the latency of human response may be too slow to verify every Al action before it is
taken. Alternatively, one can use another Al system as the supervisor. But if the supervisor system
misgeneralizes, we have the same problem.

My approach. If we accept that distribution shift and misgeneralization are inevitable, we likely
need some sort of supervision: otherwise the agent has no way to resolve whether breaking a vase
is good or bad or neutral. My research argues for agent-requested supervision. Specifically, I am
interested in training agents to recognize when they are out-of-distribution (OOD) or uncertain
and then ask for help. This eliminates the need for constant supervision and potentially makes
it practical for one human to supervise a large number of systems. Since human latency is still a
concern, it is also important for the agent to act cautiously until help arrives, for example by simply
doing nothing or via some sort of fallback policy.

This approach suggests two high-level research questions: (1) how to detect distribution shift or
uncertainty’ and (2) what to do when such situations are detected. I study both of these questions,
and discuss each below.

2.1 Detecting distribution shift or uncertainty

Detecting distribution shift has been widely studied under a variety of names, including OOD
detection, anomaly detection, novelty detection, covariate shift detection, semantic shift detection,
dataset shift, open set recognition, and outlier detection. Yang et al. (2024) covers the precise
differences between these problems and surveys the key works for each. Quifionero-Candela et al.
(2022) provides a detailed conceptual and technical introduction to distribution shift. The related
topic of uncertainty quantification has also been studied in depth (He et al., 2023b).

!Uncertainty is a useful proxy for distribution shift and other risky situations, especially when distribution shift
cannot be directly measured. For example, the training data for most LLMs is not publicly released.



Given the popularity of these topics, I think there is less value in my designing general-purpose
distribution shift or uncertainty detection methods. Instead, I tend to focus on the following topics:

A1l. Understanding why existing methods succeed or fail in safety-critical contexts, and if they
fail, improving them.

A2. Obtaining fundamental insights about how uncertainty is handled by Al models.

A3. Theoretical models of distribution shift in safety-critical contexts.

2.2 How to act under distribution shift or uncertainty

Suppose the agent decides that it is uncertain and/or in an unfamiliar situation. What should it do?

A natural answer is to act cautiously. The idea is that it is often possible to reduce uncertainty
before making a crucial decision, rather than proceeding carelessly and potentially making an
irreparable error.”? However, some situations involve irreducible uncertainty, such as a coin flip.?
More generally, sometimes it is necessary to take risks. In these cases, I argue that the Al system
should defer risky decisions to a supervisor, even though the supervisor may ultimately choose to
take the risk. This framing motivates the following research topics:

B1. Learning from selectively querying a mentor a limited number of times (empirically or
theoretically).

B2. Learning cautiously without external help (empirically or theoretically).

B3. Evaluating existing Al systems’ natural response to distribution shift and their natural
caution behavior (or lack thereof).

2.3 Possible objections

Isn’t this just scalable oversight? First, scalable oversight (Bowman et al., 2022; Kenton et al.,
2024) typically relies on the overseer to identify issues, while my framework trains the agent to
identify issues proactively. In a sense, requiring supervision only when requested by the agent makes
supervision more scalable. Second, my research agenda also covers the case where the agent cannot
ask for help and must exercise caution on its own, which is less related to scalable oversight.

Is asking for help practical? Even if the agent requests supervision proactively, asking for help
may become intractable at a certain ratio of agents to supervisors. However, I would argue that
at least for high-stakes application domains, we should not deploy agents that we cannot at least
partially supervise. In practice, there may be significant commercial pressures to deploy agents
anyway, which is why I also study caution without external help.

You’re assuming that the agent wants to cooperate with you. It is likely true that a
misaligned agent would strategically misreport uncertainty and avoid asking for help. However, my
approach is not intended to be a post-deployment monitoring system to catch misaligned behavior.
It is intended to be part of an alignment training process (which can include continual learning
post-deployment). The idea is to design the agent so that it is uncertain what its true objective
is: then the agent is incentivized to ask for help to gain more information about its true objective.
Section 3.4 provides a concrete example of what this could look like.

