
Algorithms for Social Good:

Kidney Exchange

Benjamin Plaut

School of Computer Science Honors Undergraduate Research Thesis
Carnegie Mellon University
Advisor: Tuomas Sandholm

Abstract

Kidney exchange is a type of barter market where patients exchange willing but incompatible donors.

These exchanges are conducted via cycles—where each incompatible patient-donor pair in the cycle

both gives and receives a kidney—and chains, which are started by an altruist donor who does not need

a kidney in return. Finding the best combination of cycles and chains is hard. The leading algorithms

for this optimization problem use either branch and price—a combination of branch and bound and

column generation—or constraint generation. Although these approaches handle cycles efficiently, they

are limited by how they handle chains. Branch-and-price based solvers must perform a process called

pricing. We begin with a proof of correctness for a polynomial time pricing algorithm for cycles, and

a complementary hardness result for pricing chains. Next, we introduce a new integer programming

formulation which bypasses this hardness result. On real data from the UNOS nationwide exchange

in the United States and the NLDKSS nationwide exchange in the United Kingdom, as well as on

generated realistic large-scale data, we show that our new formulation scales significantly better than

other solvers—in many cases by orders of magnitude. Finally, we show how our new formulation can be

modified in a straightforward way to take post-match edge failure into account, under the restriction

that edges have equal probabilities of failure. Post-match edge failure is a primary source of inefficiency

in presently-fielded kidney exchanges. We end with a polynomial time algorithm for cycle pricing in

the failure-aware context.

Keywords: Kidney exchange, matching markets, integer programming, branch and price

2

ACKNOWLEDGMENTS

This work was supported in part by NSF grants IIS-1320620 and IIS-1546752, NDSEG, Facebook, and

Siebel fellowships, and by XSEDE computing resources provided by the Pittsburgh Supercomputing

Center, and by EPSRC grants EP/K010042/1, EP/K503903/1 and EP/N508792/1.

Parts of this work also appeared in AAAI 2016 and EC 2016.

I would like to thank Ross Anderson and Kristiaan Glorie for valuable discussions regarding this

work and for making available their kidney exchange software for the purposes of conducting our

experimental evaluation. I would also like to acknowledge our collaborators from the University of

Glasglow, James Trimble and David Manlove.

I am very grateful to my advisor, Tuomas Sandholm, for the guidance he has given throughout

this project. Finally, I would like to especially thank John Dickerson, without whose mentorship and

support I would not have been able to complete this thesis.

My contribution

This thesis presents several results regarding kidney exchange, leading to the state-of-the-art kidney

exchange solver for finite chain caps. I proved correctness for a polynomial time algorithm for pricing

cycles, and a complementary hardness result for chains. I then collaborated with several others in

the development of a new integer programming formulation for the kidney exchange problem, called

PICEF. Next, I adapted PICEF to the branch and price context, and showed through extensive ex-

perimentation that this new formulation scales significantly betters than previous solvers. Finally, I

considered the failure-aware context, where the possibility of edges failing after algorithmic match but

before transplant is taken into account. I developed a provably correct polynomial time algorithm for

pricing cycles in this context, allowing PICEF to be fully adapted to the failure-aware setting.

3

1. INTRODUCTION

Chronic kidney disease is a worldwide problem affecting, at various levels of severity, tens of millions

of people at great societal burden [Neuen et al. 2013] and monetary cost [Saran et al. 2015]. For those

with end-stage kidney failure—of which there are over 100,000 in the US alone1—the procurement of

a new healthy kidney is a life-saving necessity.

Deceased donors fulfill only a fraction of the demand for kidneys; indeed, the imbalance in supply and

demand is growing. Living donation, where a willing donor with two healthy kidneys gives one organ

to a patient with kidney failure, is also more desirable than deceased donation; grafts sourced in this

manner generally last twice as long as cadaveric grafts in the recipient’s body [HHS/HRSA/HSB/DOT

2011]. Finding a feasible living donor is difficult due to medical compatibility and other logistical is-

sues. Toward this end, kidney exchange [Rapaport 1986; Roth et al. 2004] is a market where patients

with willing but incompatible donors swap their paired donors, thus allowing participants to circum-

vent these compatibility issues.

Traditionally, exchanges took place in cycles, with each participating patient-donor pair both giv-

ing and receiving a kidney. Due to motivation reasons, transplants in a cycle must be carried out

simultaneously: otherwise a donor could withdraw after their patient received a kidney. This logistical

constraint makes only short cycles feasible, and in general only 2-cycles and 3-cyles are allowed.

Chains are a recent innovation, where a donor without a paired patient—known as an altruist or

non-directed donor (NDD)—triggers a sequence of donations without requiring a kidney in return.

Although the introduction of chains increased the efficacy of fielded kidney exchanges, it also dramati-

cally raised the empirical computational difficulty of clearing the market in practice. The requirement

of simultaneous operations can be relaxed for chains, but unbounded-length chains are not desirable:

planned donations can fail before transplant for a variety of reasons, and the failure of single donation

causes the rest of that chain to fail, so parallel shorter chains are better in practice.

In this thesis, we address kidney exchange from a computational point of view. Specifically, given a

set of incompatible pairs of patients and donors, we are interested in computing the “best” set of feasi-

ble kidney trades. Even computing the maximum-cardinality set of cycles and chains is both theoreti-

cally and empirically hard to solve [Abraham et al. 2007]. Over the last decade, integer programming-

based methods for solving different interpretations of the kidney exchange problem have been devel-

1http://optn.transplant.hrsa.gov

4

oped and then used in fielded exchanges. As kidney exchange matures, holes in the expressiveness

and scaling capabilities of the current solvers are found, and improvements are made. We are actively

involved in this feedback loop with the United Network for Organ Sharing (UNOS) US nationwide

kidney exchange, where our algorithms are used to autonomously match real patients and donors.

In many fielded kidney exchanges, an optimal solution is found by using an integer programming

(IP) solver to find a set of disjoint cyclic exchanges and chains that maximizes some scoring function.

This approach has been tractable so far; Manlove and O’Malley [2014] report that each instance up to

October 2014 in the United Kingdom’s National Living Donor Kidney Sharing Schemes (NLDKSS)—

one of the largest kidney exchange schemes—could be solved in under a second, with similar results

using state-of-the-art solvers at other large exchanges in the US [Anderson et al. 2015] and the Nether-

lands [Glorie et al. 2014]. However, there is an urgent need for faster kidney exchange algorithms, for

three reasons:

— Schemes have recently increased chain-length caps, and we expect further increases as more schemes

evolve towards using nonsimultaneous extended altruistic donor (NEAD) chains [Rees et al. 2009],

which can extend across dozens of transplants.

— Opportunities exist for cross-border schemes, which will greatly increase the size of the problem to

be solved; indeed, collaborations have already occurred between, for example, the USA and Greece,

and between Portugal and Spain.

— The run time for kidney exchange algorithms depends on the problem instance, and is difficult to

predict. It is desirable to have improved algorithms to insure against the possibility that future

instances will be intractable for current solvers.

With that motivation, this thesis presents a new scalable integer-programming-based approach to

optimally clearing large kidney exchange schemes which can comfortably handle chain caps greater

than 10.

2. PRELIMINARIES

Given a pool consisting of patient-donor pairs and altruists, we model the kidney exchange problem

using a directed graph G = (V,E). The set of vertices V is partitioned into A and P , which represent

the altruists and patient-donor pairs, respectively.

5

For each u ∈ A and each v ∈ P , E contains the edge (u, v) if and only if altruist u is compatible with

patient v. For each u ∈ P and each v ∈ P \ {u}, A contains the edge (u, v) if and only if the paired

donor2 of patient u is compatible with patient v. Each edge e ∈ A has a weight we ∈ R+ representing

the priority that the scheme administrator gives to that transplant. If the objective is to maximize

the number of transplants, each edge has unit weight; most fielded exchanges use weights to encode

various prioritization schemes and other value judgments about potential transplants.