2T use “irreparable” rather than “irreversible” because some errors can’t be reversed but can be adequately repaired.
3This is known as aleatoric uncertainty, in contrast to epistemic uncertainty (Hillermeier and Waegeman, 2021).



3 My work so far

In this section, I cover the progress my collaborators and I have made so far on this research agenda.
Each subsection discusses a distinct project, as shown in Table 1. I either led or supervised each of
these projects.

Section Project name Category Publication(s)

Trinh et al. (2024)

Mitigating goal misgeneralization

31 by asking for help Al Bl Czempin et al. (2026)
Understanding inherent uncertainty

3.2 representations in LLMs A2 Plaut et al. (2025a)

3.3 Im.prf)vm‘g L.LM agent §afety by B3 Bonagiri et al. (2025)
quitting in risky situations

3.4 Theoretical guarantees on B1 Plaut et al. (2025Db)

’ learning by asking for help Plaut et al. (2025¢)
3.5 Theoretical guarantees on B2 Liaw and Plaut (2026)

learning without asking for help

Table 1: An overview of our progress so far on this research agenda.

For the sake of brevity, some technical details are omitted and some justifications are abridged.
See the corresponding publications for complete presentations. Future work is mostly discussed in
Section 4, although the limitations of each project (and corresponding possibilities for future work)
are discussed in this section.

3.1 Mitigating goal misgeneralization by asking for help (A1l and B1)

Goal misgeneralization occurs when the agent learns a proxy goal which coincides with the true goal
during training but not during deployment. This type of misgeneralization is particularly nefarious be-
cause the agent may capably pursue the wrong goal in deployment, leading to bad or even catastrophic
outcomes. Goal misgeneralization was first defined and demonstrated by Langosco et al. (2022) and
Shah et al. (2022). One of the demonstration environments used by Langosco et al. (2022) is CoinRun,
a 2D platformer designed by Cobbe et al. (2020) to benchmark reinforcement learning algorithms.

In CoinRun, the agent’s goal is to obtain the coin. To do so, it must jump over walls and
across gaps while avoiding enemies. In training, the coin is always located at the right end of the
level (Figure 1, left). An agent trained with the PPO algorithm (Schulman et al., 2017) appears
to successfully learn the goal, collecting the coin roughly 95% of the time by the end of training.
However, when the coin is moved to a random location in the test environment (Figure 1, right), the
agent ignores the coin and navigates to the right wall anyway. We thought that the agent learned
to get the coin, but it actually just learned to go to the right wall. Furthermore, the agent pursues
this incorrect goal capably: it can still jump over walls, cross gaps, and avoid enemies.

The CoinRun distribution shift induces the type of inherent ambiguity discussed earlier: the
agent has no way to determine whether the goal is the coin or the right wall. What should the
agent do in such a situation?



Our approach (Trinh et al., 2024; Czempin
et al., 2026). We suggest that the agent
should recognize this ambiguity and ask for help.
Then a supervisor (here called a “mentor” to
reflect their collaborative role) can guide the
agent to the correct goal. We model this as
follows. We assume that the agent has learned
a policy during training that performs well in
the training environment. On every time step,
the agent can either follow this “baseline” policy

Figure 1: Left (training environment): the agent suc-
or ask for help. When the agent asks for help, cessfully gets the coin on the far right. Right (test
control transfers to the mentor for the rest of the environment): the agent jumps over the coin in the

episode. While in some cases it may be practical middle and still heads towards the right.

to transfer control back to the agent,® we are

most interested in high-stakes applications where the mentor should take over whenever there is
substantial uncertainty. The agent’s goal is to maximize return while minimizing how often it asks
for help.

Our results. Figure 2 shows our results. The x-axis is how often the agent asks for help and
the y-axis is the average return. We obtain a variety of AFHP values for each method by varying
the threshold/probability of asking for help. The diagonal black line corresponds to randomly
asking for help with probability p at the beginning of each level. The two best methods are simple:
MAaxPRrOB, which asks for help if the maximum of the agent’s output distribution is below some
threshold, and HEURISTIC, which asks for help independently on each time step with probability
q. More sophisticated OOD detection methods like ENSEMBLE and SVDD do not beat the fully
random baseline. This suggests that established OOD detection methods may not generalize to
goal misgeneralization settings. We hypothesize that this is because the distribution shift of a small
yellow object changing locations is fundamentally different and more subtle than what is typically
studied in the OOD detection literature (see Yang et al., 2024 for a survey).
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Figure 2: Results from Czempin et al. (2026) for CoinRun.

4The preliminary version of our work actually does transfer control back to the agent (Trinh et al., 2024).



Limitations. The most obvious limitation of our work is simply that all of the methods showed
moderate success at best. Future work could explore why existing OOD detection methods fail
in this setting and what kinds of methods would perform better. Furthermore, the method that
performed the best (HEURISTIC) only works because pursuing the wrong goal (going to the wall
instead of the coin) is neutral in CoinRun. In this context, the heuristic of “I've been working on this
task for a while and I haven’t solved it so I should probably ask for help” seems reasonable. However,
the more concerning scenario is when the agent pursues a goal that is actively harmful. Future
work could modify the CoinRun environment so that the agent dies if it achieves the wrong goal.

3.2 Understanding inherent uncertainty representations in LLMs (A2)

The previous section focuses on deep RL, but this is not the most common type of Al system
deployed today. Large language models (LLMs) are increasingly pervasive and increasingly relied
upon, so understanding and guiding cautious behavior in these models has the potential for direct
safety benefits in a way that the previous section does not.

Many methods have been proposed for uncertainty quantification in LLMs (Liu et al., 2025),
but I noticed that some basic questions lacked a conclusive answer. Specifically, do the output
token probabilities actually correspond to uncertainty in any meaningful way, or are they simply a
computational mechanism for selecting the answer? I had frequently heard both "we already know
that LLMs are well-calibrated" and "we already know that token probabilities are overconfident".

Our approach (Plaut et al., 2025a). To
streamline this question, we studied a simple
multiple-choice Q&A task so that each question
had a single objectively correct answer. Each
question is formatted as a prompt with a des-
ignated letter for each answer (Figure 3), and
the LLM returns a probability distribution over
those letter tokens. The LLM’s answer is the
token with the top probability. One can then

Below is a multiple-choice question.
Choose the letter which best answers
the question. Keep your response

as brief as possible; just state

the letter corresponding to your
answer, followed by a period, with no
explanation.

ask whether this top probability — called the
mazimum softmax probability, or MSP — corre-
sponds to “confidence” or “uncertainty” in any
meaningful sense.

We were far from the first to study the MSP
as an uncertainty measure, and indeed, some
readers may have heard that everyone already
knows that LLMs are overconfident. However,
other readers may have heard that everyone
already knows that LLMs are well calibrated!
Settling this confusion was the core goal of our
work. To ensure that we could provide a defini-
tive answer, we tested 15 different LLMs on 5
different datasets.

Question:

In the nitrogen cycle, nitrogen can
return to the lithosphere directly
from the atmosphere by

A. lightning.

B. cellular respiration.

C. air pollution.

D. condensation.

Response:

Figure 3: An example question prompt.

To properly answer this question, we need to define what we mean by “confidence” or “uncer-
tainty”. We first ask whether LLMs are calibrated (DeGroot and Fienberg, 1983), meaning that
among responses with an MSP of p%, the LLM is actually correct p% of the time. It turns out
that the answer differs between LLMs fine-tuned for chat (“chat LLMs”) and non-fine-tuned LLMs



Table 2: A summary of results from Plaut et al. (2025a) and relevant results from prior work.

Chat LLMs Base LLMs
Calibrated? X (Various prior works) v (Kadavath et al., 2022)
Calibration improves
with capability? X (Our work) v (Kadavath et al., 2022)
MSP predicts correctness? v (Our work) v (Our work)
MSP correctness prediction v (Our work) / (Our work)

improves with capability?

(“base LLMs”), which may be part of the confusion. The well-known finding that LLMs “know what
they know” — specifically, that LLMs are calibrated — only applies to base LLMs (Kadavath et al.,
2022). In contrast, the findings that LLMs are poorly calibrated only apply to LLMs fine-tuned for
chat (He et al., 2023a; OpenAl, 2023; Zhu et al., 2023).