Since altruists do not have paired patients, each vertex representing an altruist has no incoming

edges. Moreover, we assume that no patient is compatible with her own paired donor, and therefore

that the graph has no loops. (The IP model introduced in this thesis can trivially be adapted to the case

where loops exist by adding a binary variable for each loop and modifying the objective and capacity

constraints accordingly.)

We use the term chain to refer to a path in the graph initiated by an altruist vertex, and cycle to

refer to a cycle in the directed graph (which must involve only vertices in P , since vertices in A have

no incoming edges). The weight wc of each cycle or chain c is defined as the sum of its edge weights.

The length of a cycle or chain is defined as the number of edges.

Given a maximum cycle size L and a maximum chain length K, the kidney exchange problem is

an optimization problem in which the objective is to select a vertex-disjoint packing in G of cycles of

size up to L and chains of length up to K that has maximum weight. The problem is NP-hard for

realistic parameterizations of L and K [Abraham et al. 2007; Biró et al. 2009]. In practice, L is kept

low due to the logistical constraint of scheduling all transplants simultaneously. At both the United

Network for Organ Sharing (UNOS) US-wide exchange and the UK’s NLDKSS, L = 3. The chain cap

K is typically longer due to chains being executed non-simultaneously; yet, typically K 6= ∞ due to

potential matches failing before transplantation. This thesis addresses the realistic setting of small

cycle cap L and large—but finite—chain cap K.

Figure 1 shows a problem instance with |A| = 2 and |P | = 5. If each edge has unit weight and K =

L = 3, then the bold edges show an optimal solution: cycle ((3, 4), (4, 5), (5, 3)) and chain ((1, 7), (7, 6)),

with a total weight of 5.

2In this thesis we assume that each patient has a single paired donor. In practice however a patient may have multiple paired
donors; this can be modeled by regarding such a patient u’s vertex in G as representing u and all of her paired donors; an edge
(u, v) in G will then represent compatibility between at least one of u’s donors and patient v.

6

1

2

3

4
5

6
7

Fig. 1. The directed graph for a kidney-exchange instance with |A| = 2 and |P | = 5

3. PRIOR RESEARCH

In this section, we overview the two leading approaches to solving integer program (IP) models of the

kidney exchange clearing problem.3 Models solved by branch and price use one binary decision variable

for each legal cycle and chain, while those solved by constraint generation use a combination of binary

decision variables representing edges and cycles—but not chains.

3.1. Branch and price

Given a set of vertices V = P ∪ A, the number of cycles of length at most L is O(|P |L), the number of

uncapped chains is exponential in |P | if A 6= ∅, and the number of capped chains of length at most K is

O(|A||P |K−1). Let C(L,K) represent the set of cycles of length at most L and chains of length at most

K. With one decision variable per cycle and chain, an integer program model cannot even be written to

main memory—much less solved—for large enough graphs. Thus, any solver must maintain at most a

reduced model (i.e., subset of columns and rows in the constraint matrix) in memory.

Branch and price is a combination of standard branch and bound with column generation that

searches for and proves the optimality of a solution to an integer program while maintaining only

a reduced model in memory [Barnhart et al. 1998]. For kidney exchange, the idea is as follows [Abra-

ham et al. 2007]. First, start with some relatively small number of, or no, “seed” cycle and chain

variables in the model, and solve the linear program (LP) relaxation of this reduced model. Next,

generate positive price cycles and chains—variables that might improve the solution when brought

into the model. For the maximum-weight clearing problem, the price of a cycle or chain c is given by∑
(u,v)∈c w(u,v) −

∑
v∈c δv, where δv is the dual value of vertex v in the LP.

The pricing problem is to generate at least one positive price cycle or chain to bring into the model,

or prove that none exist. While any positive price cycles or chains exist at the current node in the

branch and bound search tree, optimality has not been proven for the LP. Solving the pricing problem

3For an in-depth survey of integer programming approaches to the kidney exchange problem, see Mak-Hau [2015].

7

can be expensive in its own right, as we discuss in Section 4. Once there are no more positive price

cycles or chains, if the LP solution is integral, optimality is proved at that node in the search tree.

However, if the LP is fractional, branching occurs. Abraham et al. [2007] branched on individual cycles

c, creating one subtree that includes c in the final solution and a second subtree that explicitly does

not, and recursing in this way. These branches are then explored in depth-first order until a provably

optimal solution is found.

3.2. Constraint generation

Constraint-generation-based approaches to kidney exchange have all variables of the appropriate

model in memory from the start, but bring in the constraints of the model incrementally. A basic

constraint generation form of the kidney exchange problem uses a decision variable for each edge (i.e.,

only O(|V |2) variables) in the compatibility graph and solves a flow problem such that unit flow into a

vertex exists if and only if unit flow out of that vertex also exists [Abraham et al. 2007]. This relaxed

form of the full problem with only a polynomial number of constraints will not obey cycle or chain caps,

so constraints of that form are added until an optimal solution to the relaxed problem is also feasible

with respect to cycle and chain caps.

Anderson et al. [2015] built the leading constraint-generation-based IP solver for the kidney ex-

change problem. Their solver builds on the prize-collecting traveling salesperson problem [Balas 1989],

where the problem is to visit each city (patient-donor pair) exactly once, but with the additional option

to pay some penalty to skip a city. The solver maintains decision variables for all cycles of length at

most L, but build chains in the final solution from decision variables associated with individual edges.

Then, an exponential number of constraints is required to prevent the solver from including chains of

length greater than K; these are generated incrementally until optimality is proved.

In this thesis, we focus on three prior instantiations of kidney exchange clearing engines: BNP-

DFS, the initial branch-and-price-based solver due to Abraham et al. [2007]; CG-TSP, the leading

constraint-generation-based approach due to Anderson et al. [2015]; and BNP-POLY, a solver we built

based on the methodology of Glorie et al. [2014]. This methodology is described in Section 4.2.

8

4. THE PRICING PROBLEM

In the branch-and-price approach, solving the pricing problem—that is, finding a positive price cycle

or chain or set of cycles/chains, or proving that none exist—is performed at every node in the branch-

and-bound search tree. Thus speedups in pricing can result in dramatic overall runtime gains. In this

section, we discuss pricing methods for the kidney exchange problem.

4.1. Exponential-time pricing

The first branch-and-price-based IP solver for the kidney exchange problem solved the pricing prob-

lem by exhaustively considering all feasible cycles and chains, relative to the current partial solution

represented by the search tree [Abraham et al. 2007]. At each node, an exhaustive depth-first-search

(DFS) in the compatibility graph computes the price for all cycles until up to a user-specified maximum

number of positive cycles are found, or until the search proves that no positive price cycles exist. That

proof of nonexistence necessarily sometimes explores all cycles (of capped length) in G which is unten-

ably slow. Indeed, for long chains in pools with many altruistic donors, the pricing problem cripples the

BNP-DFS performance, as we show in Section 6.

4.2. Polynomial-time pricing for cycles

We discuss a variant of a polynomial-time pricing algorithm due to Glorie et al. [2014], and provide

a proof of correctness. This algorithm is only correct for generating cycles: chains must be handled

separately. That is, the algorithm can prove that no positive price cycles exist in a graph, but cannot

prove that no positive price chains exist in graph. Indeed, we show in Section 4.3 that (the decision

version of) the pricing problem for chains is NP-complete4.

Glorie et al. [2014] reduce the problem of generating positive price cycles to finding negative weight

cycles in a directed graph. They construct a “reduced” graph with the same vertices and edges, but

with different weights on the edges. If e = (u, v) is an edge in the original graph with weight we, and δv

is the dual value of vertex v, its weight re in the reduced graph is given by re = δv − we. Thus, a cycle

is positive price in the original graph if and only if it is a negative cycle in the reduced graph5.