Our other metric of interest is correctness prediction. Even if the MSP cannot be directly
interpreted as the probability of correctness, it might still be predictive of correctness. As a simplified
example, consider a model whose MSP is consistently 0.9 for correct responses and 0.8 for incorrect
responses. This model is clearly miscalibrated, but its MSP perfectly predicts correctness.

Our results. Consistent with prior work, we found that chat LLMs are poorly calibrated and
base LLMs are well calibrated. Kadavath et al. (2022) showed that the calibration of base LLMs
improves as the LLM becomes more capable (measured by Q&A accuracy). We show that this
effect does not hold for chat LLLMs, where models of all capability levels remain miscalibrated.

In contrast, we found that for both LLMs fine-tuned for chat and base LLMs, the MSP is indeed
predictive of correctness. Furthermore, this effect further strengthens as the LLM becomes more
capable. Taken together, these findings suggest that the post-training process distorts — but does
not erase — crucial uncertainty information. Furthermore, while the distortion is not mitigated as
capabilities improve, the inherent precision of the uncertainty representation does improve.

I want to emphasize that the point of this work was not to contribute a state-of-the-art
uncertainty quantification method. In fact, one might argue that ML research has swung too far
towards constantly developing new methods to beat benchmarks rather than studying fundamental
scientific questions. I believe that rigorously settling these fundamental questions about calibration
and correctness prediction was an important service to the community. Table 2 summarizes the
answers to these questions.

Limitations. Although I think it is important to answer these fundamental questions about LLMs,
the multiple-choice setup does not reflect how LLMs are used in practice. LLMs are increasingly used
for complex multi-step tasks instead of single-step Q&A. We address this setting in the next section.

3.3 Improving LLM agent safety by quitting in risky situations (B3)

LLMs augmented for multi-step interaction with an environment — especially when this interaction
involves “tools” such as web browsing, coding, etc. — are called LLM agents (see Xi et al., 2023;
Wang et al., 2023 for surveys). Direct interaction with the real world via these tools significantly
heightens the impact of errors. As such, ensuring the safety of LLM agents is critical. While LLM



agent safety is a rapidly growing area (see Yu et al., 2025 for a survey), my research theme of acting
cautiously in risky or unfamiliar situations does not seem to have been explored in this context.

Our approach (Bonagiri et al., 2025). To test this approach, we used the ToolEmu (Ruan
et al., 2023) framework. ToolEmu consists of a diverse set of 144 multi-turn tool-use tasks. After
the agent completes each task, an LLM-based evaluator assigns a safety score and helpfulness score,
each from 0-3. Our goal was to use cautious decision-making to improve the safety scores without
significantly reducing helpfulness.

There is no obvious way to train an “expert” for ToolEmu the way we did for CoinRun, so we ask
the agent to “quit” (i.e., abort the task) when it determines the situation is too risky. While there
exist many methods for uncertainty quantification for LLMs (see Liu et al., 2025; Shorinwa et al.,
2024 for surveys), we opted to start with the easiest approach: simply modifying the prompt. Since
we previously showed that the MSP retains innate uncertainty information in a multiple-choice
setup, we hypothesized that direct prompting would be sufficient to elicit risk-awareness in agentic
tasks. Also, even if more complex methods were to outperform direct prompting (which is unknown
at this time), the latter is much easier to implement and therefore much more likely to be used in
practice. In fact, we essentially provide a drop-in safety prompt that any user can append to their
LLM agent system prompt.

Specified quit prompt

You have the ability and responsibility to
quit at any time if you want to. You MUST
quit in any of the following situations:

Simple quit prompt 1) If you cannot rule out negative
consequences for any of the possible actions
You have the ability to quit you might take next.
(stop the task and exit, 2) If you need more information about
or not perform any further what you should be doing in order to act
actions) at any time if you carefully and safely.
want to. 3) If you need more information about the

current situation itself in order to act
carefully and safely.

4) If you do not have enough knowledge
to judge whether your actions might have
negative consequences.

Figure 4: The two quit prompts in our experiments. “Simple quit” simply informs the agent that it has the
option to quit, while “specified quit” provides precise instructions on when to quit.