4In [Plaut et al. 2016], we stated that our algorithm is also correct for pricing chains: however, we implicitly assumed that the
cycle length cap and chain length cap were equal. Pricing for chains in general is NP-complete.
5It is worth noting that the reduction works equivalently if we set re = we − δv , and look for positive cycles in the reduced
graph. However, we found it more intuitive to look for lower-weight paths and cycles that higher-weight paths and cycles.

9

The next step is to efficiently find negative cycles of length at most L. We will use parentheses to

denote a path, and angular brackets to denote a cycle. For example, (v1, v2...vn) is a path from vertex v1

to vn, while 〈v1, v2...vn〉 is a cycle containing the above path, plus the edge (vn, v1). Glorie et al. [2014]

note the following: suppose there is a path (v1, v2, . . . , vn) of reduced weight r1, and an edge e = (vn, v1)

with reduced weight r2. Then if r1 + r2 < 0, 〈v1, v2, . . . , vn〉 is a negative cycle. Thus, efficiently finding

short paths of length at most L in the reduced graph also finds positive price cycles in the compatibility

graph. In this section, we use “short” and “long” to refer to the weight of path, not its edge count.

In general, the shortest path in a graph with negative edge weights is undefined due to the ability to

repeat a negative weight cycle multiple times in a single path. Since a path in our context is not valid if

it reuses vertices, the problem is well-defined. Yet, finding the shortest path is NP-hard via reduction

from the Hamiltonian cycle problem: set all edge weights to −1 and ask if the shortest path from a

source u to any neighbor v such that (v, u) ∈ E is of weight 1−|V |. However, the pricing procedure need

only find some—not necessarily the shortest—negative weight cycle or prove nonexistence.

The Bellman-Ford algorithm6 is ideally suited to finding cycles of length at most L. As Glorie et

al. [2014] note, the ith step of Bellman-Ford computes shortest paths using at most i edges; however,

some edges in those paths may be reused by way of reusing negative sub-cycles in the path. To prevent

confusion between the kidney exchange cycles and these sub-cycles in the reduced graph, we refer to

sub-cycles as “loops.”

To prevent looping, before updating the distance to some vertex v via the edge (u, v), we perform an

additional check through the predecessors of u. If v already occurs in the path to u, this would create a

loop; if this occurs, we do not update the distance to v.

The complexity of this algorithm is O(|V ||E|L2): Bellman-Ford runs from each vertex for L− 1 steps

and examines O(|E|) edges at each step. Our modification adds an extra factor of L, since on each up-

date, we now have to examine up toO(L) predecessors. This yields an overall complexity ofO(|V ||E|L2).

Algorithm 1 provides pseudocode for this method. For a fixed source, let di(v) represent the computed

distance from that source to v after the ith step of the algorithm, where d0(v) represents the distances

before any steps are performed. Distance is defined as the sum of the edge weights in the computed

path. Let L be the maximum allowable cycle length. The function GETNEGATIVECYCLES is called with

the reduced graph G = (V,E) the cycle cap L, and the (reduced) edge weight vector w.

6Cormen et al. [2009] provide an overview of the Bellman-Ford algorithm.

10

Algorithm 1 Modified polynomial-time Bellman-Ford search for negative weight cycles.
1: function GETNEGATIVECYCLES(G = (V,E), L, w)
2: C ← ∅ . Accumulator set for negative weight cycles
3: for each s ∈ V do
4: pred0(v) = ∅ ∀v ∈ V
5: d0(s) = 0 . Distance from source to source is zero
6: d0(v) =∞ ∀v 6= s ∈ V . Distance at step 0 to other vertices is infinite
7: for i ∈ {1, . . . , L− 1} do
8: di(v) = di−1(v) ∀v 6= s ∈ V
9: pred i(v) = pred i−1(v) ∀v 6= s ∈ V

10: for each (u, v) ∈ E do
11: if v 6∈ TRAVERSEPREDS(u, pred , i− 1) then . Avoid loops in path
12: if di−1(u) + w(u, v) < di(v) then . If this step decreases the distance to node
13: di(v)← di−1(u) + w(u, v) . Update to shorter distance
14: pred i(v)← (u, i− 1) . Store correct predecessor
15: for each v 6= s ∈ V do . Find negative weight cycles with s as the source
16: if dL−1(v) + w(v, s) < 0 then
17: C ← C ∪ TRAVERSEPREDS(v, pred , L− 1)

18: return C
19: function TRAVERSEPREDS(v, pred , n)
20: c← [] . Start with an empty list (representing a cycle)
21: curr ← v
22: while curr 6= ∅ do . Until we reach the source node ...
23: c← curr + c . Add predecessor to path
24: (u, i)← predn(curr) . Get predecessor of predecessor
25: curr ← u; n← i

26: return c

Although our algorithm is a variant of that of Glorie et al. [2014], they did not prove correctness,

which we do now.

THEOREM 4.1. If there is a negative cycle in the graph, Algorithm 1 will return at least one negative

cycle.

PROOF. We will show that if there is a negative cycle c that we do not find, there must exist a

negative cycle with strictly fewer vertices. Thus, for any negative cycle c that we do not return, there

must exist a negative cycle p∗q∗ with fewer vertices. So, there exists a negative cycle with no negative

cycles smaller than it, which our algorithm finds and returns.

Say c = 〈v1, v2, . . . , vn〉 is that negative cycle that we do not return. Without loss of generality, assume

that c contains the shortest path from v1 to vn; if it does not, then that cycle containing the shortest

path is also a negative cycle.

Consider running the modified Bellman-Ford method with v1 as the source. Since by assumption

the algorithm does not find c, it must compute a different path from v1 to vn than the one in c. We

know that the computed path is not shorter, since c contains the shortest path to vn. Without loss of

11

generality, assume it is strictly longer; were it equal in weight, we would be done (as this is a negative

cycle that is found by the algorithm as well).

The only way our modified Bellman-Ford method does not compute the shortest path to vn is if there

exists some vertex vsplit, where vsplit ∈ c, but the shortest path to vsplit is not in c. This can occur due to

the modification that prevents loops in shortest paths. Let p be the shorter path from v1 to vsplit, and

let pc be the path from v1 to vsplit in c. Let q be the path from vsplit to vn in c, plus the edge (vn, v1). This

is shown in Figure 2.

v1 vsplit vn

pc

p

q \ (vn, v1)

(vn, v1) This edge is part of q.

Fig. 2. Widget with a negative cycle and existence of a shorter negative cycle. Dotted arrows are paths that contain zero or
more vertices (and thus one or more edges).

Then c = pcvsplitq. Also, since the weights on the paths are w(p) < w(pc), we have w(pq) < w(pcq) =

w(c) < 0.

We know that c = pcq satisfies the cycle size cap, since it is valid by assumption. For any path ρ, let

|ρ| represent the number of vertices in that path.

CLAIM 4.1.1. |p| ≤ |pc|.

Proof: By way of contradiction, assume |pc| < |p|. Then, the sequence of updates along pc will reach

vsplit before p does—which means we will have computed pc. Even though we may compute p later, we

will still be able to build off of path pc: this is because we maintain the full 2D predecessor array, which

is necessary for other reasons. Therefore we will go on to compute the full pcq, which is a contradiction.

This issue may arise again when computing a path to vn with pc as the base; in the process of

computing q with pc as the base, there may exist some vertex v′split that causes the same issue as vsplit.

In that case, our logic can be applied recursively until no such vertex like v′split exists. �

Using Claim 4.1.1, we can ignore the cycle cap for the rest of the proof, since all cycles discussed will

have size |pq| ≤ |pcq| = |c|, which is legal by assumption.