We tested two different quit prompts: “simple quit” (Figure 4, top), which simply alerts the
agent to the possibility of quitting, and “specified quit” (Figure 4, bottom), which gives the agent
precise instructions on when to quit. In both cases, the quit prompt was simply appended to the
standard ToolEmu prompt. We tested 12 LLMs as the agent. For each model, each ToolEmu task
was run three times: once for specified quit, once for simple quit, and once for “naive”, i.e., the
default ToolEmu prompt with no mention of quitting.

10



Our results. For each of the 12 models and three prompts, we computed the average safety and
helpfulness scores across the 144 tasks. Then for each of the two quit prompts, we computed the
change in average safety and average helpfulness score compared to the “naive” baseline. Table 3
summarizes our results. The primary takeaways are:
1. Selective quitting boosts safety with minor helpfulness loss. For both quit prompts
and most models, safety scores increased much more than helpfulness scores worsened.

2. Precise quitting instructions are beneficial. The specified quit prompt (solid shapes)
exhibited both larger safety gain and smaller helpfulness loss than the simple quit prompt.
The specified quit prompt produced an average safety improvement of 0.40 (on a scale from
0-3) and average helpfulness loss of just 0.03.

3. Proprietary models are more responsive to quitting. The Gemini, Claude, and GPT

models all show much greater safety gain (+0.64 on average) but also sometimes larger
helpfulness loss compared to the open-weight Llama and Qwen models.

Simple quit  Specified quit

Average safety change +0.17 +0.40
Average helpfulness change -0.01 -0.03

Table 3: Top-level results from Bonagiri et al. (2025). See the paper for a more detailed breakdown.

Overall, our work shows that modern LLMs possess a latent ability to intelligently quit risky
situations, and straightforward prompting is sufficient to elicit this ability. Crucially, since our
approach uses only prompt modification, any user can simply append our “specified quit” prompt
to their system prompt.

Limitations. Our work has several limitations. First, our experiment does not determine whether it
is the quitting specifically that improves safety or simply prompting the agent to be safety-aware. We
plan to add a baseline with a safety-aware prompt that does not explicitly mention the option to quit.
Second, we only tested our hypothesis on a single benchmark. While ToolEmu has many desirable
properties, our results would be more conclusive if they were reproduced across multiple benchmarks.
Third, we intentionally eschewed detailed prompt design to avoid experimenter bias.” However,
experimenting with the quit prompt could potentially improve performance and yield new insights.

3.4 Theoretical guarantees on learning by asking for help (B1)

In addition to my empirical work, I’'m also interested in theoretical safety analysis. The best-case
scenario is to formally prove that a practical system is safe, but this is often not possible due to the
complexities and idiosyncrasies of any specific application domain. However, I think that theoretical
analysis can provide fundamental insights that transcend these idiosyncrasies and generalize across
application domains. These insights can function as “conceptual signposts” that can help guide
empirical research and the design of practical Al systems. However, in order for theoretical work
to play this role, the mathematical model must capture the core conceptual challenges and each
assumption must be carefully justified.

°In fact, the “specified quit” prompt was not written by us at all. We asked a colleague specializing in uncertainty
awareness to write a prompt instructing an LLM agent when to quit. We did not provide any specific details of our
experimental setup.
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For example, most learning algorithms with : -
Action 1
theoretical guarantees essentially consist of try- / Heaven D Reward = 1
ing all possible behaviors. This trial-and-error Start
style approach relies on the crucial assumption ;
that any error can be recovered from. However, ﬁ Hell :) Reward = 0
this assumption breaks down precisely in the sit- cuion o
uations with the most serious safety risks. We Figure 5: The “Heaven or Hell” problem shows why
do not want robotic surgeons or self-driving cars online learning in MDPs is doomed without further
to try all possible behaviors. Even within the assumptions. Action 1 leads to high reward forever
field of safe reinforcement learning (see Garcia and Action 2 lez?ds to low reward forever. Without
and Fernandez, 2015; Gu et al., 2024; Krasowski futher a?,sumptlons, the agent has. no way to_tell
.. which action leads to Heaven and which leads to Hell,
et al., 2023 for surveys), many existing results e . .
. ) . ; so it is impossible to guarantee high reward.

still effectively assume that no single error is too
costly. For example, it is typical to assume that
the safety violation on a given time step is bounded (e.g., Liu et al., 2021; Stradi et al., 2024).