At this point, we have p and q such that pq is a circuit (i.e., a path that starts and ends at the

same vertex but which might not be a cycle because it might visit some vertices more than once), and

12

w(pq) < 0. Claim 4.1.2 gives a tool that we will use to finish the proof of the theorem through repeated

use.

CLAIM 4.1.2. In a directed graph, if there exists a circuit π that is not a cycle and w(π) < 0, then

there exists a circuit π′ where w(π′) < 0 and |π′| < |π|.

Proof: Because π is a circuit but not a cycle, it must have an intersection. Therefore one can split π into

two non-empty paths, α and β, where α and β intersect. Thus there exists v∩ ∈ α where v∩ ∈ β. Then

α = α1v∩α2 and β = β1v∩β2, where α1, α2, β1, and β2 are nonempty.

We know that α1 is a path from some vertex u to v∩ and that β2 is a path from v∩ back to u. Similarly,

β1 is a path from some vertex u′ to v∩ and α2 is a path from v∩ back to u′.

This implies that both α1β2 and α2β1 are circuits. Because α1, α2, β1, and β2 are nonempty, α1β2 does

not contain u′, and α2β1 does not contain u. Therefore |α1β2| < |π| and |α2β1| < |π|.

Furthermore, since w(π) = w(α1β2) + w(α2β1) < 0, we know that at least one of α1β2 and α2β1 must

be negative. This shows the existence of a negative circuit with strictly fewer vertices. �

We now return to the proof of the theorem. Recall that we have p and q such that pq is a circuit, and

w(pq) < 0.

By the claim above, the presence of a negative circuit pq implies that p and q do not intersect, or that

there exists a negative circuit p′q′ that has fewer vertices. If p and q were not intersecting, pq would be

a shorter path than pcq, which violates the assumption that c contains the shortest path. Thus, p and

q do intersect. Therefore, there exists a negative circuit p′q′ that has fewer vertices.

Since we can only shrink pq, p′q′, and so on in this fashion a finite number of times, there must exist

some negative circuit p∗q∗ where p∗q∗ does not self-intersect; so, the negative circuit is a cycle.

4.3. Hardness of pricing for chains

The pricing problem for chains is to find at least one positive price chain of length at most K, or show

that none exist. Recall from Section 3.1 that the price of a chain is
∑

(u,v)∈c w(u,v)−
∑
v∈c δv. Section 4.2

shows how finding a positive price cycle can be reduced to finding a negative weight cycle, by setting

r(u,v) = δv − w(u,v).

13

A similar reduction can be used for chains. We must be careful, however, since the number of vertices

in a chain exceeds the number of edges by 1. We now define r(u,v) as follows:

r(u,v) =


δv − w(u,v) u ∈ P

δu + δv − w(u,v) u ∈ A

Since an outgoing edge from an altruist will only ever be used in a chain, this ensures that a chain

is positive price if and only if it is negative weight in the reduced graph.

We define the negative chain problem as follows: given a directed graph G = (V,E), where V = P ∪A,

is there a path (using each vertex at most once) of negative weight, using at most K edges, and starting

at some vertex a ∈ A? We call such a path a negative chain.

THEOREM 4.2. The negative chain problem is NP-complete.

PROOF. The negative chain problem is trivially in NP: simply sum the edge weights in a proposed

path and check its sign. To show NP-hardness, we reduce from the directed Hamiltonian path problem.

Given some graph H = (V,E), the directed Hamiltonian path problem asks if there is a directed path

visiting each vertex exactly once. Let n = |V |. Construct the graph G as follows: set we = −1 for each

e ∈ E, and add a vertex a with an edge (a, v) with w(a,v) = n − 2 for each v ∈ V . Figure 3 gives an

example graph G. Let P = V , A = {a}, and K = n.

v1 v2 vn

a

−1

. . .

−1

−1
n− 2 n− 2 n− 2

Fig. 3. Example construction for the proof of Theorem 4.2.

Suppose h is a Hamiltonian path in H starting at vi. Let c = (a, vi)∪h. Since h has exactly n−1 edges,

c contains n edges, satisfying the length constraint. Since h visits each vi exactly once and never visits

a, c visits each vertex in G at most once. Finally, since h has weight 1−n, c has weight n−2+1−n = −1.

Therefore c is a negative chain is G.

14

Suppose c is a negative chain in G. Then c must begin at a, so we can write c = (a, vi) ∪ h, for some

vi ∈ V and path h. Let m be the number of edges in h. Then wc = n − 2 −m. Since wc < 0, we have

m > n− 2. Since c can use each vertex at most once, we have m ≤ n− 1. Therefore m = n− 1. Since h

has n− 1 edges, h visits every vertex in V exactly once, making it a valid Hamiltonian path in H.

The general pricing problem (where both cycles and chains are included) is to find a positive price

(negative weight) cycle of length at most L or chain of length at most K, or show that none exist.

One may note that solving the general pricing problem does not necessarily solve the negative chain

problem. If X is the set of negative chains and Y is the set of negative cycles, the general pricing

problem is to determine whether X ∪ Y = ∅. The negative chain problem is to determine whether

X = ∅: however, determining whether X ∪ Y = ∅ does not necessarily determine whether X = ∅.

To show that the general pricing problem is NP-hard, we modify the above construction by expanding

each edge in H to a series of max(L, 1) edges whose weights sum to −1. Then any cycle in G has length

at least 2L, which violates the length constraint for L ≥ 2. For L < 2, there are no valid negative

cycles regardless. Since there are no valid negative cycles in G, the general pricing problem becomes

equivalent to the negative chain problem. Finally, we set K = n ·max(L, 1) to ensure that any chain

satisfying the length cap in the original construction remains valid. Therefore, the general pricing

problem is also NP-hard. Since the general pricing problem is also trivially in NP, it is NP-complete.

5. PICEF: POSITION-INDEXED CHAIN-EDGE FORMULATION

5.1. Description of the model

We now present a new IP formulation: the position-indexed chain-edge formulation, or PICEF. PICEF

uses a binary decision variable for each cycle, but edge variables for chains. The idea of using vari-

ables for edges in chains and a variable for each cycle was introduced in the PC-TSP-based algorithm

of Anderson et al. [2015]. The innovation in our IP model is the use of position indices on edge vari-

ables, which results in polynomial numbers of constraints and edge-variables; this is in contrast to the

exponential number of constraints in the PC-TSP-based model.

We define K(u, v), the set of possible positions at which edge (u, v) may occur in a chain in the graph

G. For u, v ∈ V such that (u, v) ∈ E,

15

K(u, v) =


{1} u ∈ A

{2, . . . ,K} v ∈ P
.

Thus, any edge leaving an altruist can only be in position 1 of a chain, and any edge leaving a patient

vertex may be in any position up to the cycle-length cap K, except 1.

For each (u, v) ∈ E and each k ∈ K(u, v), create variable yuvk, which takes value 1 if and only if edge

(u, v) is selected at position k of some chain. For each cycle c in G of length up to L, define a binary

variable zc to indicate whether c is used in a packing.

For example, consider the instance in Figure 4, in which |A| = 2 and |P | = 4. Suppose that L = 3 and

K = 4, and suppose further that each edge has unit weight. The IP model includes variables y131, y141,

and y241, corresponding to edges leaving altruists. For each k ∈ 2, 3, 4, the model includes variables

y34k, y45k, y56k, y64k, and y65k, corresponding to edges between donor-patient pairs at position k of a

chain. Finally, the model includes zc variables for the cycles ((4, 5), (5, 6), (6, 4)) and ((5, 6), (6, 5)).