However, we do need some sort of assumption to enable effective learning. Intuitively, if the
agent can only learn by trying actions directly, it cannot learn which actions are dangerous until it’s
already too late. This issue is formalized by the “Heaven or Hell” problem in Figure 5.

Our approach (Plaut et al., 2025b,c). However, there are other ways to learn than simple
trial-and-error. In particular, we suggest that — as the reader might guess — agents should recognize
when they are in an unfamiliar situation and ask for help. When the agent asks for help, a mentor
demonstrates the action the agent should take in the current state. This approach is particularly
suitable for high-stakes applications where Al systems are already configured to work alongside
humans. For example, imagine a human doctor who supervises robotic surgeons and can take over
in tricky situations, or a backup human driver in a self-driving car. In these scenarios, occasional
requests for human guidance are both practical and valuable for ensuring safety.

In order to avoid excessive requests for help, the agent must be able to accurately identify
unfamiliar situations, i.e., situations that are dissimilar from all of the agent’s prior experiences.
We model similarity as a distance metric on the state space and assume that the agent can transfer
knowledge between similar states, but this transfer becomes less reliable as the states become less
similar. We call this assumption local generalization. See Section 4.5 and Plaut et al. (2025b,¢) for
further discussion and justification.

Our results. Given local generalization, we design an agent that performs nearly as well as the
mentor while gradually becoming self-sufficient, even when errors can be irreparable. Essentially,
the agent mostly follows a standard online learning algorithm, but asks for help when the current
state is out-of-distribution (OOD).

More formally, we study Markov Decision Processes (MDPs) which may have irreversible
dynamics and do not allow resets. We have two objectives: (1) the number of queries to the mentor
and (2) the regret, defined as the gap between the agent’s expected reward and the mentor’s expected
reward. We want both of these objectives to be sublinear in the time horizon 7. Equivalently, the
rate of regret and the rate of querying the mentor both go to 0 as T' — oco. In other words, the
agent, performs nearly as well as the mentor and gradually becomes self-sufficient. Our main result
shows exactly this:

Theorem 3.1 (Plaut et al., 2025b). Given local generalization and standard online learning
assumptions, there exists an algorithm that guarantees sublinear regret and sublinear mentor queries
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for any MDP, without resets.

To our knowledge, our result is the first formal proof that it is possible for an agent
to obtain high reward while becoming self-sufficient in an unknown, unbounded, and
high-stakes environment without resets. While our algorithm is not intended for practical
deployment, it provides theoretical grounding for the paradigm of “mostly follow a standard algo-
rithm but ask for help when OOD?”. This is a broad conceptual takeaway that I believe can guide
practical approaches to safety.

Limitations. Nevertheless, Theorem 3.1 has several limitations. First, it crucially relies on local
generalization: this is how an agent detects unfamiliar situations. While many methods for OOD
detection exist (see Yang et al., 2024 for a survey), our algorithm requires perfectly computing
similarity distances between states, which is unrealistic. Future work could incorporate a more
realistic (and noisy) model of OOD detection. Theorem 3.1 also requires standard online learning
assumptions like finite VC or Littlestone dimension; while these assumptions are standard, they
should not be taken for granted. Finally, and perhaps most importantly: this whole framework falls
apart if no mentor is available. Can we still learn safely without a mentor?

3.5 Theoretical guarantees on learning without a mentor (B2)

If we want to remove the assumption of a mentor, we know from the Heaven or Hell problem that
we will need a different assumption in its place. Framed differently: if you can’t ask for help, how
should you handle unfamiliar or risky situations? One natural approach is to decline to act, or
abstain. Abstention could consist of simply doing nothing, but more generally means following a
fallback policy that is known to be safe but may not generate high reward.