1

2

3 4

5

6

Fig. 4. An instance with |A| = 2 and |P | = 4

The following integer program is solved to find a maximum-weight packing of cycles and chains.

max
∑

(u,v)∈E

∑
k∈K(u,v)

w(u,v)yuvk +
∑
c∈C

wczc (1a)

s.t.
∑

v:(v,u)∈A

∑
k∈K(v,u)

yvuk +
∑

c∈C:u appears in c

zc ≤ 1 u ∈ P (1b)

∑
v:(u,v)∈A

yuv1 ≤ 1 u ∈ A (1c)

∑
v:(v,u)∈E∧
k∈K(v,u)

yvuk ≥
∑

v:(u,v)∈E

yu,v,k+1

u ∈ P,

k ∈ {1, . . . ,K − 1}
(1d)

yuvk ∈ {0, 1} (u, v) ∈ E, k ∈ K(u, v) (1e)

zc ∈ {0, 1} c ∈ C (1f)

16

Inequality (1b) is the capacity constraint for patients: each patient vertex is involved in at most one

chosen cycle or incoming edge of a chain. Inequality (1c) is the capacity constraint for altruists: each

altruist vertex is involved in at most one chosen outgoing edge. The flow inequality (1d) ensures that

patient-donor pair vertex u has an outgoing edge at position k + 1 of a selected chain only if u has an

incoming edge at position k; we use an inequality rather than an equality since the final vertex of a

chain will have an incoming edge but no outgoing edge.

We now give an example of each of the inequalities (1b–1d) for the instance in Figure 4. For u = 4,

the capacity constraint (1b) ensures that y141 + y241 + y342 + y343 + y344 + z((4,5),(5,6),(6,4)) ≤ 1. For u = 1,

the altruist capacity constraint (1c) ensures that y131 + y141 ≤ 1. For u = 5 and k = 2, the chain flow

constraint (1d) ensures that z452 + z652 ≥ z563; that is, the outgoing edge (5, 6) can only be selected at

position 3 of a chain if an incoming edge to vertex 5 is selected at position 2 of a chain.

In our example in Figure 4, the optimal objective value is 4. One satisfying assignment that gives

this objective value is y131 = y342 = z((5,6),(6,5)) = 1, with all other variables equal to zero.

5.2. A branch and price adaptation of the PICEF model

For high enough cycle caps or large enough graphs, it is infeasible to enumerate all cycles, as discussed

in Section 3.1. To solve this, we propose a branch and price adaptation of the PICEF model, where only

a subset of cycle variables are kept in the model. Promising cycle variables are incrementally added

until correctness can be proven at each node in a branch-and-bound search tree. Our method uses the

polynomial pricing algorithm from Section 4.2 for pricing cycles.

A great advantage of PICEF is that pricing is not an issue for chains: since the number of edge

variables is polynomial in the graph size and K, all edge variables can be enumerated, even for large

graphs. In this way, PICEF bypasses the hardness result of Section 4.3.

6. EXPERIMENTAL COMPARISON OF STATE-OF-THE-ART KIDNEY EXCHANGE SOLVERS

In this section, we compare implementations of our new models against existing state of the art kidney

exchange solvers. To ensure a fair comparison, we received code from the author of each solver that is

not introduced in this thesis.

We compare run times of the following state-of-the-art solvers:

17

— BNP-DFS, the original branch-and-price-based cycle formulation solver due to Abraham et al. [2007];

— BNP-POLY, a branch-and-price-based cycle formulation solver with pricing due to Glorie et al. [2014];

— CG-TSP, a recent IP formulation based on a model for the prize-collecting traveling salesman prob-

lem, with constraint generation [Anderson et al. 2015];

— PICEF, the model from Section 5 of this thesis;

— BNP-PICEF, a branch and price version of the PICEF model, as presented in Section 5.2 of this

thesis; and

— HPIEF, the Hybrid PIEF model: a model similar to PICEF, developed by our collaborators.

A cycle length cap of 3 was used for all runs, and a time limit of 3600 seconds was imposed on each

run. When a timeout occurred, we counted the run time as 3600 seconds.

We tested on two types of data: real and generated. Section 6.1 shows run time results on real

match runs, including 286 runs from the UNOS US-wide exchange, which now contains 143 transplant

centers, as well as 17 runs from the NLDKSS UK-wide exchange, which uses 24 transplant centers.

Following this, Section 6.2 increases the size and varies other traits of the compatibility graphs via

a realistic generator seeded by the real UNOS data. We find that PICEF and HPIEF substantially

outperform all other models.

6.1. Real match runs from the UK- and US-wide exchanges

We now present results on real match run data from two fielded nationwide kidney exchanges: The

United Network for Organ Sharing (UNOS) US-wide kidney exchange where the decisions are made

by algorithms and software from Prof. Sandholm’s group, and the UK kidney exchange (NLDKSS)

where the decisions are made by algorithms and software from Dr. Manlove’s group.7 The UNOS in-

stances used include all the match runs starting from the beginning of the exchange in October 2010

to January 2016. The exchange has grown significantly during that time and chains have been incor-

porated. The match cadence has increased from once a month to twice a week; that keeps the number

of altruists relatively small. On average, these instances have |A| = 2, |P | = 231, and |E| = 5021. The

7Due to privacy constraints on sharing real healthcare data, the UNOS and NLDKSS experimental runs were necessarily
performed on different computers—one in the US and one in the UK. All runs within a figure were performed on the same
machine, so relative comparisons of solvers within a figure are accurate.

18

NLDKSS instances cover the 17 quarterly match runs during the period January 2012-January 2016.

On average, these instances have |A| = 7, |P | = 201, and |E| = 3272.

Figure 5 shows mean run times across all match runs for both exchanges. Immediately obvious is

that BNP-DFS and CG-TSP tend to scale poorly compared to the newer formulations. Interestingly,

BNP-PICEF tends to perform worse than the base PICEF and HPIEF; we hypothesize that this is

because branch-and-price-based methods are necessarily more “heavyweight” than standard IP tech-

niques, and the small size of presently-fielded kidney exchange pools may not yet warrant this more

advanced technique. Perhaps most critically, both PICEF and HPIEF clear real match runs in both

exchanges within seconds.

In the NLDKSS results, the wide fluctuation in mean run time as the chain cap is varied can be

explained by the small sample size of available NLDKSS instances, and the fact that the algorithms

other than HPIEF and PICEF occasionally timed out at one hour. By contrast, each of the HPIEF and

PICEF runs on NLDKSS instances took less than five seconds to complete. We also note that the LP

relaxation of PICEF and HPIEF are very tight in practice; the LPR bound equaled the IP optimum for

614 of the 663 runs carried out on NLDKSS data.

2 3 4 5 6 7 8 9 10 11 12

Chain length cap

0

20

40

60

80

100

120

M
ea

n
tim

e
(s

)

Individual UNOS match runs
BNP-DFS
HPIEF
PICEF
BNP-PICEF
BNP-POLY

CG-TSP

2 3 4 5 6 7 8 9 10 11 12

Chain length cap

0

600

1200

1800

2400

3000

3600

M
ea

n
tim

e
(s

)

Individual NLDKSS matching runs
BNP-DFS
HPIEF
PICEF
BNP-PICEF
BNP-POLY

CG-TSP

Fig. 5. Mean run times for various solvers on 286 real match runs from the UNOS exchange (left), and 17 real match runs from
the UK NLDKSS exchange (right).

6.2. Scaling experiments on realistic generated UNOS kidney exchange graphs

As motivated earlier in the thesis, it is expected that kidney exchange pools will grow in size as (a) the

idea of kidney exchange becomes more commonplace, and barriers to entry continue to drop, as well as

(b) organized large-scale international exchanges manifest. Toward that end, in this section, we test

19

solvers on generated compatibility graphs from a realistic simulator seeded by all historical UNOS

data; the generator samples patient-donor pairs and altruists with replacement, and draws edges in

the compatibility graph in accordance with UNOS’ internal edge creation rules.

Figure 6 gives results for increasing numbers of patient-donor pairs (each column), as well as in-

creasing numbers of altruists as a percentage of the number of patient-donor pairs (each row). As

expected, as the number of patient-donor pairs increases, so too do run times for all solvers. Still, in

each of the experiments, for each chain cap, both PICEF and HPIEF are on par or (typically) much

faster—sometimes by orders of magnitude compared to other solvers.

In addition to its increased scalability, we note an additional benefit of the PICEF and HPIEF mod-

els: reduced variance in run time. In both the real and simulated experimental results, we found that

the run time of both the PICEF and HPIEF formulations was substantially less variable than other

solvers. While the underlying problem being solved is NP-hard, and thus will always present worst-

case instances that take substantially longer than is typical to solve, the increased predictability of the

run time of these models relative to other state-of-the-art solutions—including those that are presently

fielded—is attractive.

7. FAILURE-AWARE KIDNEY EXCHANGE

Real-world exchanges all suffer to varying degrees from “last-minute” failures, where an algorithmic

match or set of matches fails to move to transplantation. This can occur for a variety of reasons,

including more extensive medical testing performed before a surgery, a patient or donor becoming too

sick to participate, or a patient receiving an organ from another exchange or from the deceased donor

waiting list; Leishman et al. [2013] gives a more complete overview of reasons for these failures.

To address these post-match edge failures, Dickerson et al. [2013] augmented the standard model

of kidney exchange to include a success probability p for each edge in the graph. They showed how to

solve this model using branch and price, where the pricing problem is solved in time exponential in

the chain and cycle cap. Prior formulations like those due to Abraham et al. [2007], Constantino et al.

[2013], and Anderson et al. [2015] are not expressive enough to allow for generalization to this model.

Intuitively, while a single edge failure prevents an entire cycle from executing, chains are capable of

incremental execution, yielding utility from the altruist to the first edge failure. Thus, the expected

20

2 3 4 5 6 7 8 9 10 11 12

Chain length cap

0

600

1200

1800

2400

3000

3600

M
ea

n
tim

e
(s

)

|P | = 300, |A| = 3
BNP-DFS
HPIEF
PICEF
BNP-PICEF
BNP-POLY

CG-TSP

2 3 4 5 6 7 8 9 10 11 12

Chain length cap

|P | = 500, |A| = 5

BNP-DFS
HPIEF
PICEF
BNP-PICEF
BNP-POLY

CG-TSP

2 3 4 5 6 7 8 9 10 11 12

Chain length cap

|P | = 700, |A| = 7
HPIEF
PICEF
BNP-PICEF
BNP-POLY

2 3 4 5 6 7 8 9 10 11 12

Chain length cap

0

600

1200

1800

2400

3000

3600

M
ea

n
tim

e
(s

)

|P | = 300, |A| = 6

2 3 4 5 6 7 8 9 10 11 12

Chain length cap

|P | = 500, |A| = 10

2 3 4 5 6 7 8 9 10 11 12

Chain length cap

|P | = 700, |A| = 14

2 3 4 5 6 7 8 9 10 11 12

Chain length cap

0

600

1200

1800

2400

3000

3600

M
ea

n
tim

e
(s

)

|P | = 300, |A| = 15

2 3 4 5 6 7 8 9 10 11 12

Chain length cap

|P | = 500, |A| = 25

2 3 4 5 6 7 8 9 10 11 12

Chain length cap

|P | = 700, |A| = 35

2 3 4 5 6 7 8 9 10 11 12

Chain length cap

0

600

1200

1800

2400

3000

3600

M
ea

n
tim

e
(s

)

|P | = 300, |A| = 75

2 3 4 5 6 7 8 9 10 11 12

Chain length cap

|P | = 500, |A| = 125

2 3 4 5 6 7 8 9 10 11 12

Chain length cap

|P | = 700, |A| = 175

Fig. 6. Mean run time as the number of patient-donor pairs |P | ∈ {300, 500, 700} increases (left to right), as the percentage of
altruists in the pool increases |A| = {1%, 2%, 5%, 25%} of |P | (top to bottom), for varying finite chain caps.

utility gained from an edge in a chain is dependent on where in the chain that edge is located, which

is not expressed in those models.

PICEF for failure-aware matching. With only minor modification, PICEF allows for implementation

of failure-aware kidney exchange, under the restriction that each edge is assumed to succeed with

equal probability p. While this assumption of equal probabilities is likely not true in practice, Dickerson

et al. [2013] motivated why a fielded implementation of this model would potentially choose to equalize

21

all failure probabilities; namely, so that already-sick patients—who will likely have higher failure

rates—are not further marginalized by this model. Thus, given a single success probability p, we can

adjust the PICEF objective function to return the maximum expected weight matching as follows:

max
∑

(u,v)∈E

∑
k∈K(u,v)

pkw(u,v)yuvk +
∑
c∈C

p|c|wczc (2a)

Objective (2a) is split into two parts: the utility received from edges in chains, and the utility received

from cycles. For the latter, a cycle c of size |c| has probability p|c| of executing; otherwise, it yields zero

utility. For the former, if an edge is used at position k in a chain, then it yields a pk fraction of its

original weight—that is, the probability that the underlying chain will execute at least through its

first k edges.

7.1. Failure-aware polynomial pricing for cycles

The initial failure-aware branch-and-price work by Dickerson et al. [2013] generalized the pricing

strategy of Abraham et al. [2007], and thus suffered from a pricing problem that ran in time expo-

nential in cycle and chain cap. Section 4.2 discussed a polynomial pricing algorithm for cycles in the

deterministic case. We present an augmented version of that algorithm which solves the failure-aware,

or discounted, pricing problem for cycles in polynomial time, under the restriction that all edges have

equal success probability p.

The discounted price of a cycle is p|c|
∑

(u,v)∈c w(u,v)−
∑
v∈c δv. We cannot simply use the same reduc-

tion from Section 4.2, because the utility of an edge in a cycle now depends on the length of the cycle.

Therefore the relative importance of dual values and edge weights depends on the final path length,

making it impossible to compare paths in the current Bellman-Ford scheme.

Figure 7 gives an example of this. For consistency with Section 4.2, edge weights in Figure 7 are

negative, and the goal is to find a (discounted) negative cycle. Consider running Bellman-Ford with s

as the source and L = 3. The path (s, v2, v3) is preferable to (s, v1, v3), since we will end with the 3-cycle

〈s, v2, v3〉 which has weight p3(−ηp3) + η − 1 = −1. However, suppose L = 4, and we removed the edge

(v3, s). Then 〈s, v2, v3〉 is no longer a cycle, and the path (s, v1, v3, v4) will have weight p4(ηp3 −1)+η−1 =

η − pη − p4 − 1 > 0, assuming η is large and p is not close to 1. However, the path (s, v1, v3, v4) would

22

Algorithm 2 Polynomial-time Bellman-Ford failure-aware pricing for cycles.
1: function GETDISCOUNTEDPOSITIVEPRICECYCLES(G = (V,E), L, p, w, δ)
2: C ← ∅
3: for each ` = 2...L do . Consider all possible cycle lengths
4: w`(u, v)← δv − p`w(u,v) ∀(u, v) ∈ E . For each `, use reduction from Section 4.2
5: C ← C ∪ GETNEGATIVECYCLES(G, `, w`) . Then the discounted pricing problem is reduced

to the deterministic pricing problem
6: return C

lead to a discounted negative cycle with weight −p4. The current algorithm cannot compare two paths

without knowing the final cycle length.

s

v1

0

v2

η − 1

v3

0

v4

0

0

−η/p3

0

0

0

0

−1

Fig. 7. Example demonstrating that multiple possible final path lengths must be considered.

With this motivation, we augment the algorithm to run O(L) iterations for each source vertex: one

for each possible final cycle length. On each iteration, we know exactly how much edge weights will be

worth in the final cycle. Therefore we can directly use the reduction from Section 4.2, and reduce the

discounted pricing problem to the deterministic pricing problem.