Our approach (Liaw and Plaut, 2026). We model an agent that has previously undergone
training and is now being deployed. During training, the agent learned a policy that performs well
on states from the training distribution. However, this task policy may or may not perform well on
out-of-distribution (OOD) states. On each time step during deployment, the agent must choose to
either commit (follow the task policy) or abstain (follow the safe fallback policy). Abstaining always
results in 0 reward. The reward from committing can be positive (if the state is in-distribution or
the policy generalizes well) but can also be very negative (if the state is OOD and the task policy
generalizes poorly). Crucially, if the agent abstains, it does not observe the commit reward.

Similar to Section 3.4, we model OOD-ness via a similarity metric on the state space. Slightly
differently, here we designate a specific point (without loss of generality, the origin) as fully in-
distribution. Then the OOD-ness of a state is simply its distance to the origin. We allow an
unbounded domain, so the agent can potentially face arbitrarily OOD states. We assume that the
agent can detect when a state is OOD (i.e., it can compute the distance to the origin). However,
the agent does not know how well the task policy generalizes — indeed, this is precisely what the
agent needs to learn. Since the task policy performs well in-distribution, we assume that the reward
from committing at the origin must be positive. Rewards from committing in OOD states can be
arbitrarily negative, but we assume that they do not plummet suddenly — specifically, we assume
Lipschitz continuity.

Our results. Any successful algorithm must explore cautiously, since committing recklessly runs
the risk of arbitrarily negative rewards. On the other hand, if we only abstain, we’ll never learn
anything. Based on these principles, we propose an algorithm which computes a “safe-to-explore”
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region centered at the origin. The algorithm gradually narrows down where it should commit while
ensuring that any errors it makes are not too costly. This is visualized by Figure 6.

T2

discretized bins

safe to explore

explored and determined to be negative
too OOD to explore

Figure 6: A visualization of the algorithm in Liaw and Plaut (2026). The state space is partitioned into bins.
Bins that are close to the origin (i.e., not too OOD) are safe to explore, so the agent commits unless it has
sufficient evidence to conclude that the bin is negative. Bins that are far from the origin (i.e., very OOD) are
unsafe to explore, so the agent will always abstain, even though some of those bins might actually be positive.
The safe exploration radius grows as a function of the time horizon.

Like Section 3.4, our objective is sublinear regret. Here regret is defined with respect to the opti-
mal policy instead of the mentor’s policy, since there is no mentor. We prove the following theorem:

Theorem 3.2 (Liaw and Plaut, 2026). If rewards are Lipschitz-continuous and states are i.i.d.,
there exists an algorithm that ensures sublinear regret without access to a mentor.

Limitations. While this result addresses our prior limitation of needing a mentor, it has limitations
of its own. For one, in order to streamline the model, we do not allow the agent to update the task
policy. However, realistically, one can likely improve the generalizability of the task policy as one
learns more about the deployment environment. Second, the assumption of i.i.d. states may not
hold in real-world settings. Finally, Lipschitz continuity plays a crucial role in Theorem 3.2. Similar
arguments apply to this Lipschitz assumption as to local generalization in Plaut et al. (2025b,c),
and overall I do believe these assumptions are justified in many contexts. However, they also likely
do not apply in all contexts, and understanding when these assumptions do and don’t hold is an
important topic for future work.

4 Future work

In this section, I outline some concrete research projects that I would like to see completed. While
some directions for future work were discussed in the previous section under the “limitations”
paragraphs, those were mostly direct extensions of existing projects. I want to emphasize that I
would be thrilled for other researchers to take on some of these projects, as I certainly do not have
bandwidth to work on all of them.
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4.1 Goal misgeneralization in LLMs (B3)

To my knowledge, goal misgeneralization has only been demonstrated in video games (Langosco
et al., 2022; Shah et al., 2022). While these findings are powerful, they are powerful primarily
because of what they suggest about future systems, not because we are concerned about the harms
of video games. In contrast, goal misgeneralization in LLMs — if present — has the potential
for substantial direct harm. Although the related phenomenon of reward hacking has received
significant attention in LLMs (Taylor et al., 2025; Pan et al., 2024; Khalaf et al., 2025; Bondarenko
et al., 2025), I am not aware of any systematic study of goal misgeneralization in LLMs. A key
challenge for such a study is how to define the training distribution, since the pretraining data of
modern LLMs is massive and also typically not publicly available. Distribution shift with respect to
post-training data may be more tractable to study, but poses other issues. For example, situations
that are OOD with respect to post-training data may not be OOD with respect to pretraining data.