Pseudocode for the failure-aware cycle pricing algorithm is given by Algorithm 2. Let w and δ be the

edge weights and dual values respectively in the original graph. The function GETNEGATIVECYCLES

is defined in the pseudocode for Algorithm 1. Since the reduction is used as a subroutine and not just

performed a single time at the beginning of the algorithm, our algorithm is defined as searching for

(discounted) positive price cycles, instead of negative cycles.

This augmentation adds a factor of L to the runtime, bringing the overall complexity of the algorithm

to O(|V ||E|L3).

THEOREM 7.1. If there is a discounted positive price cycle in the graph, Algorithm 2 will return at

least one discounted positive price cycle.

23

PROOF. Let c = 〈v1, v2, . . . , vn〉 be a discounted positive price cycle. Then pn
∑

(u,v)∈c w(u,v) −∑
v∈c δv > 0. Therefore

∑
v∈c δv − pn

∑
(u,v)∈c w(u,v) < 0. Then by definition of w`, we have

∑
(u,v)∈c(δv −

pnw(u,v)) =
∑

(u,v)∈c wn(u, v) < 0.

This implies the existence of a negative cycle in G on the ` = n iteration of Algorithm 2. By the

correctness of GETNEGATIVECYCLES, if there is a negative cycle in the graph, GETNEGATIVECY-

CLES(G,n,wn) will return at least one negative cycle of length at most n.

Let c′ be a returned cycle. Since c′ is negative in G on the ` = n iteration, we have
∑
v∈c′ δv −

pn
∑

(u,v)∈c′ w(u,v) < 0. Therefore pn
∑

(u,v)∈c′ w(u,v) −
∑
v∈c′ δv > 0.

Since |c′| ≤ n by the correctness of GETNEGATIVECYCLES, we have p|c
′| ≥ pn. Because all edge

weights in the original graph are nonnegative,
∑

(u,v)∈c′ w(u,v) ≥ 0. Therefore p|c
′|∑

(u,v)∈c′ w(u,v) ≥

pn
∑

(u,v)∈c′ w(u,v). Then p|c
′|∑

(u,v)∈c′ w(u,v)−
∑
v∈c′ δv ≥ pn

∑
(u,v)∈c′ w(u,v)−

∑
v∈c′ δv > 0, so c′ is indeed

discounted positive price.

Therefore Algorithm 2 returns at least one discounted positive price cycle.

8. CONCLUSIONS & FUTURE RESEARCH

In this thesis, we addressed the optimal clearing of kidney exchanges with short cycles and long,

but bounded, chains. This is motivated by kidney exchange practice, where chains are often long but

bounded in length due to post-match edge failure. We gave a proof of correctness for a polynomial

time pricing algorithm for cycles, and showed that the corresponding pricing problem for chains is NP-

complete. We introduced a new IP formulation which bypasses this hardness result. Then, on real data

from the UNOS US nationwide exchange and the NLDKSS United Kingdom nationwide exchange, as

well as on generated data, we showed that our new model outperforms all other solvers on realistically-

parameterized kidney exchange problems–often dramatically. Finally, we showed how our model could

be adapted to take post-match edge-failure into account, and provided a polynomial time algorithm

for cycle pricing in the failure-aware setting, under the restriction that all edges have equal success

probability.

Beyond the immediate importance of more scalable static kidney exchange solvers for use in fielded

exchanges, solvers like the ones presented in this thesis are of practical importance in more advanced—

and as yet unfielded—approaches to clearing kidney exchange. In reality, patients and donors arrive

to and depart from the exchange dynamically over time [Ünver 2010]. Approaches to clearing dynamic

24

kidney exchange often rely on solving the static problem many times [Awasthi and Sandholm 2009;

Dickerson et al. 2012; Anderson 2014; Dickerson and Sandholm 2015; Glorie et al. 2015]; thus, faster

static solvers result in better dynamic exchange solutions. Techniques in this thesis—or adaptations

thereof—are therefore of interest to dynamic kidney exchange, as well as general barter exchanges.

REFERENCES

David Abraham, Avrim Blum, and Tuomas Sandholm. 2007. Clearing Algorithms for Barter Exchange Markets: Enabling Na-

tionwide Kidney Exchanges. In Proceedings of the ACM Conference on Electronic Commerce (EC). 295–304.

Ross Anderson. 2014. Stochastic models and data driven simulations for healthcare operations. Ph.D. Dissertation. Mas-

sachusetts Institute of Technology.

Ross Anderson, Itai Ashlagi, David Gamarnik, and Alvin E Roth. 2015. Finding long chains in kidney exchange using the

traveling salesman problem. Proceedings of the National Academy of Sciences 112, 3 (2015), 663–668.

Pranjal Awasthi and Tuomas Sandholm. 2009. Online Stochastic Optimization in the Large: Application to Kidney Exchange.

In Proceedings of the 21st International Joint Conference on Artificial Intelligence (IJCAI). 405–411.

Egon Balas. 1989. The prize collecting traveling salesman problem. Networks 19, 6 (1989), 621–636.

Cynthia Barnhart, Ellis L. Johnson, George L. Nemhauser, Martin W. P. Savelsbergh, and Pamela H. Vance. 1998. Branch-and-

price: Column generation for solving huge integer programs. Operations Research 46, 3 (1998), 316–329.

Péter Biró, David F Manlove, and Romeo Rizzi. 2009. Maximum weight cycle packing in directed graphs, with application to

kidney exchange programs. Discrete Mathematics, Algorithms and Applications 1, 04 (2009), 499–517.

Miguel Constantino, Xenia Klimentova, Ana Viana, and Abdur Rais. 2013. New insights on integer-programming models for the

kidney exchange problem. European Journal of Operational Research 231, 1 (2013), 57–68.

Thomas Cormen, Charles Leiserson, Ronald Rivest, and Clifford Stein. 2009. Introduction to Algorithms (third ed.). MIT Press,

Cambridge, MA.

John P. Dickerson, Ariel D. Procaccia, and Tuomas Sandholm. 2012. Dynamic Matching via Weighted Myopia with Application

to Kidney Exchange. In AAAI Conference on Artificial Intelligence (AAAI). 1340–1346.

John P. Dickerson, Ariel D. Procaccia, and Tuomas Sandholm. 2013. Failure-Aware Kidney Exchange. In Proceedings of the ACM

Conference on Electronic Commerce (EC). 323–340.

John P. Dickerson and Tuomas Sandholm. 2015. FutureMatch: Combining Human Value Judgments and Machine Learning to

Match in Dynamic Environments. In AAAI Conference on Artificial Intelligence (AAAI). 622–628.

Kristiaan Glorie, Margarida Carvalho, Miguel Constantino, Paul Bouman, and Ana Viana. 2015. Robust Models for the Kidney

Exchange Problem. (2015). Working paper.

25

Kristiaan M. Glorie, J. Joris van de Klundert, and Albert P. M. Wagelmans. 2014. Kidney Exchange with Long Chains: An

Efficient Pricing Algorithm for Clearing Barter Exchanges with Branch-and-Price. Manufacturing & Service Operations

Management (MSOM) 16, 4 (2014), 498–512.

HHS/HRSA/HSB/DOT. 2011. OPTN/SRTR Annual Data Report. (2011).

Xenia Klimentova, Filipe Alvelos, and Ana Viana. 2014. A New Branch-and-Price Approach for the Kidney Exchange Problem.

In Computational Science and Its Applications (ICCSA-2014). Springer, 237–252.

Ruthanne Leishman, Richard Formica, Kenneth Andreoni, John Friedewald, Elizabeth Sleeman, Catherine Monstello, Dar-

ren Stewart, and Tuomas Sandholm. 2013. The Organ Procurement and Transplantation Network (OPTN) Kidney Paired

Donation Pilot Program (KPDPP): Review of Current Results. In American Transplant Congress (ATC). Talk abstract.