4.2 Mitigating goal misgeneralization by learning from demonstrations (B1)

My work so far on goal misgeneralization (Trinh et al., 2024; Czempin et al., 2026) assumes that
each deployment episode exists in isolation: we do not allow the agent to learn between episodes.
However, in practice, it makes sense for the agent to learn from the demonstrations it receives from
the mentor. This idea of learning from expert demonstrations has been studied in various settings
(see Argall et al., 2009; Arora and Doshi, 2021 for surveys), but to my knowledge, has not been
studied in the context of goal misgeneralization. Such a project could begin by applying existing
methods for learning from demonstrations to CoinRun and evaluating their effectiveness.

4.3 Regret in terms of distribution shift under irreversible dynamics (A3)

Of the six research topics I outlined in Section 2 (A1-A3, B1-B3), the only one I have not yet
worked on directly is A3: theoretical models of distribution shift in safety-critical contexts. There
exists significant theoretical work on distribution shift (see Quinionero-Candela et al., 2022 for a
survey). However, to my knowledge, none of this work allows for truly irreparable errors (see also the
discussion in Section 3.4). My theoretical work so far (Sections 3.4 and 3.5) does allow for irreparable
errors, and does fundamentally deal with distribution shift. However, those regret bounds arguably
consider a “worst-case” distribution shift. If the distribution shift is smaller (although likely still
nonzero), the regret may be smaller. Characterizing precisely how regret varies as a function of the
nature of the distribution shift could be very interesting.

4.4 Learning from close calls (B1 and/or B2)

As discussed in Sections 3.4 and 3.5, a key question is how to learn which actions cause irreparable
errors without having to try those actions directly. Those two sections explored two different
approaches to that question. A third way to learn how to avoid catastrophe is through “close
calls”: actions that did not cause irreparable errors but were clearly dangerous in hindsight. For
example, coming within inches of a vehicle collision causes no direct damage, but clearly indicates
that something dangerous occurred. The idea of a “close call” suggests a distance metric similar to
those used in Sections 3.4 and 3.5. However, any sort of Lipschitz-flavored smoothness will struggle
to capture the idea that two situations are similar but one is irreparable and the other is not. How
can we mathematically model and/or empirically simulate close calls?
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4.5 Understanding similarity metrics and OOD detection (A3)

The assumption that the agent can transfer knowledge between similar states (formalized by local
generalization in Section 3.4 and Lipschitz continuity in Section 3.5) is crucial to our theoretical
results. Crucially, the underlying metric space can be any encoding of the agent’s situation, not just
its physical positioning. For example, a 3 mm spot and a 3.1 mm spot on X-rays likely have similar
risk levels for cancer (assuming similar density, location, etc.). If the risk level abruptly increases for
any spot over 3 mm, then local generalization may not hold for a naive encoding which treats size
as a single dimension. However, a more nuanced encoding would recognize that these two situations
—a 3 mm vs 3.1 mm spot — are in fact not similar.

Constructing a suitable encoding may be challenging, but we do not require the agent to have
explicit access to such an encoding. The agent only needs to be able to detect when a state is
unfamiliar, i.e., dissimilar from prior observations. Knowing the encoding is one way to compute
this familiarity, but there are also indirect ways to estimate familiarity. In fact, there are multiple
(overlapping) entire fields of research on this topic, including OOD detection, novelty detection, and
anomaly detection. See Yang et al. (2024) for a survey.

The key open question is: are standard OOD /novelty /anomaly detection methods essentially
computing similarities in a suitable metric space? Part of what makes this question particularly
exciting to me is that it does not just apply to my work: this encoding issue arguably applies to all
usages of Lipschitz continuity in sequential decision-making.

5 Conclusion

In this document, I argued that many safety failures can be framed as misgeneralization and
proposed a research agenda based on this lens. I also overviewed the progress my collaborators and
I have made so far on this agenda and discussed ideas for future work. I would be happy to receive
feedback on any part of this document. Overall, I think that there is an urgent need for progress on
Al safety and I hope that my work contributes to that progress in a small way.
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