Vicky Mak-Hau. 2015. On the kidney exchange problem: cardinality constrained cycle and chain problems on directed graphs: a

survey of integer programming approaches. Journal of Combinatorial Optimization (2015), 1–25.

David Manlove and Gregg O’Malley. 2014. Paired and Altruistic Kidney Donation in the UK: Algorithms and Experimentation.

ACM Journal of Experimental Algorithmics 19, 1 (2014).

Brendon L Neuen, Georgina E Taylor, Alessandro R Demaio, and Vlado Perkovic. 2013. Global kidney disease. The Lancet 382,

9900 (2013), 1243.

Benjamin Plaut, John P. Dickerson, and Tuomas Sandholm. 2016. Fast Optimal Clearing of Capped-Chain Barter Exchanges.

In AAAI Conference on Artificial Intelligence (AAAI).

F. T. Rapaport. 1986. The case for a living emotionally related international kidney donor exchange registry. Transplantation

Proceedings 18 (1986), 5–9.

Michael Rees, Jonathan Kopke, Ronald Pelletier, Dorry Segev, Matthew Rutter, Alfredo Fabrega, Jeffrey Rogers, Oleh

Pankewycz, Janet Hiller, Alvin Roth, Tuomas Sandholm, Utku Ünver, and Robert Montgomery. 2009. A Nonsimultane-

ous, Extended, Altruistic-Donor Chain. New England Journal of Medicine 360, 11 (2009), 1096–1101.

Alvin Roth, Tayfun Sönmez, and Utku Ünver. 2004. Kidney exchange. Quarterly Journal of Economics 119, 2 (2004), 457–488.

Rajiv Saran, Yi Li, Bruce Robinson, John Ayanian, Rajesh Balkrishnan, Jennifer Bragg-Gresham, JT Chen, Elizabeth Cope,

Debbie Gipson, Kevin He, and others. 2015. US Renal Data System 2014 Annual Data Report: Epidemiology of Kidney

Disease in the United States. American Journal of Kidney Diseases 65, 6 Suppl 1 (2015), A7.

Utku Ünver. 2010. Dynamic kidney exchange. Review of Economic Studies 77, 1 (2010), 372–414.

26

Appendix to:

Algorithms for Social Good:

Kidney Exchange

Benjamin Plaut

A. IMPLEMENTATION DETAILS

A.1. Bellman-Ford pricing is more complicated than normal Bellman-Ford

We now describe how it is necessary in the implementation of the adapted Bellman-Ford method of

Algorithm 1 to maintain the entire 2-dimensional predecessor array for vertices in the pricing graph,

whereas a 1-dimensional array suffices in typical Bellman-Ford (see, e.g., Cormen et al. [2009]). This

difference arises from the fact that we need to limit the number of edges in a path, or else the cycles we

generate may exceed the permissible length. If we only use a 1-dimensional predecessor array, running

Bellman-Ford for k steps does not guarantee paths of length at most k.

The intuition for this requirement is as follows: say we would like to compute paths of length at

most k, so we run k steps of Bellman-Ford. Suppose that after k − 1 steps, the path to vertex u has

k − 1 edges, and that on the last step, the distance to a neighboring vertex v is updated via vertex u.

If nothing else is updated, the path to vertex v would have k edges, which is valid. However, suppose

the path to vertex u also gets updated, and that this updated path also contains k edges. Since at this

final step vertex v has u as its predecessor (denoted pred(v) = u), the path to vertex v is the path to u

plus the edge (u, v), so the path to v is now k + 1 edges long, which is invalid.

It is also not viable to simply exclude those paths that end up with more than k edges, since the

algorithm may have forgotten a different path to v that was less promising at the time, but—under the

additional constraint that paths of length greater than k are invalid—would have ended up only using

k edges. If that other path were to represent the only positive price cycle, Algorithm 1 would mistakenly

App–2

return that there are no positive price cycles, breaking the correctness of the branch-and-price solver.

Figure 8 illustrates such a situation.

v1

v3v2 v4

0 0 0

−1 −1

Fig. 8. Example pricing graph where a 2-dimensional predecessor array is used for correctness (when L = 3).

In the pricing graph of Figure 8, suppose we used the standard 1-dimensional predecessor array and

ran Bellman-Ford for two steps, using vertex v1 as the source. Then, Figure 9 shows the computed

predecessors for each of the three non-source vertices.

Step # pred(v2) pred(v3) pred(v4)
0 – – –
1 v1 v1 v1
2 v1 v2 v3

Fig. 9. Predecessor table computed for the graph of Figure 8 with vertex source v, for k = 2 steps.

If only the last predecessor array row is examined, the path to vertex v4 that is extracted by following

the pred mapping will be (v1, v2, v3, v4)—which contains three edges, even though we only ran Bellman-

Ford for k = 2 steps.

It is even possible to form paths of arbitrary length after two steps. Suppose there also existed

v4 . . . vn. Add an edge (v1, vi) with weight 0, and an edge (vi, vi+1) with weight −1 for all i. Then after

two steps, a 1D predecessor array would implicitly hold a path of length n.

We solve this issue as follows. When we update the distance to vertex v by way of neighboring vertex

u, we cannot simply replace the new path to vertex v by the path to vertex u plus the edge (u, v), as

would be done in typical Bellman-Ford. Instead, the new path to vertex v should be the path to vertex

u at the time of the update plus the edge (u, v). In the above example, when we update the distance to

vertex v4 on the second step, the path to vertex v3 is (v1, v3), so the overall path to vertex v4 should be

(v1, v3, v4).

To handle this, whenever we make an update we must not only store the predecessor, but also the

time of the update (the step number). Then when extracting a path to vertex, we can jump to the

App–3

predecessor of that vertex at the time of the update. However, this process requires storing the entire

2-dimensional array of all (updated) predecessors on each step.

Note that every time the algorithm jumps to a vertex’s predecessor, it moves at least one time step

backwards in the 2-dimensional predecessor array. Since the path creation process ends when the time

step reaches 0, and there are a total of k steps (rows in the array), any extracted paths are guaranteed

to have at most k edges. Also note that this process does not change the sequence of updates in the

algorithm; instead, it ensures that the paths extracted in the end accurately reflect the sequence of

updates.

Finally, note that when we store paths at the time of update, the final path to a vertex v may contain

a vertex u but not the final path to vertex u. This is explains in the proof of Theorem 4.1 how we are

able to continue to make updates to pc, even after p is computed later.

A.2. Edge branching scheme

During the branch-and-bound (and thus also branch-and-price) search, when the LP relaxation at a

given node is non-integral, and the upper and lower bounds do not fathom that subtree, a decision

variable (or set of decision variables) must be chosen on which to branch. For example, the original

branch-and-price-based solver BNP-DFS chooses a single variable xc corresponding to a cycle or chain

c whose value is non-integral (i.e., for a binary variable xc in the IP, the relaxed value in the LP

xc ∈ (0, 1)) to branch on [Abraham et al. 2007]. If there is more than one such non-integral variable,

the one with value closest to 0.5 is chosen, and the subtree with xc = 1 is explored first in depth-first

order.

As discussed by Glorie et al. [2014], this polynomial pricing algorithm is incompatible with branching

on cycles. Consequently, our branch and price implementations branch on edges: when the LP solution

at a node is fractional, a non-integral edge is chosen to branch on. Glorie et al. [2014] showed how to

branch on edge variables, while still in a cycle formulation model. That is the scheme we use in this

thesis, as described below.

Let xc be the relaxed decision variable for cycle c in the LP. Then, the value for any edge e in the

compatibility graph is e =
∑
c:e∈c xc, the sum of relaxed values for xc ∈ [0, 1] over all cycles c that

contain edge e. It is not immediately clear that the presence of a fractional cycle in the LP implies the

presence of a fractional edge, but Glorie et al. [2014] show that this is in fact the case.

